Defence algorithm against adversarial example based on local perturbation DAT-LP

With further research into neural networks, their scope of application is becoming increasingly extensive. Among these, more neural network models are used in text classification tasks and have achieved excellent results. However, the crucial issue of derived adversarial examples has dramatically af...

Full description

Saved in:
Bibliographic Details
Published inNondestructive testing and evaluation Vol. 39; no. 1; pp. 204 - 220
Main Authors Tang, Jun, Huang, Yuchen, Mou, Zhi, Wang, Shiyu, Zhang, Yuanyuan, Guo, Bing
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1058-9759
1477-2671
DOI10.1080/10589759.2023.2249581

Cover

Abstract With further research into neural networks, their scope of application is becoming increasingly extensive. Among these, more neural network models are used in text classification tasks and have achieved excellent results. However, the crucial issue of derived adversarial examples has dramatically affected the stability and robustness of the neural network model. This issue confines the further expansion of the neural network application, especially in some security-sensitive tasks. Concerning the text classification task, our proposed DAT-LP (Defence with Adversarial Training Based on Local Perturbation) algorithm is designed to address the adversarial example issue, which uses local perturbation to enhance model performance based on adversarial training. Furthermore, SW-CStart (Cold-start Algorithm Based on Sliding Window) algorithm is designed to realise adversarial training in the model's initialisation stage. The DAT-LP algorithm is evaluated by comparing with three baselines, including baseline models (BiLSTM, TextCNN), Dropout(regularisation method), and ADT (Adversarial Training method), respectively. As it turns out, DAT-LP's performance is superior and demonstrates the best generalisation ability.
AbstractList With further research into neural networks, their scope of application is becoming increasingly extensive. Among these, more neural network models are used in text classification tasks and have achieved excellent results. However, the crucial issue of derived adversarial examples has dramatically affected the stability and robustness of the neural network model. This issue confines the further expansion of the neural network application, especially in some security-sensitive tasks. Concerning the text classification task, our proposed DAT-LP (Defence with Adversarial Training Based on Local Perturbation) algorithm is designed to address the adversarial example issue, which uses local perturbation to enhance model performance based on adversarial training. Furthermore, SW-CStart (Cold-start Algorithm Based on Sliding Window) algorithm is designed to realise adversarial training in the model’s initialisation stage. The DAT-LP algorithm is evaluated by comparing with three baselines, including baseline models (BiLSTM, TextCNN), Dropout(regularisation method), and ADT (Adversarial Training method), respectively. As it turns out, DAT-LP’s performance is superior and demonstrates the best generalisation ability.
Author Huang, Yuchen
Guo, Bing
Tang, Jun
Wang, Shiyu
Mou, Zhi
Zhang, Yuanyuan
Author_xml – sequence: 1
  givenname: Jun
  surname: Tang
  fullname: Tang, Jun
  organization: Sichuan University
– sequence: 2
  givenname: Yuchen
  orcidid: 0000-0002-1537-4924
  surname: Huang
  fullname: Huang, Yuchen
  organization: Sichuan University
– sequence: 3
  givenname: Zhi
  surname: Mou
  fullname: Mou, Zhi
  organization: Sichuan University
– sequence: 4
  givenname: Shiyu
  surname: Wang
  fullname: Wang, Shiyu
  organization: Sichuan GreatWall Computer System Co.,Ltd
– sequence: 5
  givenname: Yuanyuan
  orcidid: 0000-0001-6265-7188
  surname: Zhang
  fullname: Zhang, Yuanyuan
  email: yuanyuanzhang@stu.scu.edu.cn
  organization: Sichuan University
– sequence: 6
  givenname: Bing
  surname: Guo
  fullname: Guo, Bing
  organization: Sichuan University
BookMark eNqFkE1LAzEQhoNUsK3-BGHB89Yk-xm8WFq_oGAP9Rxms0lN2d2sSar235vaevGgp2SG55kZ3hEadKaTCF0SPCG4xNcEZyUrMjahmCYTSlOWleQEDUlaFDHNCzII_8DEe-gMjZzbYExJVpRDtJxLJTshI2jWxmr_2kawBt05H0H9Lq0Dq6GJ5Ce0fSOjCpysI9NFjRGh3Uvrt7YCr0NrPl3Fi-U5OlXQOHlxfMfo5f5uNXuMF88PT7PpIhZJUvpwVp6kKhdCFCWtlKIqVErUgsgkJQVLsapwDbhiCmgoK8IKgtNS4SCyCpIxujrM7a1520rn-cZsbRdWcsqyNM_LwAfq5kAJa5yzUnGh_fe53oJuOMF8HyH_iZDvI-THCIOd_bJ7q1uwu3-924OnO2VsCx_GNjX3sGuMVRY6oR1P_h7xBVPbic0
CitedBy_id crossref_primary_10_1080_10589759_2024_2426705
Cites_doi 10.48550/arXiv.1412.6572
10.1609/aaai.v31i1.10970
10.48550/arXiv.1712.06751
10.1080/10589759.2023.2195646
10.48550/arXiv.1805.06504
10.48550/arXiv.1408.5882
10.48550/arXiv.1905.11268
10.1109/TIFS.2020.3021899
10.48550/arXiv.1908.07125
10.1007/978-981-19-5868-7_36
10.21203/rs.3.rs-2610874/v1
10.1109/ICSE.2019.00108
10.24963/ijcai.2018/585
10.1109/SPW.2018.00016
10.1080/10589759.2014.1002839
10.1145/1161366.1161397
10.1609/aaai.v32i1.12206
10.48550/arXiv.1507.00677
10.1109/EuroSP.2016.36
10.1007/978-1-4842-5364-9_2
10.1109/MILCOM.2016.7795300
10.48550/arXiv.1312.6199
10.1080/10589759.2023.2169285
10.48550/arXiv.1605.07725
10.48550/arXiv.1705.07204
10.1145/3132747.3132785
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1080/10589759.2023.2249581
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-2671
EndPage 220
ExternalDocumentID 10_1080_10589759_2023_2249581
2249581
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072319
– fundername: Sichuan Science and Technology Program
  grantid: 2022YFG0155
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c338t-26634f6ccc782bff2f4f6fcdc1e3417940fb0da0b9fa2794b1971048f06639ba3
ISSN 1058-9759
IngestDate Wed Aug 13 04:26:05 EDT 2025
Wed Oct 01 03:09:49 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Mon Oct 20 23:44:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-26634f6ccc782bff2f4f6fcdc1e3417940fb0da0b9fa2794b1971048f06639ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1537-4924
0000-0001-6265-7188
PQID 2954668710
PQPubID 53225
PageCount 17
ParticipantIDs crossref_citationtrail_10_1080_10589759_2023_2249581
crossref_primary_10_1080_10589759_2023_2249581
proquest_journals_2954668710
informaworld_taylorfrancis_310_1080_10589759_2023_2249581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Nondestructive testing and evaluation
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_27_1
Wang W (e_1_3_2_10_1) 2019; 1902
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
Gulli A (e_1_3_2_30_1) 2017
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
Bastani O (e_1_3_2_21_1) 2016; 29
e_1_3_2_2_1
Weng L (e_1_3_2_28_1) 2018; 80
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
Abadi M (e_1_3_2_31_1) 2016; 16
Goodfellow I (e_1_3_2_15_1) 2016
References_xml – ident: e_1_3_2_8_1
  doi: 10.48550/arXiv.1412.6572
– ident: e_1_3_2_17_1
  doi: 10.1609/aaai.v31i1.10970
– ident: e_1_3_2_16_1
  doi: 10.48550/arXiv.1712.06751
– ident: e_1_3_2_5_1
  doi: 10.1080/10589759.2023.2195646
– start-page: 249
  volume-title: Deep learning
  year: 2016
  ident: e_1_3_2_15_1
– ident: e_1_3_2_32_1
  doi: 10.48550/arXiv.1805.06504
– ident: e_1_3_2_33_1
  doi: 10.48550/arXiv.1408.5882
– ident: e_1_3_2_18_1
  doi: 10.48550/arXiv.1905.11268
– ident: e_1_3_2_26_1
  doi: 10.1109/TIFS.2020.3021899
– ident: e_1_3_2_24_1
  doi: 10.48550/arXiv.1908.07125
– ident: e_1_3_2_6_1
  doi: 10.1007/978-981-19-5868-7_36
– volume: 1902
  start-page: 1
  year: 2019
  ident: e_1_3_2_10_1
  article-title: A survey on adversarial attacks and defenses in text
  publication-title: arXiv Preprint
– ident: e_1_3_2_3_1
  doi: 10.21203/rs.3.rs-2610874/v1
– ident: e_1_3_2_27_1
  doi: 10.1109/ICSE.2019.00108
– ident: e_1_3_2_11_1
  doi: 10.24963/ijcai.2018/585
– ident: e_1_3_2_12_1
  doi: 10.1109/SPW.2018.00016
– ident: e_1_3_2_2_1
  doi: 10.1080/10589759.2014.1002839
– ident: e_1_3_2_14_1
  doi: 10.1145/1161366.1161397
– ident: e_1_3_2_22_1
  doi: 10.1609/aaai.v32i1.12206
– ident: e_1_3_2_23_1
  doi: 10.48550/arXiv.1507.00677
– volume-title: Deep learning with Keras
  year: 2017
  ident: e_1_3_2_30_1
– volume: 16
  start-page: 265
  volume-title: 12th (USENIX) Symposium on Operating Systems Design and Implementation (OSDI)
  year: 2016
  ident: e_1_3_2_31_1
– ident: e_1_3_2_20_1
  doi: 10.1109/EuroSP.2016.36
– ident: e_1_3_2_29_1
  doi: 10.1007/978-1-4842-5364-9_2
– ident: e_1_3_2_9_1
  doi: 10.1109/MILCOM.2016.7795300
– ident: e_1_3_2_7_1
  doi: 10.48550/arXiv.1312.6199
– ident: e_1_3_2_4_1
  doi: 10.1080/10589759.2023.2169285
– ident: e_1_3_2_13_1
  doi: 10.48550/arXiv.1605.07725
– ident: e_1_3_2_19_1
  doi: 10.48550/arXiv.1705.07204
– volume: 80
  start-page: 5276-
  volume-title: Proceedings of Machine Learning Research
  year: 2018
  ident: e_1_3_2_28_1
– volume: 29
  start-page: 1
  year: 2016
  ident: e_1_3_2_21_1
  article-title: Measuring neural net robustness with constraints
  publication-title: Advances in neural information processing systems
– ident: e_1_3_2_25_1
  doi: 10.1145/3132747.3132785
SSID ssj0021578
Score 2.3005342
Snippet With further research into neural networks, their scope of application is becoming increasingly extensive. Among these, more neural network models are used in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 204
SubjectTerms adversarial attack
Algorithms
Classification
DAT-LP
defence algorithm
machine learning security
Neural networks
Perturbation
Regularization
robustness
Text categorization
Training
Title Defence algorithm against adversarial example based on local perturbation DAT-LP
URI https://www.tandfonline.com/doi/abs/10.1080/10589759.2023.2249581
https://www.proquest.com/docview/2954668710
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1477-2671
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021578
  issn: 1058-9759
  databaseCode: ABDBF
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1477-2671
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0021578
  issn: 1058-9759
  databaseCode: ADMLS
  dateStart: 19891201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1477-2671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021578
  issn: 1058-9759
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1477-2671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021578
  issn: 1058-9759
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4lOMDeQDO1UpSewm7bGiqypUyg6pKFyi2LHXSSMZWjoBfwh_L-_ZTpOqEwMuUeMoteL38_uw_X6PkDdgUQIVDXJPah15yOjlAUpyT0umIFzQQS7MaYtFNFvy96vBqtP51Tq1tKlEX_68Na_kf6QKbSBXzJL9B8lu_xQa4DfIF64gYbj-lYwnSpuJmV2elxDkr7_2snOI9K8r3NoHvy4zJTnU9wwpgHtosHLcHDD2CwmLwdwIC4DJOPHmZ21PdVEWuXLssjeqVyEbh8tnbBjCm7jfHezdFA1OXNvnDeBi2_yh3Jj9kPVFs5TvVqzXFz827UWIkJtFiCZkTfbqgbQOJaFa9QegVmPH_a1sG49jL4xsAZZaF1tiox3MOcVqixQ7Gx2aBLp99W_PS2Jv2FkfS8P3Q6yubcvC7NJtLz6m0-V8nianq-SETa--eViLDPfsT9jEguUeOQjBWvhdcjCeTb582obywSC2SZbuu-rcsKH_9tbed7yeHU7cPR_AODbJI_LQRSR0bOH1mHRU8YQ8aPFUPiVnDmh0CzTqgEZbQKMOaNQAjZYFNUCjbaBRC7RnZDk9Td7NPFeKw5OMDSuQU8S4jqSU4FEKrUMNd1rmMlAMa9hxXws_z3wx0lkItyIYgevKhxo92pHI2HPSLcpCvSAUImYV80hyJgKe8WjIRK4k8gyynIWBOiS8HqpUOp56LJdymQaOzrYe4RRHOHUjfEj629euLFHLXS-M2nJIK4NhbeGbsjvePa6Fljp9cJ3ijnkUDeG7X_758RG538yhY9KFqaxegWtbidcOZ78BYX-fFw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIADb8SbHLhmapq0W48ImAaMicOQuEVJmoyJsU2jSIhfj93HNEBoh52qqHLVJo4_O7U_E3IBiMJdHKXMeh8zZPRioCUp81Y4CBc8T02ebdGJW0_y7jl6nqmFwbRKjKF9QRSR22rc3HgYXaXEwTVqJPUI60xCUQuxfTJWX69E4OxjFwMRdKZBF4_qRTlcBBsbZKoqnv8e8wOffrCX_rHWOQQ1N4mtXr7IPHmtfWSmZr9-8Tou9nVbZKP0UOlloVLbZMkNd8j6DG_hLnm8dh4tAtWD3mjSz17eqO7pPniaVGOD53eNak3dp0buYYpImdLRkObAScduAjhncpWg15dd1n7cI0_Nm-5Vi5WtGZiFmDZjAOtC-thaCx6G8T70MPI2tdwJ7GkmA2-CVAcm8TqEoeEJuDKy4dHDSYwW-2R5OBq6A0IhgnJ1GVspDJdaxg1hUmeRd06kIuTukMhqQZQtecuxfcZA8ZLetJowhROmygk7JLWp2Lgg7pgnkMyutsryExNftDdRYo7sSaUaqrQB7wr_oMYxBKTB0QKPPierre5DW7VvO_fHZA1uyfwEKDwhy9nkw52CT5SZs1zpvwG3Kfuf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIHrwLb7NweuW3U027R7FWqqW0kML3kKetahtaVcQf70z-yhWEQ-elrBM2J1M5pHMfEPIFViUyInEBsZ7ESCiVwBSYgNvmINwwUdW59kWXdEe8PvHpMomnJdplRhD-wIoItfVuLmn1lcZcfBMGmk9wTKTmNVi7J6MxddrAm_FsIoj7C5iriipF9VwCexroKmKeH6bZsk8LYGX_lDWuQVqbRNdfXuRePJce8t0zXx8g3X818_tkK3SP6XXhUDtkhU33iObX1AL90mv6TzqA6pehpPZKHt6pWqoRuBnUoXtnecKhZq6d4XIwxTtpKWTMc3NJp26GVg5nQsEbV73g07vgAxat_2bdlA2ZggMRLRZAEadcS-MMeBfaO9jDyNvrIkcw45mPPQ6tCrUqVcxDHWUgiPDGx79m1QrdkhWx5OxOyIU4idX58JwpiOuuGgwbZ1B1DlmWRy5Y8Kr9ZCmRC3H5hkvMirBTSuGSWSYLBl2TGoLsmkB2_EXQfp1sWWWn5f4ormJZH_QnlWSIUsNMJd4fyoEhKPhyT-mviTrvWZLdu66D6dkA97w_PgnPiOr2ezNnYNDlOmLXOQ_AZKZ-kM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defence+algorithm+against+adversarial+example+based+on+local+perturbation+DAT-LP&rft.jtitle=Nondestructive+testing+and+evaluation&rft.au=Tang%2C+Jun&rft.au=Huang%2C+Yuchen&rft.au=Mou%2C+Zhi&rft.au=Wang%2C+Shiyu&rft.date=2024-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1058-9759&rft.eissn=1477-2671&rft.volume=39&rft.issue=1&rft.spage=204&rft.epage=220&rft_id=info:doi/10.1080%2F10589759.2023.2249581&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9759&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9759&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9759&client=summon