Deep Learning-Driven Gaussian Modeling and Improved Motion Detection Algorithm of the Three-Frame Difference Method
To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference method. The proposed algorithm uses an improved three-frame difference method. A three-frame image sequence with one frame interval is selected for...
        Saved in:
      
    
          | Published in | Mobile information systems Vol. 2021; pp. 1 - 7 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Hindawi
    
        2021
     John Wiley & Sons, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1574-017X 1875-905X 1875-905X  | 
| DOI | 10.1155/2021/9976623 | 
Cover
| Abstract | To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference method. The proposed algorithm uses an improved three-frame difference method. A three-frame image sequence with one frame interval is selected for pairwise difference calculation. The logical “OR” operation is used to achieve fast motion detection and to reduce voids and fractures. The Gaussian algorithm establishes an adaptive learning model to make the size and contour of the motion detection more accurate. The motion extracted by the improved three-frame difference method and Gaussian model is logically summed to obtain the final motion foreground picture. Moreover, a moving target detection method, based on the U-Net deep learning network, is proposed to reduce the dependency of deep learning on the number of training datasets. It helps the algorithm to train models on small datasets. Next, it calculates the ratio of the number of positive and negative samples in the dataset and uses the reciprocal of the ratio as the sample weight to deal with the imbalance of positive and negative samples. Finally, a threshold is set to predict the results for obtaining the moving object detection accuracy. Experimental results show that the algorithm can suppress the generation and rupture of holes and reduce the noise. Also, it can quickly and accurately detect movement to meet the design requirements. | 
    
|---|---|
| AbstractList | To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference method. The proposed algorithm uses an improved three-frame difference method. A three-frame image sequence with one frame interval is selected for pairwise difference calculation. The logical “OR” operation is used to achieve fast motion detection and to reduce voids and fractures. The Gaussian algorithm establishes an adaptive learning model to make the size and contour of the motion detection more accurate. The motion extracted by the improved three-frame difference method and Gaussian model is logically summed to obtain the final motion foreground picture. Moreover, a moving target detection method, based on the U-Net deep learning network, is proposed to reduce the dependency of deep learning on the number of training datasets. It helps the algorithm to train models on small datasets. Next, it calculates the ratio of the number of positive and negative samples in the dataset and uses the reciprocal of the ratio as the sample weight to deal with the imbalance of positive and negative samples. Finally, a threshold is set to predict the results for obtaining the moving object detection accuracy. Experimental results show that the algorithm can suppress the generation and rupture of holes and reduce the noise. Also, it can quickly and accurately detect movement to meet the design requirements. | 
    
| Author | Xiao, Zhijian Zhang, Yangzhi Zheng, Dingchao  | 
    
| Author_xml | – sequence: 1 givenname: Dingchao surname: Zheng fullname: Zheng, Dingchao organization: Digital Engineering AcademyZhejiang Dongfang PolytechnicWenzhou 325200China – sequence: 2 givenname: Yangzhi surname: Zhang fullname: Zhang, Yangzhi organization: Digital Engineering AcademyZhejiang Dongfang PolytechnicWenzhou 325200China – sequence: 3 givenname: Zhijian orcidid: 0000-0002-3693-1267 surname: Xiao fullname: Xiao, Zhijian organization: Digital Engineering AcademyZhejiang Dongfang PolytechnicWenzhou 325200China  | 
    
| BookMark | eNqFkEtrGzEQx0VxoHn01g8g6LHdRo_V7upo4jgNOPSSQm7LVBplFdaSK8kx_vZZ1zkVkjKHGWZ-8_qfkVmIAQn5zNl3zpW6FEzwS63bphHyAznlXasqzdTDbIpVW1eMtw8fyVnOT4w1TKr2lOQF4oauEFLw4bFaJP-Mgd7ANmcPgd5Fi-NUoBAsvV1vUnxGO2WLj4EusKD5G83Hx5h8GdY0OloGpPdDQqyWCdZIF945TBgM0jssQ7QX5MTBmPHTqz8nv5bX91c_qtXPm9ur-aoyUralQudsa1k3mYRG_dYKjLHa1dghito5rRC1RAmqMVqorrOgGHBhjGZG1PKcVMe527CB_Q7Gsd8kv4a07znrD4r1B8X6V8Um_suRn978s8Vc-qe4TWE6sReqloI3WrYT9e1ImRRzTuj-N1T8gxtf4KBaSeDHt5q-HpsGHyzs_PsrXgC1GJhs | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3486051 crossref_primary_10_1155_2021_3256135 crossref_primary_10_2478_amns_2023_2_00767 crossref_primary_10_3788_IRLA20230044 crossref_primary_10_1155_2021_5775146 crossref_primary_10_1007_s10936_023_09979_8 crossref_primary_10_1515_jisys_2024_0092 crossref_primary_10_2478_amns_2023_2_00018  | 
    
| Cites_doi | 10.52810/tpris.2021.100009 10.3724/sp.j.1089.2018.16302 10.1109/TITS.2021.3066240 10.3390/e23040435 10.1109/TIFS.2020.3023279 10.1002/cpe.6276 10.1007/s11042-020-10188-x  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Dingchao Zheng et al. Copyright © 2021 Dingchao Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: Copyright © 2021 Dingchao Zheng et al. – notice: Copyright © 2021 Dingchao Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1155/2021/9976623 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1875-905X | 
    
| Editor | Jan, Mian Ahmad | 
    
| Editor_xml | – sequence: 1 givenname: Mian Ahmad surname: Jan fullname: Jan, Mian Ahmad  | 
    
| EndPage | 7 | 
    
| ExternalDocumentID | 10.1155/2021/9976623 10_1155_2021_9976623  | 
    
| GroupedDBID | -CS -CY .4S .DC 0R~ 4.4 5VS AAFWJ AAJEY ABHFT ABJNI ACGFO ACGFS ADBBV AEGXH AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV EBS EDO GROUPED_DOAJ HZ~ I-F IAO IHR IOS KQ8 KZ1 LMP MIO MV1 NGNOM O9- OK1 P2P RHU RHW RHX TUS 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY CITATION H13 7SC 7SP 8FD JQ2 L7M L~C L~D ABUBZ ACPQW ADTOC AFRHK AGIAB CAG COF EJD FEDTE IL9 IPNFZ MET RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c337t-effd7d080803a65b95accd9f4e8ee24ff95ee93e3a56c92588da50a12cc90c243 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1574-017X 1875-905X  | 
    
| IngestDate | Tue Aug 19 19:34:56 EDT 2025 Thu Aug 28 08:29:37 EDT 2025 Wed Oct 01 01:58:53 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Sun Jun 02 18:51:53 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c337t-effd7d080803a65b95accd9f4e8ee24ff95ee93e3a56c92588da50a12cc90c243 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3693-1267 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/misy/2021/9976623.pdf | 
    
| PQID | 2543216937 | 
    
| PQPubID | 2048814 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | unpaywall_primary_10_1155_2021_9976623 proquest_journals_2543216937 crossref_primary_10_1155_2021_9976623 crossref_citationtrail_10_1155_2021_9976623 hindawi_primary_10_1155_2021_9976623  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-00-00 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Mobile information systems | 
    
| PublicationYear | 2021 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc  | 
    
| References | Y. Jin (4) 2020; 36 22 H. Gao (7) 2019; 47 L. Xiao (3) 2020; 20 R. Cao (10) 2020; 51 14 Z. L. Yang (21) 2020; 16 15 S. Li (16) 18 19 Q. Sun (8) 2019; 3 Y. Yang (12) 2020; 37 C. Zhang (11) 2018; 48 S. Sui (5) 2019; 9 H. Hu (1) 2020 Y. Zhang (2) 2020 Z. Li (13) 2018; 46 W. Cai (17) 2020; 13 W. Jiang (9) 2020 Y. Mou (6) 2020; 6 20  | 
    
| References_xml | – volume-title: Video Motion Detection in Complex Traffic Scenes year: 2020 ident: 1 – ident: 18 doi: 10.52810/tpris.2021.100009 – ident: 14 doi: 10.3724/sp.j.1089.2018.16302 – ident: 20 doi: 10.1109/TITS.2021.3066240 – volume: 51 start-page: 516 issue: 4 year: 2020 ident: 10 article-title: Improved vibe algorithm based on Gaussian mixture model and threshold adaptation publication-title: Journal of Taiyuan University of Technology – start-page: 1 ident: 16 article-title: Multi-angle head pose classification when wearing the mask for face recognition under the COVID-19 coronavirus epidemic – volume: 13 year: 2020 ident: 17 article-title: Remote sensing image classification based on a cross-attention mechanism and graph convolution publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 46 start-page: 284 issue: 2 year: 2018 ident: 13 article-title: Motion detection algorithm based on Gaussian mixture model and five-frame difference publication-title: Computer and Digital Engineering – volume: 36 start-page: 40 issue: 5 year: 2020 ident: 4 article-title: Motion tracking algorithm based on optical flow feature points in power monitoring scenes publication-title: Electric Power Science and Engineering – volume-title: Research on Video-Based Motion Detection Algorithm year: 2020 ident: 2 – volume: 9 start-page: 63 year: 2019 ident: 5 article-title: Overview of pixel-based background subtraction technology[J] publication-title: Science and Technology Innovation – ident: 15 doi: 10.3390/e23040435 – volume: 6 start-page: 75 year: 2020 ident: 6 article-title: Improved ViBe algorithm for motion detection[J] publication-title: Information Technology and Informatization – volume-title: Research on Conspicuous Video Motion Detection Algorithm Based on Biological Vision Mechanism year: 2020 ident: 9 – volume: 16 start-page: 880 year: 2020 ident: 21 article-title: VAE-Stega: linguistic steganography based on variational auto-encoder publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2020.3023279 – volume: 3 start-page: 135 year: 2019 ident: 8 article-title: Research on the detection method of small motion trajectory based on improved three-frame difference method publication-title: Equipment Manufacturing Technology – volume: 48 start-page: 1554 issue: 12 year: 2018 ident: 11 article-title: Motion detection and recognition based on five-frame difference and template matching publication-title: Laser and Infrared – ident: 22 doi: 10.1002/cpe.6276 – volume: 47 start-page: 1140 issue: 5 year: 2019 ident: 7 article-title: Motion detection at sea based on frame difference method and Gaussian mixture publication-title: Computer and Digital Engineering – volume: 37 start-page: 310 issue: 1 year: 2020 ident: 12 article-title: Motion detection algorithm at sea based on Gaussian mixture model publication-title: Application Research of Computers – volume: 20 start-page: 6141 issue: 15 year: 2020 ident: 3 article-title: Motion detection by four-frame difference and improved Gaussian mixture model publication-title: Science Technology and Engineering – ident: 19 doi: 10.1007/s11042-020-10188-x  | 
    
| SSID | ssj0060357 ssib050733852  | 
    
| Score | 2.2735467 | 
    
| Snippet | To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference... | 
    
| SourceID | unpaywall proquest crossref hindawi  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptive algorithms Adaptive learning Algorithms Datasets Deep learning Fractures Modelling Morphology Motion effects Motion perception Moving object recognition Moving targets Noise reduction Normal distribution Target detection  | 
    
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4qiF58i-uLHNSLFLtt0jRHcV0XQQ-isLeSJhMV1u6y22Xx35tpU_GBj2NLmkK_SWYmnfk-Qo5CrqTgoAImhEtQGE-DXNk8CIXNuYm0s6GK7fM26T2w6z7ve5Kkyfdf-M7bYXrePpPObTpPPU_m0wQrt-56_cZsOOoOVi3A9QachHFF8NnmAgssRL-pd_8y1ydPtPiEKfDs-VOguTQtRup1pgaDDz6nu0ZWfLBIz2t018kcFBtktRFioH5dbpJJB2BEPVXqY9AZ4xZGr9R0gi2SFPXOsOucqsLQ-hQBjLuLmNAOlFU1VkHPB4_D8XP59EKHlrq4kN47nCHoYvkW7XghFQ30phKd3iIP3cv7i17g1RQCHceiDMBaI0yIPJKxSnguudLaSMsgBYiYtZIDyBhixRMtI56mRvFQtSOtZagjFm-ThWJYwA6hiU5tzBKuc2uYe06p3EUdOpShSk3K2i1y2nzZTHuqcVS8GGRVysF5hjhkHocWOX4fPaopNn4Yd-RB-mPYfoNg5tfjJMOW_wh5Z0SLnLyj-us8u_973R5Zxsv6VGafLJTjKRy4OKXMDysrfQOhidy0 priority: 102 providerName: Hindawi Publishing  | 
    
| Title | Deep Learning-Driven Gaussian Modeling and Improved Motion Detection Algorithm of the Three-Frame Difference Method | 
    
| URI | https://dx.doi.org/10.1155/2021/9976623 https://www.proquest.com/docview/2543216937 https://downloads.hindawi.com/journals/misy/2021/9976623.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1875-905X dateEnd: 20240530 omitProxy: true ssIdentifier: ssj0060357 issn: 1875-905X databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1875-905X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050733852 issn: 1574-017X databaseCode: M~E dateStart: 20050101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley - open access journals customDbUrl: eissn: 1875-905X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060357 issn: 1875-905X databaseCode: 24P dateStart: 20050101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tnRC8MD5FYUx-GLwgd2nii2OJl4pSKhAToFUKDyhy_LFNlLRqU03jr8dOnIki8SFeoiS6fNh39v3OOv8O4ChCKTgaSRnnLkBhmNFS2pJG3JaoY-VsqGH7PEmnM_Y2x3wHXnZ7YbSniF9IvR6c-5j08qKZrUO_ro9d2698vD48Fs6POtc9WGq7C3spOiTeg73ZyYfR54YilfvkCp77cwfJqYgw7_LeEbdeseWRboTPbgHOm5tqKa8u5Xz-k--Z7MOX7q_blJOvg01dDtT3Xwgd_7dZd-B2AKVk1FrRXdgx1T3Y7wo-kDD-78N6bMySBErWMzpe-amSvJGbtd-KSXxdNb-7nchKk3a1wmh31-uejE3dZH1VZDQ_W6wu6vNvZGGJw5_k1NmToROfJkbGoWCLMuR9U9z6Acwmr09fTWmo2kBVkvCaGms115Hnq0xkiqVAqZQWlpnMmJhZK9AYkZhEYqpEjFmmJUZyGCslIhWz5CH0qkVlHgFJVWYTlqIqrWbuOSlLh25UJCKZ6YwN-_Ci01yhAqW5r6wxL5rQBrHwfVqEPu3Ds2vpZUvl8Ru5o6Ckv4gddBZSdIosPLVA7PlteB-eX1vNH9_z-F8Fn8Atf9mu_xxAr15tzFOHiOryEHbffczc8dM0PwyD4AfH3Ah6 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLG-tN1Habqu6KHby1Dq2DrLgr2EZVkZrOyhgexhGFkfbWnqhMShtH99JVsuy2Af7M02Z1nSnXW_E6ffARxHKAVHIynj3AUoDDNaSFvQiNsCdaycDdVsn2fp6Zh9meBkAz60Z2G0p4ifSb3sXfqY9PaqXq3DvC5P3NjvfLzePxHOjzrX3Ztr-wQ2U3RIvAOb47Nvg-81RSr3yRV84q8dJKciwkmb94641sSaR3oaPrsGOJ-tyrm8u5XT6U--Z7QDP9peNykn171VVfTU_S-Ejv87rF3YDqCUDBoreg4bpnwBO23BBxL-_5ewHBozJ4GS9YIOF36pJJ_laumPYhJfV82fbiey1KTZrTDaPfW6J0NT1VlfJRlML2aLq-ryhswscfiTnDt7MnTk08TIMBRsUYZ8rYtbv4Lx6NP5x1MaqjZQlSS8osZazXXk-SoTmWIhUCqlhWUmMyZm1go0RiQmkZgqEWOWaYmR7MdKiUjFLNmDTjkrzT6QVGU2YSmqwmrm3pOycOhGRSKSmc5YvwvvW83lKlCa-8oa07wObRBzP6d5mNMuvH2UnjdUHr-ROw5K-ovYYWsheavI3FMLxJ7fhnfh3aPV_LGdg38VfA1b_rbZ_zmETrVYmTcOEVXFUTD8B3OtBnI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Driven+Gaussian+Modeling+and+Improved+Motion+Detection+Algorithm+of+the+Three-Frame+Difference+Method&rft.jtitle=Mobile+information+systems&rft.au=Zheng%2C+Dingchao&rft.au=Zhang%2C+Yangzhi&rft.au=Xiao%2C+Zhijian&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1574-017X&rft.eissn=1875-905X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9976623&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-017X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-017X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-017X&client=summon |