Characterization of Animal and Vegetable Oil by Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) Spectroscopy with Supervised Pattern Recognition and Filter Algorithm
The potential of filter algorithms in improving spectral model performance was evaluated. A total of 329 animal and vegetable oil samples were used to collect attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra. Fisher discriminant analysis (FDA), support vector machine (SVM...
Saved in:
| Published in | Analytical letters Vol. 57; no. 2; pp. 307 - 316 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
22.01.2024
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-2719 1532-236X |
| DOI | 10.1080/00032719.2023.2207023 |
Cover
| Abstract | The potential of filter algorithms in improving spectral model performance was evaluated. A total of 329 animal and vegetable oil samples were used to collect attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra. Fisher discriminant analysis (FDA), support vector machine (SVM), decision tree (DT), K-nearest neighbor analysis (KNN), and multilayer perceptron neural network (MLP) were considered to build models. Three filter algorithms, finite length unit impulse response filter (FIR), infinite length impulse response filter (IIR) and wavelet transform (WT), were evaluated to enhance the performance of the models. The Morlet basis function was the most suitable wavelet transform, accurately classifying 90.3% of the training set and 94.4% of the test set. The MLP algorithms were demonstrated to be superior to the others. The best performance was obtained using low-pass or band-stop filters that provided 100% accuracy with the MLP model. The reported method is demonstrated to be affordable and easy-to-use in forensic analysis. |
|---|---|
| AbstractList | The potential of filter algorithms in improving spectral model performance was evaluated. A total of 329 animal and vegetable oil samples were used to collect attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra. Fisher discriminant analysis (FDA), support vector machine (SVM), decision tree (DT), K-nearest neighbor analysis (KNN), and multilayer perceptron neural network (MLP) were considered to build models. Three filter algorithms, finite length unit impulse response filter (FIR), infinite length impulse response filter (IIR) and wavelet transform (WT), were evaluated to enhance the performance of the models. The Morlet basis function was the most suitable wavelet transform, accurately classifying 90.3% of the training set and 94.4% of the test set. The MLP algorithms were demonstrated to be superior to the others. The best performance was obtained using low-pass or band-stop filters that provided 100% accuracy with the MLP model. The reported method is demonstrated to be affordable and easy-to-use in forensic analysis. |
| Author | Yi, Rongnan Qiu, Weilun |
| Author_xml | – sequence: 1 givenname: Weilun surname: Qiu fullname: Qiu, Weilun organization: School of Forensic Science, Hunan Police Academy – sequence: 2 givenname: Rongnan surname: Yi fullname: Yi, Rongnan organization: School of Forensic Science, Hunan Police Academy |
| BookMark | eNqFkctuEzEUhi1UJNLCIyBZYgOLCb5kLhEboohApEpF6YDYWSceO3Xl2MMZhyo8Wp-unqZsWMDqSEfffy7_f07OQgyGkNecTTlr2HvGmBQ1n08FE3IqBKtzfUYmvJSiELL6cUYmI1OM0AtyPgy3jHHRCD4h98sbQNDJoPsNycVAo6WL4PbgKYSOfjc7k2DrDb1ynm6PdJGSCQdIpqNtTJnaGOuNThC0oQVdxQM6g7RFCIONuKfrYBEw428X7aZYtevNO3rdZwXGQcf-SO9cuqHXh97gLzdk7ivkFRjyYB13wT0eNZ6ycj736cLvImbJ_iV5bsEP5tVTvSDfVp_a5Zfi8urzerm4LLSUTSokn9WWVRWIrjSi7BprRMUbADGT2spG2Kq21Ryk7nRXbjtdgjS8qWxd6-0se3hB3pzm9hh_HsyQ1G1-MuSVSsyZaJicsSpTH06Uzn8NaKzSLj06mhCcV5ypMSz1Jyw1hqWewsrq8i91jzkDPP5X9_Gkc2E0G-4i-k4lOPqI2fag3aDkv0c8AFT0r-c |
| CitedBy_id | crossref_primary_10_1080_00032719_2023_2296671 |
| Cites_doi | 10.1080/00032719.2021.1932980 10.1080/00032719.2020.1758125 10.1080/00032719.2022.2126852 10.1039/d0an02045a 10.1016/j.chroma.2018.06.029 10.1080/19440049.2016.1266096 10.1007/s13197-020-04375-9 10.1016/j.foodchem.2019.03.067 10.1016/j.microc.2021.106299 10.1007/s11277-021-08314-5 10.1007/s00216-019-02063-y 10.1080/10942912.2015.1063065 10.1080/00032719.2021.1975731 10.1111/1750-3841.14279 10.1016/j.foodchem.2016.05.174 10.1021/acs.jafc.0c02610 10.1002/ejlt.201400528 10.1080/00032719.2022.2099414 |
| ContentType | Journal Article |
| Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1080/00032719.2023.2207023 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1532-236X |
| EndPage | 316 |
| ExternalDocumentID | 10_1080_00032719_2023_2207023 2207023 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS 6J9 A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACBEA ACGEJ ACGFO ACGFS ACTIO ACUHS ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ B0M BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EAS EBC EBD EBS EMK EPL EST ESTFP ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z ML- NA5 NW0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TUS TWF TWZ UPT UT5 UU3 WH7 ZGOLN ~02 ~S~ AAYXX CITATION 7U5 8FD ADYSH L7M |
| ID | FETCH-LOGICAL-c338t-3147f066a2d5e25d8fe2618aa243cf382f67f69a3cdcd5bdc5a3e186f77cb4153 |
| ISSN | 0003-2719 |
| IngestDate | Fri Jul 25 07:07:35 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Wed Oct 01 03:00:47 EDT 2025 Mon Oct 20 23:46:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-3147f066a2d5e25d8fe2618aa243cf382f67f69a3cdcd5bdc5a3e186f77cb4153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2902803406 |
| PQPubID | 2045318 |
| PageCount | 10 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00032719_2023_2207023 crossref_citationtrail_10_1080_00032719_2023_2207023 proquest_journals_2902803406 crossref_primary_10_1080_00032719_2023_2207023 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-22 |
| PublicationDateYYYYMMDD | 2024-01-22 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Analytical letters |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Zhao Y. Y. (e_1_3_1_23_1) 2014; 50 e_1_3_1_10_1 e_1_3_1_22_1 e_1_3_1_24_1 Gu K. S. (e_1_3_1_8_1) 2022; 41 Jie Z. W. (e_1_3_1_12_1) 2023; 48 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_20_1 Chen C. (e_1_3_1_4_1) 2012; 32 e_1_3_1_11_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_7_1 Gu K. S. (e_1_3_1_9_1) 2022; 41 e_1_3_1_16_1 e_1_3_1_6_1 e_1_3_1_15_1 e_1_3_1_3_1 e_1_3_1_2_1 e_1_3_1_19_1 |
| References_xml | – ident: e_1_3_1_13_1 doi: 10.1080/00032719.2021.1932980 – ident: e_1_3_1_10_1 doi: 10.1080/00032719.2020.1758125 – ident: e_1_3_1_24_1 doi: 10.1080/00032719.2022.2126852 – ident: e_1_3_1_16_1 doi: 10.1039/d0an02045a – ident: e_1_3_1_5_1 doi: 10.1016/j.chroma.2018.06.029 – ident: e_1_3_1_22_1 doi: 10.1080/19440049.2016.1266096 – ident: e_1_3_1_11_1 doi: 10.1007/s13197-020-04375-9 – ident: e_1_3_1_21_1 doi: 10.1016/j.foodchem.2019.03.067 – ident: e_1_3_1_14_1 doi: 10.1016/j.microc.2021.106299 – ident: e_1_3_1_19_1 doi: 10.1007/s11277-021-08314-5 – volume: 50 start-page: 1056 issue: 8 year: 2014 ident: e_1_3_1_23_1 article-title: Recent advances of methods for analysis of animal and vegetable oils as material evidence publication-title: Physical Testing and Chemical Analysis Part B: Chemical Analysis) – ident: e_1_3_1_7_1 doi: 10.1007/s00216-019-02063-y – volume: 41 start-page: 539 issue: 5 year: 2022 ident: e_1_3_1_8_1 article-title: Comparison of spectral signal pre-processing of appetite inhibitors based on filter-machine learning publication-title: Chinese Journal of Analysis Laboratory – ident: e_1_3_1_15_1 doi: 10.1080/10942912.2015.1063065 – ident: e_1_3_1_2_1 doi: 10.1080/00032719.2021.1975731 – ident: e_1_3_1_20_1 doi: 10.1111/1750-3841.14279 – ident: e_1_3_1_6_1 doi: 10.1016/j.foodchem.2016.05.174 – ident: e_1_3_1_17_1 doi: 10.1021/acs.jafc.0c02610 – ident: e_1_3_1_3_1 doi: 10.1002/ejlt.201400528 – volume: 32 start-page: 294 issue: 5 year: 2012 ident: e_1_3_1_4_1 article-title: Near-infrared spectrum denoising method based on NLMS adaptive filtering publication-title: Acta Optica Sinica – ident: e_1_3_1_18_1 doi: 10.1080/00032719.2022.2099414 – volume: 48 start-page: 79 issue: 1 year: 2023 ident: e_1_3_1_12_1 article-title: Fast identification of vegetable oils by infrared spectroscopy combined with neural network publication-title: China Oils and Fats – volume: 41 start-page: 746 issue: 5 year: 2022 ident: e_1_3_1_9_1 article-title: Recognition of fingernail region based on filter-spectral feature extraction publication-title: Journal of Instrumental Analysis |
| SSID | ssj0012821 |
| Score | 2.3631225 |
| Snippet | The potential of filter algorithms in improving spectral model performance was evaluated. A total of 329 animal and vegetable oil samples were used to collect... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 307 |
| SubjectTerms | Algorithms Animal and vegetable oil attenuated total reflectance - Fourier transform infrared (ATR-FTIR) Bandstop filters Basis functions chemometrics Decision analysis Decision trees Discriminant analysis Fourier transforms Impulse response Infrared analysis Infrared spectra Infrared spectroscopy Low pass filters low-pass/band-stop filter multilayer perceptron neural network (MLP) Multilayer perceptrons Neural networks Pattern recognition Performance evaluation Reflectance Spectrum analysis Support vector machines Vegetable oils Wavelet transforms |
| Title | Characterization of Animal and Vegetable Oil by Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) Spectroscopy with Supervised Pattern Recognition and Filter Algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00032719.2023.2207023 https://www.proquest.com/docview/2902803406 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1532-236X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1532-236X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: A8Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKdwE3iF8xGMgXTAKhVNRO0_Qy6lYVNDYYKQxuIsdJqkhdWrrkYrviHXgd3oF34Ek4x3bclE4MuImqtLYrnc_Hn-1zvkPIU4GbDpFIZzAQngNe0nMGqSsc5vJESi8WicBzyDeH3njivj7pnbRaPxpRS1UZd-TFpXkl_2NVeAd2xSzZf7Cs7RRewGewLzzBwvD8KxsPrdryhWV-QZGfmvz_D-k0LVVq1FE-Q54ZlMCQK4EkM5yXSlY_w2N7lTZQhz1wLLWk6tiFNakFL5ItVaQ68NEgPHZG4atjPE_A6vUl6mHOF-f6SPd9tUDvcwa_faukO_GGwMQomcDnUY439C-C2XS-hCanTX6sNFL08fpMJRpZyv8ur1Q8YJrPqkb2WjEtwEN9ypunFwwjXhy22uuGG4VEGtFM2mFzh_WNV01rH80cxlUBROvEtcq1AStreGSui-qaxZ3rxM6NdcMGWnIcrIM15TuMgTvUydDrOt2HR9FocnAQhfsn4S4fLb44WMQML_t3-Z5G2TWyxWCZedkmW8F47_NHe7EFO1xbxBGHqpPKUO79stHX6NKamO4GeVCMKLxFbpqtDA00Lm-TVlrcIdeHdQXBu-T77_ik84xqfFIAArX4pIBPGp_TFT6pwidt4JP-_PqNGmRSi0xaI5M-q3H5nDZRSRGVdIVKalBJG6hUf0ajklpU3iOT0X44HDumWogjOfdLIBNuPwMCLVjSS1kv8bOUeV1fCHA7MuM-y7x-5g0El4lMenEie4KnXd_L-n0ZA43l90m7mBfpA0I9KWMg7l7iouY_bCBc14uZDz1Bl0B5t4lbGyWSRkofK7rMoq5V3NW2jNCWkbHlNunYZgutJXNVg0HT4lGpZkumJ0rEr2i7U8MjMi7rLGJKq4kDiX_4568fkRtqtnZxtu6Qdrms0sfAvsv4iUH0L-c72qE |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BOZQLlJfaUsocOMBhI7Lr59GKsJLSBpS6qDdrvY8qInWi1Dm0P41fx4xfaotQDz3bs15rZme_2Z35hrFPioIOZTSPYxVw9JIBj62nuPCk0ToolFF0DnkyDcZn3tG5f36rFobSKimGdg1RRO2raXHTYXSXEkfVB1KEQ6ozEXIgBJqtkE_ZMx_BPnUxkF-n_U0ChhR91zyS6ap4_jfMnf3pDnvpP9663oLSl0x3k28yT34PNlUx0Df3eB0f93c77EWLUCFpTOoVe2LL12x71DWGe8P-jHqS56aGE5YOknJ-iVL4VfhlL2xFFVnwY76A4hqSCoH5BkGtgWyJYB9m1tFtARkccEibtnmQdRgaJqVbU2I8fE6yGU-zyewLnK7qfj1URXMNdHoMp5sVOborfO9nzRJawqxLh8JJ0VTSOSUDQLK4WK5R5PItO0u_ZaMxb1tAcI2xc4U7hBc6REVKGN8K30TOYsgXKYW2pJ2MhAtCF8RKaqONXxjtK2mHUeDCUBeITeQ7tlUuS7vLINC6QDQWGI-I3BEVYiBciAhHwiERx-wxr1N8rlt-dGrTsciHPY1qo5icFJO3itljg15s1RCEPCQQ37aqvKpPZlzTRiWXD8gedCaYt77mKhc1AY9EZLb_iKE_su1xdnKcH0-m39-z5_iIspO4EAdsq1pv7AfEXlVxWC-uv4uKINE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd0WhwBw4wCEr1k6c5BgtRF0eS7VNETfL8aNasc2udrOH8tP4dczkJQpCPfScjONoxuNv7JlvGHutKejQ1gRpqmWAXlIGqQt1wENhjZGltprOIb_M5NFp-PF71GcTbru0SoqhfUsU0fhqWtxr6_uMOCo-EDweU5kJFyPO0Wq5uMluSboVoyqOd7PhIgEjiqFpHsn0RTz_G-bS9nSJvPQfZ93sQPl9VvZzbxNPfox2dTkyP_-idbzWzz1g9zp8CllrUA_ZDVc9YncmfVu4x-zXZKB4bis4YeUhqxbnKIUfhW_uzNVUjwVfF0soLyCrEZbvENJaKFYI9WHuPN0VkLlBAHnbNA-KHkHDtPIbSouHN1kxD_JiOn8LJ-umWw_V0FwAnR3DyW5Nbm6L7x03HKEVzPtkKJwUTSVfUCoAZMuz1QZFzp-w0_xDMTkKugYQgcHIucb9IYw9YiLNbeR4ZBPvMOBLtEZLMl4k3MvYy1QLY42NSmsiLdw4kT6OTYnIROyzvWpVuacMpDElYjFpQ6JxR0yIYXDJExwJh0QUc8DCXu_KdOzo1KRjqcYDiWqrGEWKUZ1iDthoEFu39CBXCaR_GpWqm3MZ3zZRUeIK2cPeAlXnabaKN_Q7AnHZs2sM_YrdPn6fq8_T2afn7C4-odSkgPNDtldvdu4FAq-6fNksrd_ZcR91 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Animal+and+Vegetable+Oil+by+Attenuated+Total+Reflectance+%E2%80%93+Fourier+Transform+Infrared+%28ATR-FTIR%29+Spectroscopy+with+Supervised+Pattern+Recognition+and+Filter+Algorithm&rft.jtitle=Analytical+letters&rft.au=Qiu%2C+Weilun&rft.au=Rongnan+Yi&rft.date=2024-01-22&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0003-2719&rft.eissn=1532-236X&rft.volume=57&rft.issue=2&rft.spage=307&rft.epage=316&rft_id=info:doi/10.1080%2F00032719.2023.2207023&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2719&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2719&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2719&client=summon |