On the Memory Cost of EMD Algorithm

Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research show...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Young, Hsu-Wen Vincent, Lin, Yu-Chuan, Wang, Yung-Hung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3218417

Cover

Abstract Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity O ( n ) for a given number of IMFs, where n is the signal length, but its memory is as large as (13+ m imf ) n , where m imf is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let m out denote the number of PO modes and, by definition, m out ≤ m imf . In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to (2+ m out ) n without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms.
AbstractList Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity [Formula Omitted] for a given number of IMFs, where [Formula Omitted] is the signal length, but its memory is as large as [Formula Omitted], where [Formula Omitted] is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let [Formula Omitted] denote the number of PO modes and, by definition, [Formula Omitted]. In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to [Formula Omitted] without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms.
Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity <tex-math notation="LaTeX">$O\left ({n }\right)$ </tex-math> for a given number of IMFs, where <tex-math notation="LaTeX">$n$ </tex-math> is the signal length, but its memory is as large as <tex-math notation="LaTeX">$\left ({13+m_{imf} }\right)n$ </tex-math>, where <tex-math notation="LaTeX">$m_{imf}$ </tex-math> is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let <tex-math notation="LaTeX">$m_{out}$ </tex-math> denote the number of PO modes and, by definition, <tex-math notation="LaTeX">$m_{Out}\le m_{imf}$ </tex-math>. In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to <tex-math notation="LaTeX">$\left ({2+m_{out} }\right)n$ </tex-math> without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms.
Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity O ( n ) for a given number of IMFs, where n is the signal length, but its memory is as large as (13+ m imf ) n , where m imf is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let m out denote the number of PO modes and, by definition, m out ≤ m imf . In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to (2+ m out ) n without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms.
Author Lin, Yu-Chuan
Wang, Yung-Hung
Young, Hsu-Wen Vincent
Author_xml – sequence: 1
  givenname: Hsu-Wen Vincent
  orcidid: 0000-0001-9207-504X
  surname: Young
  fullname: Young, Hsu-Wen Vincent
  organization: Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
– sequence: 2
  givenname: Yu-Chuan
  surname: Lin
  fullname: Lin, Yu-Chuan
  organization: Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
– sequence: 3
  givenname: Yung-Hung
  orcidid: 0000-0002-2873-4087
  surname: Wang
  fullname: Wang, Yung-Hung
  organization: Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
BookMark eNqFkU1LAzEQhoNUsNb-gl4Wem5NMtmPHMtaP0DpQT2HJJu0W7abmqRI_72rKyL1YC4Thnmfl3nnEg1a1xqEJgTPCcH8elGWy-fnOcWUzoGSgpH8DA0pyfgMUsgGv_4XaBzCFnev6FppPkTTVZvEjUmezM75Y1K6EBNnk-XTTbJo1s7XcbO7QudWNsGMv-sIvd4uX8r72ePq7qFcPM40QBFnNGUZFIoxo_IKpJLWSsyNAqolzrhKCcWVShU3pFI2NwWrZJ5WllKqbIELGKGHnls5uRV7X--kPwona_HVcH4tpI-1bozAOquYYZ0xEGZ1ZyApxlYxrG3GCHQs1rMO7V4e32XT_AAJFp-5Cam1CUF85ia-c-tk01629-7tYEIUW3fwbbe1oDkw4CQjvJuCfkp7F4I39g-7v8kpm5-odB1lrF0bvaybf7STXlsbY37cOAdgKYYPk1yXvw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3394931
crossref_primary_10_1109_TIM_2024_3450102
crossref_primary_10_1002_jsfa_13311
Cites_doi 10.1109/TIE.2017.2650873
10.1142/S1793536909000047
10.1109/JBHI.2018.2821675
10.1098/rspa.1998.0193
10.1109/TITB.2010.2072963
10.1016/j.physa.2014.01.020
10.1109/LSP.2022.3166069
10.1038/s41598-020-72193-2
10.1109/IJCNN.2010.5596536
10.1161/01.CIR.101.23.e215
10.1109/FPL.2009.5272532
10.1109/LSP.2019.2900923
10.1109/TIE.2016.2531018
10.1061/(ASCE)WR.1943-5452.0001331
10.1109/ACCESS.2017.2705136
10.1016/j.physa.2007.11.052
10.1109/ICASSP.2017.7952969
10.1016/j.ymssp.2016.03.010
10.3390/app10051696
10.1142/S1793536910000422
10.1016/j.physa.2016.06.112
10.1093/gji/ggw165
10.1109/TSP.2012.2187202
10.1007/s00180-015-0603-9
10.1109/ACCESS.2019.2939546
10.1109/TIM.2020.3047488
10.1109/TSP.2013.2265222
10.1109/TSP.2007.906771
10.1109/LSP.2020.3026942
10.1109/TSP.2011.2106779
10.1109/ACCESS.2018.2847634
10.1109/ACCESS.2019.2892622
10.1109/TCSII.2013.2268381
10.1109/ICASSP.2005.1416051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3218417
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_0c6d4e4c33314fcca0a200fb40cf6413
10.1109/access.2022.3218417
10_1109_ACCESS_2022_3218417
9933450
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: 111-2221-E-008-047-MY2; MOST 111-2634-F-006-003-
  funderid: 10.13039/100007225
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c338t-254638b44eb7d3abaffa09eb32ca069b5120db5b9e1dbf7e84da75df222bf8083
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:05 EDT 2025
Tue Aug 19 22:13:43 EDT 2025
Mon Jun 30 05:09:09 EDT 2025
Wed Oct 01 03:26:25 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Wed Aug 27 02:29:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-254638b44eb7d3abaffa09eb32ca069b5120db5b9e1dbf7e84da75df222bf8083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2873-4087
0000-0001-9207-504X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933450.pdf
PQID 2734391619
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3218417
proquest_journals_2734391619
doaj_primary_oai_doaj_org_article_0c6d4e4c33314fcca0a200fb40cf6413
unpaywall_primary_10_1109_access_2022_3218417
crossref_primary_10_1109_ACCESS_2022_3218417
ieee_primary_9933450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
(ref35) 0
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
rilling (ref26) 2003
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/TIE.2017.2650873
– ident: ref4
  doi: 10.1142/S1793536909000047
– ident: ref10
  doi: 10.1109/JBHI.2018.2821675
– ident: ref1
  doi: 10.1098/rspa.1998.0193
– ident: ref25
  doi: 10.1109/TITB.2010.2072963
– ident: ref18
  doi: 10.1016/j.physa.2014.01.020
– ident: ref32
  doi: 10.1109/LSP.2022.3166069
– ident: ref30
  doi: 10.1038/s41598-020-72193-2
– ident: ref27
  doi: 10.1109/IJCNN.2010.5596536
– ident: ref36
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref23
  doi: 10.1109/FPL.2009.5272532
– ident: ref34
  doi: 10.1109/LSP.2019.2900923
– ident: ref20
  doi: 10.1109/TIE.2016.2531018
– ident: ref16
  doi: 10.1061/(ASCE)WR.1943-5452.0001331
– ident: ref24
  doi: 10.1109/ACCESS.2017.2705136
– ident: ref11
  doi: 10.1016/j.physa.2007.11.052
– start-page: 8
  year: 2003
  ident: ref26
  article-title: On empirical mode decomposition and its algorithms
  publication-title: Proc IEEE-EURASIP Workshop Nonlinear Signal Image Process (IEEER Grado)
– ident: ref29
  doi: 10.1109/ICASSP.2017.7952969
– ident: ref9
  doi: 10.1016/j.ymssp.2016.03.010
– ident: ref15
  doi: 10.3390/app10051696
– ident: ref5
  doi: 10.1142/S1793536910000422
– ident: ref33
  doi: 10.1016/j.physa.2016.06.112
– ident: ref19
  doi: 10.1093/gji/ggw165
– ident: ref3
  doi: 10.1109/TSP.2012.2187202
– ident: ref17
  doi: 10.1007/s00180-015-0603-9
– ident: ref13
  doi: 10.1109/ACCESS.2019.2939546
– year: 0
  ident: ref35
– ident: ref22
  doi: 10.1109/TIM.2020.3047488
– ident: ref31
  doi: 10.1109/TSP.2013.2265222
– ident: ref2
  doi: 10.1109/TSP.2007.906771
– ident: ref21
  doi: 10.1109/LSP.2020.3026942
– ident: ref8
  doi: 10.1109/TSP.2011.2106779
– ident: ref7
  doi: 10.1109/ACCESS.2018.2847634
– ident: ref12
  doi: 10.1109/ACCESS.2019.2892622
– ident: ref28
  doi: 10.1109/TCSII.2013.2268381
– ident: ref6
  doi: 10.1109/ICASSP.2005.1416051
SSID ssj0000816957
Score 2.2781203
Snippet Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
Algorithms
Band-pass filters
CEEMD
Complexity
Costs
EEMD
EMD
memory cost
Memory management
Oscillators
Signal processing
Signal processing algorithms
Splines (mathematics)
Time series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT8IwFG4MF_VgVDRO0SzRo5Ou68Z6RIQQE_QiCbemXVs94EYEYvj3vnYDR0z04nXputfvrXvfa7vvIXSjEkITwSKYaTEJrPpIIKShgZZ2G80QuxVlT1s8JcMxfZzEk1qpL3smrJQHLoFr4yxRVNMsiqKQGngeFuBYIynOTEJdvVqCU1ZLptw3OA0TFncqmaEQs3a314MRQUJIyF1k8xpXouw7FDnF_qrEyhbb3F3mM7H6FNNpLfAMDtFBxRj9bmnpEdrR-THar-kINtH1c-4DkfNH9tjsyu8V84VfGL8_evC709cC8v-39xM0HvRfesOgqn4QwFjTReCE6lNJqZYdFQkpjBGYQe5LAIOESYjUWMlYMh0qaTo6pUp0YmUg4EuTArM6RY28yPUZ8jNIyoyCITMsqNQs1UwQBvABPUlVKD1E1kDwrJIGtxUqptylCJjxEj1u0eMVeh663dw0K5Uxfm9-bxHeNLWy1u4COJtXzuZ_OdtDTeufTSdAriIaYw-11v7i1RScc6vbY_8qDpmHgo0Pf5gqXF3KLVPP_8PUC7Rn-yxXa1qosfhY6kvgLwt55V7VLyH85bI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAy8ZhY2No3dhUaTvSR9qmHzk-3kBo0hsXkLhFSZNsiEeLoE8T--tnp3kFxjTtVlVJ49hObSfOzwCfTZnxUokcV1qRJYQ-kijteGI1HaO5jI6iKNviW3l8xr-eF-drsDfehbHW-uQzO6FHf5ZvumZJW2X7aEtzTgH6elWXw12tcT-FCkiIogrAQikT-9PZDOeAIWCWTXKKZHxRsnvj4zH6Q1GVR_7ls2V7re5-qsXigak5egnzFZFDhsnlZNnrSfPrD_zG_53FFrwIPmc8HZTkFazZ9jVsPkAi3IZPJ22MrmA8p8Tbu3jW3fZx5-LD-Zd4uvje3Vz0P67ewNnR4ensOAn1E5IGA88-8VD3tebc6srkSivnFBMYPWeNYqXQaOuZ0YUWNjXaVbbmRlWFcegyaFejb7YDG23X2rcQNxjWOYMsFExxbUVthcqEK3EAUZtUR5CtGCubAC5ONS4W0gcZTMhBGpKkIYM0ItgbO10P2Br_bn5AEhubEjC2f4HclWGdSdaUhluODMhT7lA9mcL_gNOcNUhtmkewTRIZPxKEEcHuSv4yLOJbScg_dC85FREko048IVX5ypaPSH3391Hew3NqNezg7MJGf7O0H9Cn6fVHr8y_AQSa7vs
  priority: 102
  providerName: IEEE
Title On the Memory Cost of EMD Algorithm
URI https://ieeexplore.ieee.org/document/9933450
https://www.proquest.com/docview/2734391619
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933450.pdf
https://doaj.org/article/0c6d4e4c33314fcca0a200fb40cf6413
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B94B4gMFAZIwqEjyS1HEcN34sZdOEtMEDlcaTZcc2mwhptaUa46_n7LrdD6RJ8BZFTnK5O8ff5c7fAbwznDKuRIkzraKZZx_JlHYss9qn0Rz1qShfbXHMD2fs00l1En-4hb0w1tpQfGZzfxhy-We2_TUecerJ08SI4xKPQcIIoU1ZsorkC-MewhavEIsPYGt2_GXyzXeUK7jIypCbfB2JNUcq9CDEoJDSvPSxTWhTdr0cBdb-2GblFuJ8tOwW6upSte2NxefgKci12Kuakx_5std58_sOo-P_v9c2PIm4NJ2sHOkZPLDdc3h8g61wB95-7lKEi-mRL869Sqfziz6du3T_6GM6ab_Pz8_6058vYHaw_3V6mMUeC1mDwWmfBTr8WjNm9diUSivnFBEYYdNGES404gFidKWFLYx2Y1szo8aVcQgrtKsRv72EQTfv7CtIGwz9nEGlCqKYtqK2QlHhOD5A1KbQCdC1qmUTCch9H4xWhkCECDmZTtHrpLePjPZJ4P3mosWKf-P-4R-8DTdDPXl2OIH6lnEuStJwwyxDBZQFc-jCROG3wmlGGpS2KBPY8Tba3CQaJIG9tUfIONEvpGcH8nuXC5FAtvGSv0Rded4tUXf_cfweDPrzpX2DGKjXw_DvYBi2Kw6j0_8BSk__KQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLam7WHwsA0GomNAJXhcb2mb9prH47bpgN142aS9RUmTAOJop60nNH49dporGyDEW1UljWM7tZ04nwHemDLjpRI5rrQiSwh9JFHa8cRqOkZzGR1FUbbFWTm74O8vi8s1OBjuwlhrffKZHdGjP8s3bb2krbJDtKU5pwB9o-CcF_1trWFHhUpIiGIcoIVSJg4n0ynOAoPALBvlFMv4smS_zI9H6Q9lVe55mJvL5krdfleLxR1jc7IN8xWZfY7J19Gy06P6x28Ijv87jx3YCl5nPOnV5BGs2eYxPLyDRbgLrz82MTqD8ZxSb2_jaXvTxa2Lj-dH8WTxqb3-0n3-9gQuTo7Pp7MkVFBIagw9u8SD3Veac6vHJldaOaeYwPg5qxUrhUZrz4wutLCp0W5sK27UuDAOnQbtKvTOnsJ60zb2GcQ1BnbOIAsFU1xbUVmhMuFKHEBUJtURZCvGyjrAi1OVi4X0YQYTspeGJGnIII0IDoZOVz26xr-bvyWJDU0JGtu_QO7KsNIkq0vDLUcG5Cl3qKBM4Z_Aac5qpDbNI9gliQwfCcKIYH8lfxmW8Y0k7B-6mZyKCJJBJ_4gVfnalvdI3fv7KK9gc3Y-P5Wn784-PIcH1KPfz9mH9e56aV-gh9Ppl16xfwKu9PJI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x7gHtYfwYaBkDRYJHkjqO48aPpWyakDZ4oNJ4suzYZtOytNpSbeOv5-y6ZQMJCd6iyEkud-f4u9z5O4B3hlPGlShxplU08-wjmdKOZVb7NJqjPhXlqy1O-NGUfTqtTuMPt7AXxlobis9s7g9DLv_ctrejIaeePE0MOS7xGCQMEdqUJatIPjduAzZ5hVh8AJvTky_jb76jXMFFVobc5KtIrDlUoQchBoWU5qWPbUKbsl_LUWDtj21WHiDOx4turu5uVNveW3wOn4Bcib2sObnIF73Omx-_MTr-_3s9he2IS9Px0pGewSPbPYete2yFO_D2c5ciXEyPfXHuXTqZXffpzKUHxx_Tcft9dnXen12-gOnhwdfJURZ7LGQNBqd9Fujwa82Y1SNTKq2cU0RghE0bRbjQiAeI0ZUWtjDajWzNjBpVxiGs0K5G_PYSBt2ss7uQNhj6OYNKFUQxbUVthaLCcXyAqE2hE6ArVcsmEpD7PhitDIEIEXI8maDXSW8fGe2TwPv1RfMl_8bfh3_wNlwP9eTZ4QTqW8a5KEnDDbMMFVAWzKELE4XfCqcZaVDaokxgx9tofZNokAT2Vx4h40S_lp4dyO9dLkQC2dpL_hB16XkPRN37x_H7MOivFvY1YqBev4mO_hNlEf0z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Memory+Cost+of+EMD+Algorithm&rft.jtitle=IEEE+access&rft.au=Young%2C+Hsu-Wen+Vincent&rft.au=Lin%2C+Yu-Chuan&rft.au=Wang%2C+Yung-Hung&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=114242&rft.epage=114251&rft_id=info:doi/10.1109%2FACCESS.2022.3218417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3218417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon