Deep Learning-Driven Gaussian Modeling and Improved Motion Detection Algorithm of the Three-Frame Difference Method

To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference method. The proposed algorithm uses an improved three-frame difference method. A three-frame image sequence with one frame interval is selected for...

Full description

Saved in:
Bibliographic Details
Published inMobile information systems Vol. 2021; pp. 1 - 7
Main Authors Zheng, Dingchao, Zhang, Yangzhi, Xiao, Zhijian
Format Journal Article
LanguageEnglish
Published Amsterdam Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1574-017X
1875-905X
1875-905X
DOI10.1155/2021/9976623

Cover

Abstract To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference method. The proposed algorithm uses an improved three-frame difference method. A three-frame image sequence with one frame interval is selected for pairwise difference calculation. The logical “OR” operation is used to achieve fast motion detection and to reduce voids and fractures. The Gaussian algorithm establishes an adaptive learning model to make the size and contour of the motion detection more accurate. The motion extracted by the improved three-frame difference method and Gaussian model is logically summed to obtain the final motion foreground picture. Moreover, a moving target detection method, based on the U-Net deep learning network, is proposed to reduce the dependency of deep learning on the number of training datasets. It helps the algorithm to train models on small datasets. Next, it calculates the ratio of the number of positive and negative samples in the dataset and uses the reciprocal of the ratio as the sample weight to deal with the imbalance of positive and negative samples. Finally, a threshold is set to predict the results for obtaining the moving object detection accuracy. Experimental results show that the algorithm can suppress the generation and rupture of holes and reduce the noise. Also, it can quickly and accurately detect movement to meet the design requirements.
AbstractList To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference method. The proposed algorithm uses an improved three-frame difference method. A three-frame image sequence with one frame interval is selected for pairwise difference calculation. The logical “OR” operation is used to achieve fast motion detection and to reduce voids and fractures. The Gaussian algorithm establishes an adaptive learning model to make the size and contour of the motion detection more accurate. The motion extracted by the improved three-frame difference method and Gaussian model is logically summed to obtain the final motion foreground picture. Moreover, a moving target detection method, based on the U-Net deep learning network, is proposed to reduce the dependency of deep learning on the number of training datasets. It helps the algorithm to train models on small datasets. Next, it calculates the ratio of the number of positive and negative samples in the dataset and uses the reciprocal of the ratio as the sample weight to deal with the imbalance of positive and negative samples. Finally, a threshold is set to predict the results for obtaining the moving object detection accuracy. Experimental results show that the algorithm can suppress the generation and rupture of holes and reduce the noise. Also, it can quickly and accurately detect movement to meet the design requirements.
Author Xiao, Zhijian
Zhang, Yangzhi
Zheng, Dingchao
Author_xml – sequence: 1
  givenname: Dingchao
  surname: Zheng
  fullname: Zheng, Dingchao
  organization: Digital Engineering AcademyZhejiang Dongfang PolytechnicWenzhou 325200China
– sequence: 2
  givenname: Yangzhi
  surname: Zhang
  fullname: Zhang, Yangzhi
  organization: Digital Engineering AcademyZhejiang Dongfang PolytechnicWenzhou 325200China
– sequence: 3
  givenname: Zhijian
  orcidid: 0000-0002-3693-1267
  surname: Xiao
  fullname: Xiao, Zhijian
  organization: Digital Engineering AcademyZhejiang Dongfang PolytechnicWenzhou 325200China
BookMark eNqFkEtrGzEQx0VxoHn01g8g6LHdRo_V7upo4jgNOPSSQm7LVBplFdaSK8kx_vZZ1zkVkjKHGWZ-8_qfkVmIAQn5zNl3zpW6FEzwS63bphHyAznlXasqzdTDbIpVW1eMtw8fyVnOT4w1TKr2lOQF4oauEFLw4bFaJP-Mgd7ANmcPgd5Fi-NUoBAsvV1vUnxGO2WLj4EusKD5G83Hx5h8GdY0OloGpPdDQqyWCdZIF945TBgM0jssQ7QX5MTBmPHTqz8nv5bX91c_qtXPm9ur-aoyUralQudsa1k3mYRG_dYKjLHa1dghito5rRC1RAmqMVqorrOgGHBhjGZG1PKcVMe527CB_Q7Gsd8kv4a07znrD4r1B8X6V8Um_suRn978s8Vc-qe4TWE6sReqloI3WrYT9e1ImRRzTuj-N1T8gxtf4KBaSeDHt5q-HpsGHyzs_PsrXgC1GJhs
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3486051
crossref_primary_10_1155_2021_3256135
crossref_primary_10_2478_amns_2023_2_00767
crossref_primary_10_3788_IRLA20230044
crossref_primary_10_1155_2021_5775146
crossref_primary_10_1007_s10936_023_09979_8
crossref_primary_10_1515_jisys_2024_0092
crossref_primary_10_2478_amns_2023_2_00018
Cites_doi 10.52810/tpris.2021.100009
10.3724/sp.j.1089.2018.16302
10.1109/TITS.2021.3066240
10.3390/e23040435
10.1109/TIFS.2020.3023279
10.1002/cpe.6276
10.1007/s11042-020-10188-x
ContentType Journal Article
Copyright Copyright © 2021 Dingchao Zheng et al.
Copyright © 2021 Dingchao Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Dingchao Zheng et al.
– notice: Copyright © 2021 Dingchao Zheng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1155/2021/9976623
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-905X
Editor Jan, Mian Ahmad
Editor_xml – sequence: 1
  givenname: Mian Ahmad
  surname: Jan
  fullname: Jan, Mian Ahmad
EndPage 7
ExternalDocumentID 10.1155/2021/9976623
10_1155_2021_9976623
GroupedDBID -CS
-CY
.4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABHFT
ABJNI
ACGFO
ACGFS
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
EBS
EDO
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
KZ1
LMP
MIO
MV1
NGNOM
O9-
OK1
P2P
RHU
RHW
RHX
TUS
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ABUBZ
ACPQW
ADTOC
AFRHK
AGIAB
CAG
COF
EJD
FEDTE
IL9
IPNFZ
MET
RIG
UNPAY
ID FETCH-LOGICAL-c337t-effd7d080803a65b95accd9f4e8ee24ff95ee93e3a56c92588da50a12cc90c243
IEDL.DBID UNPAY
ISSN 1574-017X
1875-905X
IngestDate Tue Aug 19 19:34:56 EDT 2025
Thu Aug 28 08:29:37 EDT 2025
Wed Oct 01 01:58:53 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Sun Jun 02 18:51:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-effd7d080803a65b95accd9f4e8ee24ff95ee93e3a56c92588da50a12cc90c243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3693-1267
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/misy/2021/9976623.pdf
PQID 2543216937
PQPubID 2048814
PageCount 7
ParticipantIDs unpaywall_primary_10_1155_2021_9976623
proquest_journals_2543216937
crossref_primary_10_1155_2021_9976623
crossref_citationtrail_10_1155_2021_9976623
hindawi_primary_10_1155_2021_9976623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Mobile information systems
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References Y. Jin (4) 2020; 36
22
H. Gao (7) 2019; 47
L. Xiao (3) 2020; 20
R. Cao (10) 2020; 51
14
Z. L. Yang (21) 2020; 16
15
S. Li (16)
18
19
Q. Sun (8) 2019; 3
Y. Yang (12) 2020; 37
C. Zhang (11) 2018; 48
S. Sui (5) 2019; 9
H. Hu (1) 2020
Y. Zhang (2) 2020
Z. Li (13) 2018; 46
W. Cai (17) 2020; 13
W. Jiang (9) 2020
Y. Mou (6) 2020; 6
20
References_xml – volume-title: Video Motion Detection in Complex Traffic Scenes
  year: 2020
  ident: 1
– ident: 18
  doi: 10.52810/tpris.2021.100009
– ident: 14
  doi: 10.3724/sp.j.1089.2018.16302
– ident: 20
  doi: 10.1109/TITS.2021.3066240
– volume: 51
  start-page: 516
  issue: 4
  year: 2020
  ident: 10
  article-title: Improved vibe algorithm based on Gaussian mixture model and threshold adaptation
  publication-title: Journal of Taiyuan University of Technology
– start-page: 1
  ident: 16
  article-title: Multi-angle head pose classification when wearing the mask for face recognition under the COVID-19 coronavirus epidemic
– volume: 13
  year: 2020
  ident: 17
  article-title: Remote sensing image classification based on a cross-attention mechanism and graph convolution
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 46
  start-page: 284
  issue: 2
  year: 2018
  ident: 13
  article-title: Motion detection algorithm based on Gaussian mixture model and five-frame difference
  publication-title: Computer and Digital Engineering
– volume: 36
  start-page: 40
  issue: 5
  year: 2020
  ident: 4
  article-title: Motion tracking algorithm based on optical flow feature points in power monitoring scenes
  publication-title: Electric Power Science and Engineering
– volume-title: Research on Video-Based Motion Detection Algorithm
  year: 2020
  ident: 2
– volume: 9
  start-page: 63
  year: 2019
  ident: 5
  article-title: Overview of pixel-based background subtraction technology[J]
  publication-title: Science and Technology Innovation
– ident: 15
  doi: 10.3390/e23040435
– volume: 6
  start-page: 75
  year: 2020
  ident: 6
  article-title: Improved ViBe algorithm for motion detection[J]
  publication-title: Information Technology and Informatization
– volume-title: Research on Conspicuous Video Motion Detection Algorithm Based on Biological Vision Mechanism
  year: 2020
  ident: 9
– volume: 16
  start-page: 880
  year: 2020
  ident: 21
  article-title: VAE-Stega: linguistic steganography based on variational auto-encoder
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.3023279
– volume: 3
  start-page: 135
  year: 2019
  ident: 8
  article-title: Research on the detection method of small motion trajectory based on improved three-frame difference method
  publication-title: Equipment Manufacturing Technology
– volume: 48
  start-page: 1554
  issue: 12
  year: 2018
  ident: 11
  article-title: Motion detection and recognition based on five-frame difference and template matching
  publication-title: Laser and Infrared
– ident: 22
  doi: 10.1002/cpe.6276
– volume: 47
  start-page: 1140
  issue: 5
  year: 2019
  ident: 7
  article-title: Motion detection at sea based on frame difference method and Gaussian mixture
  publication-title: Computer and Digital Engineering
– volume: 37
  start-page: 310
  issue: 1
  year: 2020
  ident: 12
  article-title: Motion detection algorithm at sea based on Gaussian mixture model
  publication-title: Application Research of Computers
– volume: 20
  start-page: 6141
  issue: 15
  year: 2020
  ident: 3
  article-title: Motion detection by four-frame difference and improved Gaussian mixture model
  publication-title: Science Technology and Engineering
– ident: 19
  doi: 10.1007/s11042-020-10188-x
SSID ssj0060357
ssib050733852
Score 2.2735467
Snippet To enhance the effect of motion detection, a Gaussian modeling algorithm is proposed to fix holes and breaks caused by the conventional frame difference...
SourceID unpaywall
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
Adaptive learning
Algorithms
Datasets
Deep learning
Fractures
Modelling
Morphology
Motion effects
Motion perception
Moving object recognition
Moving targets
Noise reduction
Normal distribution
Target detection
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4qiF58i-uLHNSLFLtt0jRHcV0XQQ-isLeSJhMV1u6y22Xx35tpU_GBj2NLmkK_SWYmnfk-Qo5CrqTgoAImhEtQGE-DXNk8CIXNuYm0s6GK7fM26T2w6z7ve5Kkyfdf-M7bYXrePpPObTpPPU_m0wQrt-56_cZsOOoOVi3A9QachHFF8NnmAgssRL-pd_8y1ydPtPiEKfDs-VOguTQtRup1pgaDDz6nu0ZWfLBIz2t018kcFBtktRFioH5dbpJJB2BEPVXqY9AZ4xZGr9R0gi2SFPXOsOucqsLQ-hQBjLuLmNAOlFU1VkHPB4_D8XP59EKHlrq4kN47nCHoYvkW7XghFQ30phKd3iIP3cv7i17g1RQCHceiDMBaI0yIPJKxSnguudLaSMsgBYiYtZIDyBhixRMtI56mRvFQtSOtZagjFm-ThWJYwA6hiU5tzBKuc2uYe06p3EUdOpShSk3K2i1y2nzZTHuqcVS8GGRVysF5hjhkHocWOX4fPaopNn4Yd-RB-mPYfoNg5tfjJMOW_wh5Z0SLnLyj-us8u_973R5Zxsv6VGafLJTjKRy4OKXMDysrfQOhidy0
  priority: 102
  providerName: Hindawi Publishing
Title Deep Learning-Driven Gaussian Modeling and Improved Motion Detection Algorithm of the Three-Frame Difference Method
URI https://dx.doi.org/10.1155/2021/9976623
https://www.proquest.com/docview/2543216937
https://downloads.hindawi.com/journals/misy/2021/9976623.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1875-905X
  dateEnd: 20240530
  omitProxy: true
  ssIdentifier: ssj0060357
  issn: 1875-905X
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-905X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050733852
  issn: 1574-017X
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley - open access journals
  customDbUrl:
  eissn: 1875-905X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060357
  issn: 1875-905X
  databaseCode: 24P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tnRC8MD5FYUx-GLwgd2nii2OJl4pSKhAToFUKDyhy_LFNlLRqU03jr8dOnIki8SFeoiS6fNh39v3OOv8O4ChCKTgaSRnnLkBhmNFS2pJG3JaoY-VsqGH7PEmnM_Y2x3wHXnZ7YbSniF9IvR6c-5j08qKZrUO_ro9d2698vD48Fs6POtc9WGq7C3spOiTeg73ZyYfR54YilfvkCp77cwfJqYgw7_LeEbdeseWRboTPbgHOm5tqKa8u5Xz-k--Z7MOX7q_blJOvg01dDtT3Xwgd_7dZd-B2AKVk1FrRXdgx1T3Y7wo-kDD-78N6bMySBErWMzpe-amSvJGbtd-KSXxdNb-7nchKk3a1wmh31-uejE3dZH1VZDQ_W6wu6vNvZGGJw5_k1NmToROfJkbGoWCLMuR9U9z6Acwmr09fTWmo2kBVkvCaGms115Hnq0xkiqVAqZQWlpnMmJhZK9AYkZhEYqpEjFmmJUZyGCslIhWz5CH0qkVlHgFJVWYTlqIqrWbuOSlLh25UJCKZ6YwN-_Ci01yhAqW5r6wxL5rQBrHwfVqEPu3Ds2vpZUvl8Ru5o6Ckv4gddBZSdIosPLVA7PlteB-eX1vNH9_z-F8Fn8Atf9mu_xxAr15tzFOHiOryEHbffczc8dM0PwyD4AfH3Ah6
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLG-tN1Habqu6KHby1Dq2DrLgr2EZVkZrOyhgexhGFkfbWnqhMShtH99JVsuy2Af7M02Z1nSnXW_E6ffARxHKAVHIynj3AUoDDNaSFvQiNsCdaycDdVsn2fp6Zh9meBkAz60Z2G0p4ifSb3sXfqY9PaqXq3DvC5P3NjvfLzePxHOjzrX3Ztr-wQ2U3RIvAOb47Nvg-81RSr3yRV84q8dJKciwkmb94641sSaR3oaPrsGOJ-tyrm8u5XT6U--Z7QDP9peNykn171VVfTU_S-Ejv87rF3YDqCUDBoreg4bpnwBO23BBxL-_5ewHBozJ4GS9YIOF36pJJ_laumPYhJfV82fbiey1KTZrTDaPfW6J0NT1VlfJRlML2aLq-ryhswscfiTnDt7MnTk08TIMBRsUYZ8rYtbv4Lx6NP5x1MaqjZQlSS8osZazXXk-SoTmWIhUCqlhWUmMyZm1go0RiQmkZgqEWOWaYmR7MdKiUjFLNmDTjkrzT6QVGU2YSmqwmrm3pOycOhGRSKSmc5YvwvvW83lKlCa-8oa07wObRBzP6d5mNMuvH2UnjdUHr-ROw5K-ovYYWsheavI3FMLxJ7fhnfh3aPV_LGdg38VfA1b_rbZ_zmETrVYmTcOEVXFUTD8B3OtBnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Driven+Gaussian+Modeling+and+Improved+Motion+Detection+Algorithm+of+the+Three-Frame+Difference+Method&rft.jtitle=Mobile+information+systems&rft.au=Zheng%2C+Dingchao&rft.au=Zhang%2C+Yangzhi&rft.au=Xiao%2C+Zhijian&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1574-017X&rft.eissn=1875-905X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9976623&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-017X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-017X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-017X&client=summon