Finite-Set Direct Torque Control via Edge Computing-Assisted Safe Reinforcement Learning for a Permanent Magnet Synchronous Motor
Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of...
Saved in:
| Published in | IEEE transactions on power electronics Vol. 38; no. 11; pp. 1 - 16 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-8993 1941-0107 1941-0107 |
| DOI | 10.1109/TPEL.2023.3303651 |
Cover
| Abstract | Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of the corresponding training phase in real-world drive systems has been applied only sparsely due to safety concerns. This contribution targets the challenging problem of self-learning torque control for a permanent magnet synchronous motor assuming a finite control set, i.e., the direct selection of switching actions instead of a modulator-based setup. In order to allow a secure and effective online training with real-world drive systems, the RL controller is monitored by a safeguarding algorithm that prevents application of unsafe switching actions, e.g., such that result in overcurrent. The accruing amount of measurement data is handled with the use of an edge computing pipeline to outsource the RL training from the embedded control hardware. The inference of the utilized artificial neural network in hard real time is realized with the use of a reconfigurable FPGA architecture. The resulting RL-based algorithm is able to learn a torque control policy in just ten minutes which has been validated during comprehensive real-world experiments. |
|---|---|
| AbstractList | Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of the corresponding training phase in real-world drive systems has been applied only sparsely due to safety concerns. This contribution targets the challenging problem of self-learning torque control for a permanent-magnet synchronous motor assuming a finite control set, i.e., the direct selection of switching actions instead of a modulator-based setup. In order to allow a secure and effective online training with real-world drive systems, the RL controller is monitored by a safeguarding algorithm that prevents application of unsafe switching actions, e.g., such that result in overcurrent. The accruing amount of measurement data is handled with the use of an edge-computing pipeline to outsource the RL training from the embedded control hardware. The inference of the utilized artificial neural network in hard real time is realized with the use of a reconfigurable field-programmable gate array architecture. The resulting RL-based algorithm is able to learn a torque control policy in just 10 min, which has been validated during comprehensive real-world experiments. Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of the corresponding training phase in real-world drive systems has been applied only sparsely due to safety concerns. This contribution targets the challenging problem of self-learning torque control for a permanent magnet synchronous motor assuming a finite control set, i.e., the direct selection of switching actions instead of a modulator-based setup. In order to allow a secure and effective online training with real-world drive systems, the RL controller is monitored by a safeguarding algorithm that prevents application of unsafe switching actions, e.g., such that result in overcurrent. The accruing amount of measurement data is handled with the use of an edge computing pipeline to outsource the RL training from the embedded control hardware. The inference of the utilized artificial neural network in hard real time is realized with the use of a reconfigurable FPGA architecture. The resulting RL-based algorithm is able to learn a torque control policy in just ten minutes which has been validated during comprehensive real-world experiments. |
| Author | Haucke-Korber, Barnabas Schenke, Maximilian Wallscheid, Oliver |
| Author_xml | – sequence: 1 givenname: Maximilian orcidid: 0000-0001-5427-9527 surname: Schenke fullname: Schenke, Maximilian organization: Department of Power Electronics and Electrical Drives, Paderborn University, Germany – sequence: 2 givenname: Barnabas orcidid: 0000-0003-0862-2069 surname: Haucke-Korber fullname: Haucke-Korber, Barnabas organization: Department of Power Electronics and Electrical Drives, Paderborn University, Germany – sequence: 3 givenname: Oliver orcidid: 0000-0001-9362-8777 surname: Wallscheid fullname: Wallscheid, Oliver organization: Department of Power Electronics and Electrical Drives, Paderborn University, Germany |
| BookMark | eNptkU9rGzEQxUVJoE6aD1DoQdDzuhpp_-kYXKctODTEzlnI8shVWEtbSZviY795d3EoxfQkGL33ZuY3V-TCB4-EvAc2B2Dy0-ZhuZpzxsVcCCbqCt6QGcgSCgasuSAz1rZV0Uop3pKrlJ4Zg7JiMCO_75x3GYs1ZvrZRTSZbkL8OSBdBJ9j6OiL03S520-FQz9k5_fFbUouZdzRtbZIH9F5G6LBA_pMV6ijH0V0LFFNHzAetJ8-7vXej03WR29-xODDkOh9yCG-I5dWdwlvXt9r8nS33Cy-FqvvX74tbleFEaLJBRrNOGC7HfeDWteVbDmWRltZSVM30u5aAZLvaqjbrbZgrNWGNQaF2RrbWHFN-Cl38L0-_tJdp_roDjoeFTA1QVS5x05NENUrxNH08WTqYxihpKyewxD9OKfibd0Iyct6UjUnlYkhpYhWGZd1dhNB7bq_-dORzvPhzHk-0_88H04eh4j_6DmUwEH8ASTCoAY |
| CODEN | ITPEE8 |
| CitedBy_id | crossref_primary_10_1109_OJIA_2023_3284717 crossref_primary_10_3390_electronics13152957 crossref_primary_10_1109_TTE_2024_3400534 crossref_primary_10_1007_s00202_024_02863_1 crossref_primary_10_3390_electronics13132561 |
| Cites_doi | 10.1109/TPEL.2020.3006779 10.1109/TPEL.2022.3206598 10.1109/OJPEL.2021.3065877 10.1146/annurev-control-042920-020211 10.1109/OJIES.2021.3075521 10.1109/ICIT46573.2021.9453497 10.1109/63.261026 10.1073/pnas.1517384113 10.1109/OJIA.2020.3020184 10.1109/EDPC51184.2020.9388185 10.1016/j.automatica.2011.12.003 10.1109/CDC.2018.8619829 10.1109/TIA.1980.4503770 10.1109/TIE.2020.2970660 10.1609/icaps.v31i1.15940 10.1109/TII.2019.2948387 10.1109/EPE.2015.7311680 10.1109/TIE.2013.2253065 10.1109/TIA.1986.4504799 10.1038/nature14236 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M ADTOC UNPAY |
| DOI | 10.1109/TPEL.2023.3303651 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0107 |
| EndPage | 16 |
| ExternalDocumentID | 10.1109/tpel.2023.3303651 10_1109_TPEL_2023_3303651 10214121 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 3EH 5VS AAYXX ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH TAF VH1 VJK 7SP 7TB 8FD FR3 JQ2 KR7 L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c337t-eca021e8b33016a65982e4caf959c679fd83192d6168baf1cffac07ce3cbcf7f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0885-8993 1941-0107 |
| IngestDate | Tue Aug 19 21:22:20 EDT 2025 Mon Jun 30 06:41:41 EDT 2025 Wed Oct 01 03:20:25 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Wed Aug 27 02:14:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-eca021e8b33016a65982e4caf959c679fd83192d6168baf1cffac07ce3cbcf7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5427-9527 0000-0001-9362-8777 0000-0003-0862-2069 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/63/4359240/10214121.pdf |
| PQID | 2867392461 |
| PQPubID | 37080 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TPEL_2023_3303651 proquest_journals_2867392461 crossref_primary_10_1109_TPEL_2023_3303651 ieee_primary_10214121 unpaywall_primary_10_1109_tpel_2023_3303651 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power electronics |
| PublicationTitleAbbrev | TPEL |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref2 ref1 ref19 ref18 schenke (ref10) 2023 doncker (ref12) 2010 kingma (ref17) 2014 haucke-korber (ref29) 0 sutton (ref16) 2018 ref23 ref26 ref25 ref20 mnih (ref14) 2013 ref22 ref21 ref28 ref7 schenke (ref11) 2022 ref9 ref4 ref3 alshiekh (ref24) 2017 ref6 balakrishna (ref8) 2021; 6 ref5 agarwal (ref27) 2021; 31 |
| References_xml | – year: 2023 ident: ref10 article-title: Coffee machine vs. machine learning: Who is Quicker? – ident: ref19 doi: 10.1109/TPEL.2020.3006779 – ident: ref28 doi: 10.1109/TPEL.2022.3206598 – volume: 6 year: 2021 ident: ref8 article-title: Gym-electric-motor (GEM): A python toolbox for the simulation of electric drive systems publication-title: Open Source Software – ident: ref7 doi: 10.1109/OJPEL.2021.3065877 – ident: ref18 doi: 10.1146/annurev-control-042920-020211 – year: 2018 ident: ref16 publication-title: Reinforcement Learning An Introduction – ident: ref9 doi: 10.1109/OJIES.2021.3075521 – ident: ref13 doi: 10.1109/ICIT46573.2021.9453497 – ident: ref23 doi: 10.1109/63.261026 – ident: ref20 doi: 10.1073/pnas.1517384113 – ident: ref4 doi: 10.1109/OJIA.2020.3020184 – year: 2013 ident: ref14 article-title: Playing Atari with deep reinforcement learning – ident: ref5 doi: 10.1109/EDPC51184.2020.9388185 – ident: ref26 doi: 10.1016/j.automatica.2011.12.003 – ident: ref25 doi: 10.1109/CDC.2018.8619829 – year: 2010 ident: ref12 publication-title: Advanced Electrical Drives Analysis Modeling Control(Power Systems) – ident: ref2 doi: 10.1109/TIA.1980.4503770 – ident: ref22 doi: 10.1109/TIE.2020.2970660 – volume: 31 start-page: 2 year: 2021 ident: ref27 article-title: Blind decision making: Reinforcement learning with delayed observations publication-title: Proc Int Conf Automat Plan Scheduling doi: 10.1609/icaps.v31i1.15940 – ident: ref6 doi: 10.1109/TII.2019.2948387 – year: 2022 ident: ref11 article-title: EdgeRL pipeline – year: 2017 ident: ref24 article-title: Safe reinforcement learning via shielding – ident: ref1 doi: 10.1109/EPE.2015.7311680 – start-page: 1 year: 0 ident: ref29 article-title: Reinforcement learning-based deep Q. direct torque control with adaptable switching frequency towards six-step operation of permanent magnet synchronous motors publication-title: Proc IKMT GMM/ETG Symp – ident: ref21 doi: 10.1109/TIE.2013.2253065 – ident: ref3 doi: 10.1109/TIA.1986.4504799 – ident: ref15 doi: 10.1038/nature14236 – year: 2014 ident: ref17 article-title: Adam: A method for stochastic optimization |
| SSID | ssj0014501 |
| Score | 2.4980762 |
| Snippet | Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase.... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial neural networks Control systems Data-driven optimal control deep reinforcement learning direct torque control Edge computing electric drive Field programmable gate arrays FPGA internet of things Machine learning neural network Optimization Overcurrent Permanent magnet motors Permanent magnets safe learning Stators Switches Switching Synchronous motors System effectiveness system identification Torque Torque control Training Voltage control |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swELYYL9seNjaY1g2QH3gacohJ4jiPCLVCCBBai8RbZJ_tClElFSSb2Nv--XxOWrVDm3hLYltn586-s333HSEH0krlvKZhSSotS6XmzL8nrJAaisyg2R8cZK_E2U16fpvd9sHqIRbGWhucz2yEj-Eu39TQ4lHZUUhDzTFs_FUuRRestbwySLOQ69jPmoz5TUTSX2HyuDiaXA8vIswTHiW4Ymd8TQmFrCprBubrtpqrp59qNlvRNaP35GrRy87F5D5qGx3Br78AHF88jC3yrrc66UknJh_Ihq0-krcrWITb5PfoDs1PNrYN7dZBOqkffFfpaefNTn_cKTo0U_yAmSB8K-aZi2Ji6Fg5S7_bAMMK4cSR9sitU-o_UUWvUQVUWHCpppUnMn6qAJF56_aRXtZ-679DbkbDyekZ6_MzMEiSvGEWlB-Jldr_VS6UQCxAm4JyRVaAyAtnpJ_gx0ZwIbVyHJxTEOdgE9Dgcpd8IptVXdnPhJosjp1f74ziJo1drLUouJKQcS0BpBuQeMGwEnrwcsyhMSvDJiYuSuRxiTwuex4PyLdlk3mH3PG_yjvIp5WKHYsGZHchFmU_uR_LYylyb1amwhcfLkXlGZFmbmdrRL78g8hX8gardRGOu2SzeWjtnjd1Gr0fRPwPTlP6dQ priority: 102 providerName: IEEE |
| Title | Finite-Set Direct Torque Control via Edge Computing-Assisted Safe Reinforcement Learning for a Permanent Magnet Synchronous Motor |
| URI | https://ieeexplore.ieee.org/document/10214121 https://www.proquest.com/docview/2867392461 https://ieeexplore.ieee.org/ielx7/63/4359240/10214121.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014501 issn: 1941-0107 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOwAHPocojMkHTiC3dpM4znGaWk2ITRVtpcEl8mdVUSVVl26MG_85z3Y6tSAhwS2ObdnOe34f8fPvIfROWCEdaBqSpMKSVChGoJyQQihdZMab_SFA9oKfzdKPl9nlTqovn-EkBJ_Znn8MZ_kLu_ye93nSB9UO7gLth3TUbABCxrj76IBnYIZ30MHsYnzyJVqNGQE_IgTXF6l3l2nenmgyWvSblfWHDoOkl3gBnrE9nRSSrOzZmw821Ure3sjlckf1jJ6gr9tJx4iTb71No3r6x294jv-1qqfocWuQ4pPIQc_QPVs9R492YApfoJ-jhbdMycQ2OIpIPK3XMG18GgPd8fVC4qGZWxKTREAvAnT3HGTwRDqLP9uA0KrDz0jcgrrOMbzCEo-9dqiggpzLeQWDTG4r7UF7680VPq-ben2IZqPh9PSMtKkbiE6SvCFWS1iNFQq-MOOSe5hAm2rpiqzQPC-cEbD3B4YzLpR0TDsnNc21TbTSLnfJS9Sp6sq-QthklDoQhUYyk1JHleIFk0JnTAmthesiuiVeqVtcc59eY1kG_4YW5XQ8_FR6epctvbvo_V2XVQT1-FvjQ0-znYaRTF10tGWRst33V-VA8BwszpRD9Yc7tvljEM-Be4O8_qfWb9BDX4xXIo9Qp1lv7FuwjRp1HC4wHrd74Rc2Lwi1 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeBg88DlEYYAfeAI5ixfbcR7R1KpAW020k_YW-bOaqJJqS0Djjf8cn5NWLQjEWxLbOjt39p3tu98h9FY6qXzQNCRj0hEmNSXhPSOF1KbgFsz-6CA7E-ML9umSX_bB6jEWxjkXnc9cAo_xLt_WpoWjspOYhppC2PhdzhjjXbjW9tKA8ZjtOMwbTsI2IusvMWlanCzOh5MEMoUnGazZnO6poZhXZc_EPGyrtbr9rlarHW0zeohmm352TiZfk7bRifnxG4Tjfw_kEXrQ2534Qycoj9EdVz1B93fQCJ-in6MrMEDJ3DW4Wwnxor4OXcVnnT87_nal8NAu4QPkggitSGAvCIrFc-Ud_uIiEKuJZ464x25d4vAJK3wOSqCCgqlaVoHI_LYygM1btzd4WofN_xG6GA0XZ2PSZ2ggJsvyhjijwkic1OGvUqEEoAE6ZpQveGFEXngrwxQ_tYIKqZWnxntl0ty4zGjjc589QwdVXbnnCFuepj6seFZRy1Kfai0KqqThVEtjpB-gdMOw0vTw5ZBFY1XGbUxalMDjEnhc9jweoHfbJusOu-NflY-ATzsVOxYN0PFGLMp-et-Up1LkwbBkIhS_34rKH0SatVvtEXnxFyJv0OF4MZ2Uk4-zzy_RPWjSxTseo4PmunWvguHT6NdR3H8Bi979wg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHfg5RGMgHTiC3dpM49nGaWk2ITRVtpcElsh27qlYlVZeyjRv_Oc92OrUgIcEtjh3Zznv2-1788j2E3gsrlANLQ5JUWJIKzQiUEyKFNjIrPewPAbLn_HSWfrrILnZSffkMJyH4zPb8ZTjLX9jlTd7nSR9MO7gLtB_SUbMBbDKlu48OeAYwvIMOZufj468RNWYE_IgQXC9T7y7TvD3RZFT2m5X1hw6DpJf4DTxjezYpJFnZw5sPNtVK3V6r5XLH9IyeoG_bQceIk8veptE98-M3Psf_mtVT9LgFpPg4atAzdM9Wz9GjHZrCF-jnaOGRKZnYBsctEk_rNQwbn8RAd_x9ofCwnFsSk0TAUwTk7jWoxBPlLP5iA0OrCR8jcUvqOsdwCys89tahggpypuYVdDK5rYwn7a03V_isbur1IZqNhtOTU9KmbiAmSfKGWKNgNlZoeMOMK-5pAm1qlJOZNDyXrhSw9gclZ1xo5ZhxThmaG5sYbVzukpeoU9WVfYVwmVHqYCssFStT6qjWXDIlTMa0MEa4LqJb4RWm5TX36TWWRfBvqCym4-Hnwsu7aOXdRR_uHllFUo-_NT70MttpGMXURUdbFSnadX9VDATPAXGmHKo_3qnNH514Ddzr5PU_tX6DHvpi_CXyCHWa9ca-BWzU6HftKvgFB4IHtA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Set+Direct+Torque+Control+via+Edge-Computing-Assisted+Safe+Reinforcement+Learning+for+a+Permanent-Magnet+Synchronous+Motor&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Schenke%2C+Maximilian&rft.au=Haucke-Korber%2C+Barnabas&rft.au=Wallscheid%2C+Oliver&rft.date=2023-11-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=38&rft.issue=11&rft.spage=13741&rft.epage=13756&rft_id=info:doi/10.1109%2FTPEL.2023.3303651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2023_3303651 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |