On the Memory Cost of EMD Algorithm
Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research show...
        Saved in:
      
    
          | Published in | IEEE access Vol. 10; p. 1 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2022.3218417 | 
Cover
| Abstract | Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity O ( n ) for a given number of IMFs, where n is the signal length, but its memory is as large as (13+ m imf ) n , where m imf is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let m out denote the number of PO modes and, by definition, m out ≤ m imf . In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to (2+ m out ) n without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms. | 
    
|---|---|
| AbstractList | Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity [Formula Omitted] for a given number of IMFs, where [Formula Omitted] is the signal length, but its memory is as large as [Formula Omitted], where [Formula Omitted] is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let [Formula Omitted] denote the number of PO modes and, by definition, [Formula Omitted]. In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to [Formula Omitted] without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms. Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity <tex-math notation="LaTeX">$O\left ({n }\right)$ </tex-math> for a given number of IMFs, where <tex-math notation="LaTeX">$n$ </tex-math> is the signal length, but its memory is as large as <tex-math notation="LaTeX">$\left ({13+m_{imf} }\right)n$ </tex-math>, where <tex-math notation="LaTeX">$m_{imf}$ </tex-math> is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let <tex-math notation="LaTeX">$m_{out}$ </tex-math> denote the number of PO modes and, by definition, <tex-math notation="LaTeX">$m_{Out}\le m_{imf}$ </tex-math>. In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to <tex-math notation="LaTeX">$\left ({2+m_{out} }\right)n$ </tex-math> without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms. Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic mode functions (IMFs). They are powerful signal processing tools and have been successfully applied in many applications. Previous research shows that EMD is an efficient algorithm with computational complexity O ( n ) for a given number of IMFs, where n is the signal length, but its memory is as large as (13+ m imf ) n , where m imf is the number of IMFs. This huge memory requirement hinders many applications of EMD. A physical or physiological oscillation (PO) mode often consists of a single IMF or the sum of several adjacent IMFs. Let m out denote the number of PO modes and, by definition, m out ≤ m imf . In this paper, we will propose a low memory cost implementation of EMD and prove that the memory can be optimized to (2+ m out ) n without aggravating the computational complexity, while gives the same results. Finally, we discuss the optimized memory requirements for different noise-assisted EMD algorithms.  | 
    
| Author | Lin, Yu-Chuan Wang, Yung-Hung Young, Hsu-Wen Vincent  | 
    
| Author_xml | – sequence: 1 givenname: Hsu-Wen Vincent orcidid: 0000-0001-9207-504X surname: Young fullname: Young, Hsu-Wen Vincent organization: Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan, Taiwan – sequence: 2 givenname: Yu-Chuan surname: Lin fullname: Lin, Yu-Chuan organization: Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan – sequence: 3 givenname: Yung-Hung orcidid: 0000-0002-2873-4087 surname: Wang fullname: Wang, Yung-Hung organization: Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan  | 
    
| BookMark | eNqFkU1LAzEQhoNUsNb-gl4Wem5NMtmPHMtaP0DpQT2HJJu0W7abmqRI_72rKyL1YC4Thnmfl3nnEg1a1xqEJgTPCcH8elGWy-fnOcWUzoGSgpH8DA0pyfgMUsgGv_4XaBzCFnev6FppPkTTVZvEjUmezM75Y1K6EBNnk-XTTbJo1s7XcbO7QudWNsGMv-sIvd4uX8r72ePq7qFcPM40QBFnNGUZFIoxo_IKpJLWSsyNAqolzrhKCcWVShU3pFI2NwWrZJ5WllKqbIELGKGHnls5uRV7X--kPwona_HVcH4tpI-1bozAOquYYZ0xEGZ1ZyApxlYxrG3GCHQs1rMO7V4e32XT_AAJFp-5Cam1CUF85ia-c-tk01629-7tYEIUW3fwbbe1oDkw4CQjvJuCfkp7F4I39g-7v8kpm5-odB1lrF0bvaybf7STXlsbY37cOAdgKYYPk1yXvw | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3394931 crossref_primary_10_1109_TIM_2024_3450102 crossref_primary_10_1002_jsfa_13311  | 
    
| Cites_doi | 10.1109/TIE.2017.2650873 10.1142/S1793536909000047 10.1109/JBHI.2018.2821675 10.1098/rspa.1998.0193 10.1109/TITB.2010.2072963 10.1016/j.physa.2014.01.020 10.1109/LSP.2022.3166069 10.1038/s41598-020-72193-2 10.1109/IJCNN.2010.5596536 10.1161/01.CIR.101.23.e215 10.1109/FPL.2009.5272532 10.1109/LSP.2019.2900923 10.1109/TIE.2016.2531018 10.1061/(ASCE)WR.1943-5452.0001331 10.1109/ACCESS.2017.2705136 10.1016/j.physa.2007.11.052 10.1109/ICASSP.2017.7952969 10.1016/j.ymssp.2016.03.010 10.3390/app10051696 10.1142/S1793536910000422 10.1016/j.physa.2016.06.112 10.1093/gji/ggw165 10.1109/TSP.2012.2187202 10.1007/s00180-015-0603-9 10.1109/ACCESS.2019.2939546 10.1109/TIM.2020.3047488 10.1109/TSP.2013.2265222 10.1109/TSP.2007.906771 10.1109/LSP.2020.3026942 10.1109/TSP.2011.2106779 10.1109/ACCESS.2018.2847634 10.1109/ACCESS.2019.2892622 10.1109/TCSII.2013.2268381 10.1109/ICASSP.2005.1416051  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2022.3218417 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | oai_doaj_org_article_0c6d4e4c33314fcca0a200fb40cf6413 10.1109/access.2022.3218417 10_1109_ACCESS_2022_3218417 9933450  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: 111-2221-E-008-047-MY2; MOST 111-2634-F-006-003- funderid: 10.13039/100007225  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c338t-254638b44eb7d3abaffa09eb32ca069b5120db5b9e1dbf7e84da75df222bf8083 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:51:05 EDT 2025 Tue Aug 19 22:13:43 EDT 2025 Mon Jun 30 05:09:09 EDT 2025 Wed Oct 01 03:26:25 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Wed Aug 27 02:29:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c338t-254638b44eb7d3abaffa09eb32ca069b5120db5b9e1dbf7e84da75df222bf8083 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2873-4087 0000-0001-9207-504X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933450.pdf | 
    
| PQID | 2734391619 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3218417 proquest_journals_2734391619 doaj_primary_oai_doaj_org_article_0c6d4e4c33314fcca0a200fb40cf6413 unpaywall_primary_10_1109_access_2022_3218417 crossref_primary_10_1109_ACCESS_2022_3218417 ieee_primary_9933450  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 (ref35) 0 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 rilling (ref26) 2003 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref14 doi: 10.1109/TIE.2017.2650873 – ident: ref4 doi: 10.1142/S1793536909000047 – ident: ref10 doi: 10.1109/JBHI.2018.2821675 – ident: ref1 doi: 10.1098/rspa.1998.0193 – ident: ref25 doi: 10.1109/TITB.2010.2072963 – ident: ref18 doi: 10.1016/j.physa.2014.01.020 – ident: ref32 doi: 10.1109/LSP.2022.3166069 – ident: ref30 doi: 10.1038/s41598-020-72193-2 – ident: ref27 doi: 10.1109/IJCNN.2010.5596536 – ident: ref36 doi: 10.1161/01.CIR.101.23.e215 – ident: ref23 doi: 10.1109/FPL.2009.5272532 – ident: ref34 doi: 10.1109/LSP.2019.2900923 – ident: ref20 doi: 10.1109/TIE.2016.2531018 – ident: ref16 doi: 10.1061/(ASCE)WR.1943-5452.0001331 – ident: ref24 doi: 10.1109/ACCESS.2017.2705136 – ident: ref11 doi: 10.1016/j.physa.2007.11.052 – start-page: 8 year: 2003 ident: ref26 article-title: On empirical mode decomposition and its algorithms publication-title: Proc IEEE-EURASIP Workshop Nonlinear Signal Image Process (IEEER Grado) – ident: ref29 doi: 10.1109/ICASSP.2017.7952969 – ident: ref9 doi: 10.1016/j.ymssp.2016.03.010 – ident: ref15 doi: 10.3390/app10051696 – ident: ref5 doi: 10.1142/S1793536910000422 – ident: ref33 doi: 10.1016/j.physa.2016.06.112 – ident: ref19 doi: 10.1093/gji/ggw165 – ident: ref3 doi: 10.1109/TSP.2012.2187202 – ident: ref17 doi: 10.1007/s00180-015-0603-9 – ident: ref13 doi: 10.1109/ACCESS.2019.2939546 – year: 0 ident: ref35 – ident: ref22 doi: 10.1109/TIM.2020.3047488 – ident: ref31 doi: 10.1109/TSP.2013.2265222 – ident: ref2 doi: 10.1109/TSP.2007.906771 – ident: ref21 doi: 10.1109/LSP.2020.3026942 – ident: ref8 doi: 10.1109/TSP.2011.2106779 – ident: ref7 doi: 10.1109/ACCESS.2018.2847634 – ident: ref12 doi: 10.1109/ACCESS.2019.2892622 – ident: ref28 doi: 10.1109/TCSII.2013.2268381 – ident: ref6 doi: 10.1109/ICASSP.2005.1416051  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.2781203 | 
    
| Snippet | Empirical mode decomposition (EMD) and its variants are adaptive algorithms that decompose a time series into a few oscillation components called intrinsic... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptive algorithms Algorithms Band-pass filters CEEMD Complexity Costs EEMD EMD memory cost Memory management Oscillators Signal processing Signal processing algorithms Splines (mathematics) Time series analysis  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT8IwFG4MF_VgVDRO0SzRo5Ou68Z6RIQQE_QiCbemXVs94EYEYvj3vnYDR0z04nXputfvrXvfa7vvIXSjEkITwSKYaTEJrPpIIKShgZZ2G80QuxVlT1s8JcMxfZzEk1qpL3smrJQHLoFr4yxRVNMsiqKQGngeFuBYIynOTEJdvVqCU1ZLptw3OA0TFncqmaEQs3a314MRQUJIyF1k8xpXouw7FDnF_qrEyhbb3F3mM7H6FNNpLfAMDtFBxRj9bmnpEdrR-THar-kINtH1c-4DkfNH9tjsyu8V84VfGL8_evC709cC8v-39xM0HvRfesOgqn4QwFjTReCE6lNJqZYdFQkpjBGYQe5LAIOESYjUWMlYMh0qaTo6pUp0YmUg4EuTArM6RY28yPUZ8jNIyoyCITMsqNQs1UwQBvABPUlVKD1E1kDwrJIGtxUqptylCJjxEj1u0eMVeh663dw0K5Uxfm9-bxHeNLWy1u4COJtXzuZ_OdtDTeufTSdAriIaYw-11v7i1RScc6vbY_8qDpmHgo0Pf5gqXF3KLVPP_8PUC7Rn-yxXa1qosfhY6kvgLwt55V7VLyH85bI priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAy8ZhY2No3dhUaTvSR9qmHzk-3kBo0hsXkLhFSZNsiEeLoE8T--tnp3kFxjTtVlVJ49hObSfOzwCfTZnxUokcV1qRJYQ-kijteGI1HaO5jI6iKNviW3l8xr-eF-drsDfehbHW-uQzO6FHf5ZvumZJW2X7aEtzTgH6elWXw12tcT-FCkiIogrAQikT-9PZDOeAIWCWTXKKZHxRsnvj4zH6Q1GVR_7ls2V7re5-qsXigak5egnzFZFDhsnlZNnrSfPrD_zG_53FFrwIPmc8HZTkFazZ9jVsPkAi3IZPJ22MrmA8p8Tbu3jW3fZx5-LD-Zd4uvje3Vz0P67ewNnR4ensOAn1E5IGA88-8VD3tebc6srkSivnFBMYPWeNYqXQaOuZ0YUWNjXaVbbmRlWFcegyaFejb7YDG23X2rcQNxjWOYMsFExxbUVthcqEK3EAUZtUR5CtGCubAC5ONS4W0gcZTMhBGpKkIYM0ItgbO10P2Br_bn5AEhubEjC2f4HclWGdSdaUhluODMhT7lA9mcL_gNOcNUhtmkewTRIZPxKEEcHuSv4yLOJbScg_dC85FREko048IVX5ypaPSH3391Hew3NqNezg7MJGf7O0H9Cn6fVHr8y_AQSa7vs priority: 102 providerName: IEEE  | 
    
| Title | On the Memory Cost of EMD Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9933450 https://www.proquest.com/docview/2734391619 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933450.pdf https://doaj.org/article/0c6d4e4c33314fcca0a200fb40cf6413  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B94B4gMFAZIwqEjyS1HEcN34sZdOEtMEDlcaTZcc2mwhptaUa46_n7LrdD6RJ8BZFTnK5O8ff5c7fAbwznDKuRIkzraKZZx_JlHYss9qn0Rz1qShfbXHMD2fs00l1En-4hb0w1tpQfGZzfxhy-We2_TUecerJ08SI4xKPQcIIoU1ZsorkC-MewhavEIsPYGt2_GXyzXeUK7jIypCbfB2JNUcq9CDEoJDSvPSxTWhTdr0cBdb-2GblFuJ8tOwW6upSte2NxefgKci12Kuakx_5std58_sOo-P_v9c2PIm4NJ2sHOkZPLDdc3h8g61wB95-7lKEi-mRL869Sqfziz6du3T_6GM6ab_Pz8_6058vYHaw_3V6mMUeC1mDwWmfBTr8WjNm9diUSivnFBEYYdNGES404gFidKWFLYx2Y1szo8aVcQgrtKsRv72EQTfv7CtIGwz9nEGlCqKYtqK2QlHhOD5A1KbQCdC1qmUTCch9H4xWhkCECDmZTtHrpLePjPZJ4P3mosWKf-P-4R-8DTdDPXl2OIH6lnEuStJwwyxDBZQFc-jCROG3wmlGGpS2KBPY8Tba3CQaJIG9tUfIONEvpGcH8nuXC5FAtvGSv0Rded4tUXf_cfweDPrzpX2DGKjXw_DvYBi2Kw6j0_8BSk__KQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLam7WHwsA0GomNAJXhcb2mb9prH47bpgN142aS9RUmTAOJop60nNH49dporGyDEW1UljWM7tZ04nwHemDLjpRI5rrQiSwh9JFHa8cRqOkZzGR1FUbbFWTm74O8vi8s1OBjuwlhrffKZHdGjP8s3bb2krbJDtKU5pwB9o-CcF_1trWFHhUpIiGIcoIVSJg4n0ynOAoPALBvlFMv4smS_zI9H6Q9lVe55mJvL5krdfleLxR1jc7IN8xWZfY7J19Gy06P6x28Ijv87jx3YCl5nPOnV5BGs2eYxPLyDRbgLrz82MTqD8ZxSb2_jaXvTxa2Lj-dH8WTxqb3-0n3-9gQuTo7Pp7MkVFBIagw9u8SD3Veac6vHJldaOaeYwPg5qxUrhUZrz4wutLCp0W5sK27UuDAOnQbtKvTOnsJ60zb2GcQ1BnbOIAsFU1xbUVmhMuFKHEBUJtURZCvGyjrAi1OVi4X0YQYTspeGJGnIII0IDoZOVz26xr-bvyWJDU0JGtu_QO7KsNIkq0vDLUcG5Cl3qKBM4Z_Aac5qpDbNI9gliQwfCcKIYH8lfxmW8Y0k7B-6mZyKCJJBJ_4gVfnalvdI3fv7KK9gc3Y-P5Wn784-PIcH1KPfz9mH9e56aV-gh9Ppl16xfwKu9PJI | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x7gHtYfwYaBkDRYJHkjqO48aPpWyakDZ4oNJ4suzYZtOytNpSbeOv5-y6ZQMJCd6iyEkud-f4u9z5O4B3hlPGlShxplU08-wjmdKOZVb7NJqjPhXlqy1O-NGUfTqtTuMPt7AXxlobis9s7g9DLv_ctrejIaeePE0MOS7xGCQMEdqUJatIPjduAzZ5hVh8AJvTky_jb76jXMFFVobc5KtIrDlUoQchBoWU5qWPbUKbsl_LUWDtj21WHiDOx4turu5uVNveW3wOn4Bcib2sObnIF73Omx-_MTr-_3s9he2IS9Px0pGewSPbPYete2yFO_D2c5ciXEyPfXHuXTqZXffpzKUHxx_Tcft9dnXen12-gOnhwdfJURZ7LGQNBqd9Fujwa82Y1SNTKq2cU0RghE0bRbjQiAeI0ZUWtjDajWzNjBpVxiGs0K5G_PYSBt2ss7uQNhj6OYNKFUQxbUVthaLCcXyAqE2hE6ArVcsmEpD7PhitDIEIEXI8maDXSW8fGe2TwPv1RfMl_8bfh3_wNlwP9eTZ4QTqW8a5KEnDDbMMFVAWzKELE4XfCqcZaVDaokxgx9tofZNokAT2Vx4h40S_lp4dyO9dLkQC2dpL_hB16XkPRN37x_H7MOivFvY1YqBev4mO_hNlEf0z | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Memory+Cost+of+EMD+Algorithm&rft.jtitle=IEEE+access&rft.au=Young%2C+Hsu-Wen+Vincent&rft.au=Lin%2C+Yu-Chuan&rft.au=Wang%2C+Yung-Hung&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=114242&rft.epage=114251&rft_id=info:doi/10.1109%2FACCESS.2022.3218417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3218417 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |