A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 1: Basic algorithm

The present work conducts a systematic and in-depth algorithm investigation for transient nonlinear heat conduction problems solved by using the proper orthogonal decomposition (POD) method. Part 1 of this two-part articles presents the process and characteristics of basic algorithms, including POD...

Full description

Saved in:
Bibliographic Details
Published inNumerical heat transfer. Part B, Fundamentals Vol. 77; no. 2; pp. 87 - 115
Main Authors Zhu, Qiang-Hua, Liang, Yu, Gao, Xiao-Wei
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 01.02.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1040-7790
1521-0626
DOI10.1080/10407790.2019.1690378

Cover

Abstract The present work conducts a systematic and in-depth algorithm investigation for transient nonlinear heat conduction problems solved by using the proper orthogonal decomposition (POD) method. Part 1 of this two-part articles presents the process and characteristics of basic algorithms, including POD explicit and implicit time-marching methods. The accuracy and efficiency are verified by several numerical examples with various boundary conditions and element types. The results show that the POD-based reduced order model (ROM) can provide high quality temperature prediction of the transient nonlinear heat conduction problems when using implicit method. However, the computational time of implicit method is much longer than that of explicit one. The acceleration effect of POD-based ROM on the calculation of the transient nonlinear heat conduction problems is one order of magnitude lower than that of the corresponding transient linear heat conduction problems. The improvement of computational efficiency is not pronounced. Further studies of the more efficient advanced algorithms to deal with POD-based ROM for transient nonlinear heat conduction problems will be presented in Part 2. Additionally, an approximate POD-based ROM for transient nonlinear heat conduction problem is proposed, which can be constructed quickly by using POD modes obtained from the corresponding transient linear heat conduction system. It is confirmed to be feasible for allowing nonlinear behavior to be modeled at an acceptable level of accuracy. It has significant application potential of solving practical engineering problems.
AbstractList The present work conducts a systematic and in-depth algorithm investigation for transient nonlinear heat conduction problems solved by using the proper orthogonal decomposition (POD) method. Part 1 of this two-part articles presents the process and characteristics of basic algorithms, including POD explicit and implicit time-marching methods. The accuracy and efficiency are verified by several numerical examples with various boundary conditions and element types. The results show that the POD-based reduced order model (ROM) can provide high quality temperature prediction of the transient nonlinear heat conduction problems when using implicit method. However, the computational time of implicit method is much longer than that of explicit one. The acceleration effect of POD-based ROM on the calculation of the transient nonlinear heat conduction problems is one order of magnitude lower than that of the corresponding transient linear heat conduction problems. The improvement of computational efficiency is not pronounced. Further studies of the more efficient advanced algorithms to deal with POD-based ROM for transient nonlinear heat conduction problems will be presented in Part 2. Additionally, an approximate POD-based ROM for transient nonlinear heat conduction problem is proposed, which can be constructed quickly by using POD modes obtained from the corresponding transient linear heat conduction system. It is confirmed to be feasible for allowing nonlinear behavior to be modeled at an acceptable level of accuracy. It has significant application potential of solving practical engineering problems.
Author Liang, Yu
Zhu, Qiang-Hua
Gao, Xiao-Wei
Author_xml – sequence: 1
  givenname: Qiang-Hua
  surname: Zhu
  fullname: Zhu, Qiang-Hua
  email: qhzhu@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 2
  givenname: Yu
  surname: Liang
  fullname: Liang, Yu
  organization: Dalian University of Technology
– sequence: 3
  givenname: Xiao-Wei
  surname: Gao
  fullname: Gao, Xiao-Wei
  organization: Dalian University of Technology
BookMark eNqFkM1q3DAURkWZQJNJH6Eg6NoTXUu27GbTdMgfDCSLZC2uZTmjYEsTSUMY8vLVZNJNF6k2EuI7H_eeEzJz3hlCvgNbAGvYGTDBpGzZomTQLqBuGZfNF3IMVQkFq8t6lt85U-xDX8lJjM8sH8HFMXm7oJvgNyZQH9LaP3mHI-2N9tPGR5usdxTz1y7aSCeTEz0dfKApoIvWuETzLKN1BgNdG0xUe9dv9TuXe7vRTHFB7zEkCj_pb4xWUxyffLBpPZ2SowHHaL593HPyeHX5sLwpVnfXt8uLVaE5b1IBQg9c153p21KAyEsh1hyQl9poqEwJoAGbutJSVKKWIDvTya7DcmAdx57PyY9Db57oZWtiUs9-G_JWUZWci7aR0Mqcqg4pHXyMwQxqE-yEYaeAqb1n9dez2ntWH54zd_4Pp23CvYEsyY7_pX8daOuy1wlffRh7lXA3-jBkydpGxT-v-ANkCpps
CitedBy_id crossref_primary_10_1109_TPEL_2024_3493382
crossref_primary_10_1016_j_cma_2020_113190
crossref_primary_10_1115_1_4053994
crossref_primary_10_1016_j_enganabound_2023_12_026
crossref_primary_10_3390_aerospace11040269
crossref_primary_10_1016_j_renene_2024_120825
crossref_primary_10_1007_s10973_024_13693_5
crossref_primary_10_1016_j_icheatmasstransfer_2024_107886
crossref_primary_10_1016_j_apenergy_2024_125196
crossref_primary_10_1080_10407790_2024_2350047
Cites_doi 10.1016/j.commatsci.2007.11.001
10.1360/SSPMA2013-00041
10.1080/10407790590935920
10.1016/j.cma.2007.01.012
10.1016/j.ijheatmasstransfer.2004.06.032
10.1080/10407790.2017.1420319
10.1016/j.ijheatmasstransfer.2012.10.013
10.1115/1.4033081
10.1016/j.applthermaleng.2017.03.053
10.1002/nme.1205
10.1016/j.ijheatmasstransfer.2017.01.030
10.1016/j.ijheatmasstransfer.2017.08.039
10.1080/10407790.2019.1627814
10.1016/j.anucene.2017.05.061
10.1016/j.ijheatmasstransfer.2014.07.078
10.1016/j.ijheatmasstransfer.2016.02.085
10.1007/s00466-014-1089-y
10.1115/1.4041266
10.1006/jcph.1997.5863
10.1007/BF02744404
10.1016/j.ijheatmasstransfer.2006.08.039
10.1080/10407790.2018.1461491
10.1080/10407790802182687
10.1007/s11071-005-2803-2
10.1002/nme.1620090314
10.1016/j.ijthermalsci.2015.01.036
10.1016/j.apm.2011.02.039
10.1080/10407790.2013.849989
10.1090/qam/910462
10.1002/cnm.1630030205
10.1016/j.enganabound.2017.11.001
10.1016/j.enganabound.2010.02.004
10.1016/j.ijheatmasstransfer.2018.05.100
10.1016/0045-7825(77)90001-9
10.1016/0017-9310(95)00167-0
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/10407790.2019.1690378
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-0626
EndPage 115
ExternalDocumentID 10_1080_10407790_2019_1690378
1690378
Genre Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT17LK58; DUT18GF105
– fundername: National Natural Science Foundation of China
  grantid: 51576026; 11672061
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EBS
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-14cf3c6bed92414521aa631a32cec15e211c1a865c74546717beb7bba2f0b3ad3
ISSN 1040-7790
IngestDate Wed Aug 13 09:50:00 EDT 2025
Wed Oct 01 04:01:31 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Mon Oct 20 23:48:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-14cf3c6bed92414521aa631a32cec15e211c1a865c74546717beb7bba2f0b3ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2334987197
PQPubID 52956
PageCount 29
ParticipantIDs crossref_primary_10_1080_10407790_2019_1690378
proquest_journals_2334987197
informaworld_taylorfrancis_310_1080_10407790_2019_1690378
crossref_citationtrail_10_1080_10407790_2019_1690378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Numerical heat transfer. Part B, Fundamentals
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Copur M. (CIT0009) 2014; 53
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0025
  doi: 10.1016/j.commatsci.2007.11.001
– ident: CIT0028
  doi: 10.1360/SSPMA2013-00041
– ident: CIT0024
  doi: 10.1080/10407790590935920
– ident: CIT0001
  doi: 10.1016/j.cma.2007.01.012
– volume: 53
  start-page: 149
  issue: 2
  year: 2014
  ident: CIT0009
  publication-title: Metalurgija
– ident: CIT0022
  doi: 10.1016/j.ijheatmasstransfer.2004.06.032
– ident: CIT0012
  doi: 10.1080/10407790.2017.1420319
– ident: CIT0032
  doi: 10.1016/j.ijheatmasstransfer.2012.10.013
– ident: CIT0029
  doi: 10.1115/1.4033081
– ident: CIT0003
  doi: 10.1016/j.applthermaleng.2017.03.053
– ident: CIT0030
  doi: 10.1002/nme.1205
– ident: CIT0017
  doi: 10.1016/j.ijheatmasstransfer.2017.01.030
– ident: CIT0020
  doi: 10.1016/j.ijheatmasstransfer.2017.08.039
– ident: CIT0015
  doi: 10.1080/10407790.2019.1627814
– ident: CIT0016
  doi: 10.1016/j.anucene.2017.05.061
– ident: CIT0007
  doi: 10.1016/j.ijheatmasstransfer.2014.07.078
– ident: CIT0035
  doi: 10.1016/j.ijheatmasstransfer.2016.02.085
– ident: CIT0027
  doi: 10.1007/s00466-014-1089-y
– ident: CIT0036
  doi: 10.1115/1.4041266
– ident: CIT0004
  doi: 10.1006/jcph.1997.5863
– ident: CIT0008
  doi: 10.1007/BF02744404
– ident: CIT0013
  doi: 10.1016/j.ijheatmasstransfer.2006.08.039
– ident: CIT0021
  doi: 10.1080/10407790.2018.1461491
– ident: CIT0005
  doi: 10.1080/10407790802182687
– ident: CIT0023
  doi: 10.1007/s11071-005-2803-2
– ident: CIT0033
  doi: 10.1002/nme.1620090314
– ident: CIT0002
  doi: 10.1016/j.ijthermalsci.2015.01.036
– ident: CIT0014
  doi: 10.1016/j.apm.2011.02.039
– ident: CIT0026
  doi: 10.1080/10407790.2013.849989
– ident: CIT0031
  doi: 10.1090/qam/910462
– ident: CIT0006
  doi: 10.1002/cnm.1630030205
– ident: CIT0018
  doi: 10.1016/j.enganabound.2017.11.001
– ident: CIT0011
  doi: 10.1016/j.enganabound.2010.02.004
– ident: CIT0019
  doi: 10.1016/j.ijheatmasstransfer.2018.05.100
– ident: CIT0034
  doi: 10.1016/0045-7825(77)90001-9
– ident: CIT0010
  doi: 10.1016/0017-9310(95)00167-0
SSID ssj0000434
Score 2.2967775
Snippet The present work conducts a systematic and in-depth algorithm investigation for transient nonlinear heat conduction problems solved by using the proper...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 87
SubjectTerms Acceleration
Accuracy
Algorithms
Boundary conditions
Computational efficiency
Computing time
Conduction heating
Conductive heat transfer
Proper Orthogonal Decomposition
Reduced order models
Title A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 1: Basic algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/10407790.2019.1690378
https://www.proquest.com/docview/2334987197
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-0626
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000434
  issn: 1040-7790
  databaseCode: ADMLS
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1521-0626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000434
  issn: 1040-7790
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELXKIiQ4IFhAu8uCfOAWJcSx88Wti0AVgkpIXVG4RI7jdCuV7SpNLst_4bcyEztpSldaPi5RlMix1ffqGdtvZgh5pdMCY2Q4zH4qdUWofbjjoRtFIiyxUV5i7PCnaTQ5Fx_m4Xw0-jlQLTV17qnrG-NK_gVVeAa4YpTsXyDbfxQewD3gC1dAGK5_hPEY5VVXunLw8GW9aDf1Co0qcSvFcmSXc8RUijaiQjRPGAbpXJo8GbJCf7FGBXphksk6ts7MxgMXs6odhhsHZ3KDyV1Xi3W1rC--D93aaWMOflbmQ20Ppa5s67PWQ8aQE1NJoHfjv100-OozUHThTpreQnxc2l3sr02vD5Ltnu58KdfuF70cblbAytTfEX7M9uqGDKbeVtsYm-KhnrbTcYC6LBNT383XtuzLcrBs3gwttzHjzESJ7lkII6nEzrAv1PalHh4VclNJ6Lfk2_bNHXI3AKuBpUG4P91aemFUC93IuwixxH99Ywc7vs9OZtw9T6B1b2aPyEO7LqFjQ7LHZKQvD8mDQbbKQ3KvVQurzRPyY0wN8eiWeHSHeLQjHjXEozAI2hOP9sSjyBe6JR7tiUeROpS9oS3taE-7p-T8_bvZ24lrq3i4ivOkdplQJVdRrgtY6jMBiEoZcSZ5oLRioQ4YU0wmUahiEYLZZnGu8zjPZVD6OZcFf0YOYFT6iNBQ-b4KkjISRSiYLBMwQOBraFXIkCXaPyai-30zZVPcY6WVVcZsJtwOlgxhySwsx8Trm12ZHC-3NUiH4GV1S-vSMDrjt7Q97ZDO7FSyyQLORZrELI1P_uPTz8n97X_ulBzUVaNfgMtc5y9b3v4Cwde8mg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEQIOBQqIPoA5cE0Ux3ay4dZWrRZoVxxaqTfLdpwWUdpqN73An2cmdmALQj30lFzGsR17HvY33wC8D03LOTKStJ9vMqVDQW9SZ1WldMdCruPc4cNZNT1Wn070yVIuDMMqOYbuIlHEoKt5c_Nh9AiJoyeFIXVTMDKryfmiR9aT-_BAk7PPVQxkMfujjVW8WR6QcyQzZvH8r5kb9ukGe-k_2nowQftPwY-dj8iTb_l173L_4y9ex7uN7hmsJg8Vt-OSeg73wsUaPFniLVyDhwNu1C9ewM9tvOLj_Dny_c_lKfv12AYGqic0GNpEe4KxWDXSULFnC8mZmHgR-2jnyFYBKTpvI58tplI3ixy_0PJG8QF3LH0U7fnp5fxrf_b9JRzv7x3tTrNUzyHzFAj3mVC-k75yoaWgTyhyHKytpLCy9MELHSgW9cJOKu1rpUmBi9oFVztny65w0rbyFaxQr8JrQO2LwpeTrlKtVsJ2FKYWZHWCb60Wk1Csgxr_ovGJ7JxrbpwbkThRx1k2PMsmzfI65L_FriLbx20CzfISMf1wzNLFmihG3iK7Na4nkxTHwpRSqoaC2KbeuEPT7-DR9OjwwBx8nH3ehMclnxEMSPMtWOnn1-ENOVK9ezvslF9WtA_S
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEQgOPAqIQoE5cE0Ux3ay4VYeq_Ja9UAlbpbt2C2itKvd9AJ_npnYgRaEeugpuYxjO_aMx_PNNwAvQtdzjowk7ee7QulQ0ZvURdMoHVnIRc4d_rRodvfV-y96QhOuM6ySfeiYiCJGXc2be9nHCRFHT_JC2q5iYFZXcpxHtrOrcK3hqBhncVSLP8pYpcDyCJwjmSmJ53_NnDNP58hL_1HWowWa3wE39T0BT76Vp4Mr_Y-_aB0vNbi7cDufT3EnLah7cCUcb8KtM6yFm3B9RI369X34uYNLvsxfIUd_Tg74VI99YJh6xoKhzaQnmEpVI40UB7aPnIeJx6mLdoVsE5B88z6x2WIudLMucY8WN4qX-MrSR9EeHZysvg6H3x_A_vzt59e7Ra7mUHhyg4dCKB-lb1zoyeUTio4N1jZSWFn74IUO5Il6YWeN9q3SpL5F64JrnbN1rJy0vXwIG9Sr8AhQ-6ry9Sw2qtdK2EhOakU2J_jeajEL1Rao6Scan6nOueLGkRGZEXWaZcOzbPIsb0H5W2yZuD4uEujOrhAzjJcsMVVEMfIC2e1pOZmsNtamllJ15MJ27eNLNP0cbuy9mZuP7xYfnsDNmi8IRpj5NmwMq9PwlE5Rg3s27pNf6PsOdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proper+orthogonal+decomposition+analysis+method+for+transient+nonlinear+heat+conduction+problems.+Part+1%3A+Basic+algorithm&rft.jtitle=Numerical+heat+transfer.+Part+B%2C+Fundamentals&rft.au=Zhu%2C+Qiang-Hua&rft.au=Liang%2C+Yu&rft.au=Gao%2C+Xiao-Wei&rft.date=2020-02-01&rft.pub=Taylor+%26+Francis&rft.issn=1040-7790&rft.eissn=1521-0626&rft.volume=77&rft.issue=2&rft.spage=87&rft.epage=115&rft_id=info:doi/10.1080%2F10407790.2019.1690378&rft.externalDocID=1690378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7790&client=summon