Finite-Set Direct Torque Control via Edge Computing-Assisted Safe Reinforcement Learning for a Permanent Magnet Synchronous Motor

Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 38; no. 11; pp. 1 - 16
Main Authors Schenke, Maximilian, Haucke-Korber, Barnabas, Wallscheid, Oliver
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
1941-0107
DOI10.1109/TPEL.2023.3303651

Cover

Abstract Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of the corresponding training phase in real-world drive systems has been applied only sparsely due to safety concerns. This contribution targets the challenging problem of self-learning torque control for a permanent magnet synchronous motor assuming a finite control set, i.e., the direct selection of switching actions instead of a modulator-based setup. In order to allow a secure and effective online training with real-world drive systems, the RL controller is monitored by a safeguarding algorithm that prevents application of unsafe switching actions, e.g., such that result in overcurrent. The accruing amount of measurement data is handled with the use of an edge computing pipeline to outsource the RL training from the embedded control hardware. The inference of the utilized artificial neural network in hard real time is realized with the use of a reconfigurable FPGA architecture. The resulting RL-based algorithm is able to learn a torque control policy in just ten minutes which has been validated during comprehensive real-world experiments.
AbstractList Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of the corresponding training phase in real-world drive systems has been applied only sparsely due to safety concerns. This contribution targets the challenging problem of self-learning torque control for a permanent-magnet synchronous motor assuming a finite control set, i.e., the direct selection of switching actions instead of a modulator-based setup. In order to allow a secure and effective online training with real-world drive systems, the RL controller is monitored by a safeguarding algorithm that prevents application of unsafe switching actions, e.g., such that result in overcurrent. The accruing amount of measurement data is handled with the use of an edge-computing pipeline to outsource the RL training from the embedded control hardware. The inference of the utilized artificial neural network in hard real time is realized with the use of a reconfigurable field-programmable gate array architecture. The resulting RL-based algorithm is able to learn a torque control policy in just 10 min, which has been validated during comprehensive real-world experiments.
Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase. The resulting controllers feature efficient drive operation without the necessity of an a priori known plant model but, so far, conduction of the corresponding training phase in real-world drive systems has been applied only sparsely due to safety concerns. This contribution targets the challenging problem of self-learning torque control for a permanent magnet synchronous motor assuming a finite control set, i.e., the direct selection of switching actions instead of a modulator-based setup. In order to allow a secure and effective online training with real-world drive systems, the RL controller is monitored by a safeguarding algorithm that prevents application of unsafe switching actions, e.g., such that result in overcurrent. The accruing amount of measurement data is handled with the use of an edge computing pipeline to outsource the RL training from the embedded control hardware. The inference of the utilized artificial neural network in hard real time is realized with the use of a reconfigurable FPGA architecture. The resulting RL-based algorithm is able to learn a torque control policy in just ten minutes which has been validated during comprehensive real-world experiments.
Author Haucke-Korber, Barnabas
Schenke, Maximilian
Wallscheid, Oliver
Author_xml – sequence: 1
  givenname: Maximilian
  orcidid: 0000-0001-5427-9527
  surname: Schenke
  fullname: Schenke, Maximilian
  organization: Department of Power Electronics and Electrical Drives, Paderborn University, Germany
– sequence: 2
  givenname: Barnabas
  orcidid: 0000-0003-0862-2069
  surname: Haucke-Korber
  fullname: Haucke-Korber, Barnabas
  organization: Department of Power Electronics and Electrical Drives, Paderborn University, Germany
– sequence: 3
  givenname: Oliver
  orcidid: 0000-0001-9362-8777
  surname: Wallscheid
  fullname: Wallscheid, Oliver
  organization: Department of Power Electronics and Electrical Drives, Paderborn University, Germany
BookMark eNptkU9rGzEQxUVJoE6aD1DoQdDzuhpp_-kYXKctODTEzlnI8shVWEtbSZviY795d3EoxfQkGL33ZuY3V-TCB4-EvAc2B2Dy0-ZhuZpzxsVcCCbqCt6QGcgSCgasuSAz1rZV0Uop3pKrlJ4Zg7JiMCO_75x3GYs1ZvrZRTSZbkL8OSBdBJ9j6OiL03S520-FQz9k5_fFbUouZdzRtbZIH9F5G6LBA_pMV6ijH0V0LFFNHzAetJ8-7vXej03WR29-xODDkOh9yCG-I5dWdwlvXt9r8nS33Cy-FqvvX74tbleFEaLJBRrNOGC7HfeDWteVbDmWRltZSVM30u5aAZLvaqjbrbZgrNWGNQaF2RrbWHFN-Cl38L0-_tJdp_roDjoeFTA1QVS5x05NENUrxNH08WTqYxihpKyewxD9OKfibd0Iyct6UjUnlYkhpYhWGZd1dhNB7bq_-dORzvPhzHk-0_88H04eh4j_6DmUwEH8ASTCoAY
CODEN ITPEE8
CitedBy_id crossref_primary_10_1109_OJIA_2023_3284717
crossref_primary_10_3390_electronics13152957
crossref_primary_10_1109_TTE_2024_3400534
crossref_primary_10_1007_s00202_024_02863_1
crossref_primary_10_3390_electronics13132561
Cites_doi 10.1109/TPEL.2020.3006779
10.1109/TPEL.2022.3206598
10.1109/OJPEL.2021.3065877
10.1146/annurev-control-042920-020211
10.1109/OJIES.2021.3075521
10.1109/ICIT46573.2021.9453497
10.1109/63.261026
10.1073/pnas.1517384113
10.1109/OJIA.2020.3020184
10.1109/EDPC51184.2020.9388185
10.1016/j.automatica.2011.12.003
10.1109/CDC.2018.8619829
10.1109/TIA.1980.4503770
10.1109/TIE.2020.2970660
10.1609/icaps.v31i1.15940
10.1109/TII.2019.2948387
10.1109/EPE.2015.7311680
10.1109/TIE.2013.2253065
10.1109/TIA.1986.4504799
10.1038/nature14236
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ADTOC
UNPAY
DOI 10.1109/TPEL.2023.3303651
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 16
ExternalDocumentID 10.1109/tpel.2023.3303651
10_1109_TPEL_2023_3303651
10214121
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYXX
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
TAF
VH1
VJK
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c337t-eca021e8b33016a65982e4caf959c679fd83192d6168baf1cffac07ce3cbcf7f3
IEDL.DBID UNPAY
ISSN 0885-8993
1941-0107
IngestDate Tue Aug 19 21:22:20 EDT 2025
Mon Jun 30 06:41:41 EDT 2025
Wed Oct 01 03:20:25 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Wed Aug 27 02:14:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-eca021e8b33016a65982e4caf959c679fd83192d6168baf1cffac07ce3cbcf7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5427-9527
0000-0001-9362-8777
0000-0003-0862-2069
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/63/4359240/10214121.pdf
PQID 2867392461
PQPubID 37080
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TPEL_2023_3303651
proquest_journals_2867392461
crossref_primary_10_1109_TPEL_2023_3303651
ieee_primary_10214121
unpaywall_primary_10_1109_tpel_2023_3303651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref2
ref1
ref19
ref18
schenke (ref10) 2023
doncker (ref12) 2010
kingma (ref17) 2014
haucke-korber (ref29) 0
sutton (ref16) 2018
ref23
ref26
ref25
ref20
mnih (ref14) 2013
ref22
ref21
ref28
ref7
schenke (ref11) 2022
ref9
ref4
ref3
alshiekh (ref24) 2017
ref6
balakrishna (ref8) 2021; 6
ref5
agarwal (ref27) 2021; 31
References_xml – year: 2023
  ident: ref10
  article-title: Coffee machine vs. machine learning: Who is Quicker?
– ident: ref19
  doi: 10.1109/TPEL.2020.3006779
– ident: ref28
  doi: 10.1109/TPEL.2022.3206598
– volume: 6
  year: 2021
  ident: ref8
  article-title: Gym-electric-motor (GEM): A python toolbox for the simulation of electric drive systems
  publication-title: Open Source Software
– ident: ref7
  doi: 10.1109/OJPEL.2021.3065877
– ident: ref18
  doi: 10.1146/annurev-control-042920-020211
– year: 2018
  ident: ref16
  publication-title: Reinforcement Learning An Introduction
– ident: ref9
  doi: 10.1109/OJIES.2021.3075521
– ident: ref13
  doi: 10.1109/ICIT46573.2021.9453497
– ident: ref23
  doi: 10.1109/63.261026
– ident: ref20
  doi: 10.1073/pnas.1517384113
– ident: ref4
  doi: 10.1109/OJIA.2020.3020184
– year: 2013
  ident: ref14
  article-title: Playing Atari with deep reinforcement learning
– ident: ref5
  doi: 10.1109/EDPC51184.2020.9388185
– ident: ref26
  doi: 10.1016/j.automatica.2011.12.003
– ident: ref25
  doi: 10.1109/CDC.2018.8619829
– year: 2010
  ident: ref12
  publication-title: Advanced Electrical Drives Analysis Modeling Control(Power Systems)
– ident: ref2
  doi: 10.1109/TIA.1980.4503770
– ident: ref22
  doi: 10.1109/TIE.2020.2970660
– volume: 31
  start-page: 2
  year: 2021
  ident: ref27
  article-title: Blind decision making: Reinforcement learning with delayed observations
  publication-title: Proc Int Conf Automat Plan Scheduling
  doi: 10.1609/icaps.v31i1.15940
– ident: ref6
  doi: 10.1109/TII.2019.2948387
– year: 2022
  ident: ref11
  article-title: EdgeRL pipeline
– year: 2017
  ident: ref24
  article-title: Safe reinforcement learning via shielding
– ident: ref1
  doi: 10.1109/EPE.2015.7311680
– start-page: 1
  year: 0
  ident: ref29
  article-title: Reinforcement learning-based deep Q. direct torque control with adaptable switching frequency towards six-step operation of permanent magnet synchronous motors
  publication-title: Proc IKMT GMM/ETG Symp
– ident: ref21
  doi: 10.1109/TIE.2013.2253065
– ident: ref3
  doi: 10.1109/TIA.1986.4504799
– ident: ref15
  doi: 10.1038/nature14236
– year: 2014
  ident: ref17
  article-title: Adam: A method for stochastic optimization
SSID ssj0014501
Score 2.4980762
Snippet Advances in the field of reinforcement learning (RL)-based drive control allow formulation of holistic optimization goals for the data-driven training phase....
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Control systems
Data-driven optimal control
deep reinforcement learning
direct torque control
Edge computing
electric drive
Field programmable gate arrays
FPGA
internet of things
Machine learning
neural network
Optimization
Overcurrent
Permanent magnet motors
Permanent magnets
safe learning
Stators
Switches
Switching
Synchronous motors
System effectiveness
system identification
Torque
Torque control
Training
Voltage control
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swELYYL9seNjaY1g2QH3gacohJ4jiPCLVCCBBai8RbZJ_tClElFSSb2Nv--XxOWrVDm3hLYltn586-s333HSEH0krlvKZhSSotS6XmzL8nrJAaisyg2R8cZK_E2U16fpvd9sHqIRbGWhucz2yEj-Eu39TQ4lHZUUhDzTFs_FUuRRestbwySLOQ69jPmoz5TUTSX2HyuDiaXA8vIswTHiW4Ymd8TQmFrCprBubrtpqrp59qNlvRNaP35GrRy87F5D5qGx3Br78AHF88jC3yrrc66UknJh_Ihq0-krcrWITb5PfoDs1PNrYN7dZBOqkffFfpaefNTn_cKTo0U_yAmSB8K-aZi2Ji6Fg5S7_bAMMK4cSR9sitU-o_UUWvUQVUWHCpppUnMn6qAJF56_aRXtZ-679DbkbDyekZ6_MzMEiSvGEWlB-Jldr_VS6UQCxAm4JyRVaAyAtnpJ_gx0ZwIbVyHJxTEOdgE9Dgcpd8IptVXdnPhJosjp1f74ziJo1drLUouJKQcS0BpBuQeMGwEnrwcsyhMSvDJiYuSuRxiTwuex4PyLdlk3mH3PG_yjvIp5WKHYsGZHchFmU_uR_LYylyb1amwhcfLkXlGZFmbmdrRL78g8hX8gardRGOu2SzeWjtnjd1Gr0fRPwPTlP6dQ
  priority: 102
  providerName: IEEE
Title Finite-Set Direct Torque Control via Edge Computing-Assisted Safe Reinforcement Learning for a Permanent Magnet Synchronous Motor
URI https://ieeexplore.ieee.org/document/10214121
https://www.proquest.com/docview/2867392461
https://ieeexplore.ieee.org/ielx7/63/4359240/10214121.pdf
UnpaywallVersion publishedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014501
  issn: 1941-0107
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOwAHPocojMkHTiC3dpM4znGaWk2ITRVtpcEl8mdVUSVVl26MG_85z3Y6tSAhwS2ObdnOe34f8fPvIfROWCEdaBqSpMKSVChGoJyQQihdZMab_SFA9oKfzdKPl9nlTqovn-EkBJ_Znn8MZ_kLu_ye93nSB9UO7gLth3TUbABCxrj76IBnYIZ30MHsYnzyJVqNGQE_IgTXF6l3l2nenmgyWvSblfWHDoOkl3gBnrE9nRSSrOzZmw821Ure3sjlckf1jJ6gr9tJx4iTb71No3r6x294jv-1qqfocWuQ4pPIQc_QPVs9R492YApfoJ-jhbdMycQ2OIpIPK3XMG18GgPd8fVC4qGZWxKTREAvAnT3HGTwRDqLP9uA0KrDz0jcgrrOMbzCEo-9dqiggpzLeQWDTG4r7UF7680VPq-ben2IZqPh9PSMtKkbiE6SvCFWS1iNFQq-MOOSe5hAm2rpiqzQPC-cEbD3B4YzLpR0TDsnNc21TbTSLnfJS9Sp6sq-QthklDoQhUYyk1JHleIFk0JnTAmthesiuiVeqVtcc59eY1kG_4YW5XQ8_FR6epctvbvo_V2XVQT1-FvjQ0-znYaRTF10tGWRst33V-VA8BwszpRD9Yc7tvljEM-Be4O8_qfWb9BDX4xXIo9Qp1lv7FuwjRp1HC4wHrd74Rc2Lwi1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeBg88DlEYYAfeAI5ixfbcR7R1KpAW020k_YW-bOaqJJqS0Djjf8cn5NWLQjEWxLbOjt39p3tu98h9FY6qXzQNCRj0hEmNSXhPSOF1KbgFsz-6CA7E-ML9umSX_bB6jEWxjkXnc9cAo_xLt_WpoWjspOYhppC2PhdzhjjXbjW9tKA8ZjtOMwbTsI2IusvMWlanCzOh5MEMoUnGazZnO6poZhXZc_EPGyrtbr9rlarHW0zeohmm352TiZfk7bRifnxG4Tjfw_kEXrQ2534Qycoj9EdVz1B93fQCJ-in6MrMEDJ3DW4Wwnxor4OXcVnnT87_nal8NAu4QPkggitSGAvCIrFc-Ud_uIiEKuJZ464x25d4vAJK3wOSqCCgqlaVoHI_LYygM1btzd4WofN_xG6GA0XZ2PSZ2ggJsvyhjijwkic1OGvUqEEoAE6ZpQveGFEXngrwxQ_tYIKqZWnxntl0ty4zGjjc589QwdVXbnnCFuepj6seFZRy1Kfai0KqqThVEtjpB-gdMOw0vTw5ZBFY1XGbUxalMDjEnhc9jweoHfbJusOu-NflY-ATzsVOxYN0PFGLMp-et-Up1LkwbBkIhS_34rKH0SatVvtEXnxFyJv0OF4MZ2Uk4-zzy_RPWjSxTseo4PmunWvguHT6NdR3H8Bi979wg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHfg5RGMgHTiC3dpM49nGaWk2ITRVtpcElsh27qlYlVZeyjRv_Oc92OrUgIcEtjh3Zznv2-1788j2E3gsrlANLQ5JUWJIKzQiUEyKFNjIrPewPAbLn_HSWfrrILnZSffkMJyH4zPb8ZTjLX9jlTd7nSR9MO7gLtB_SUbMBbDKlu48OeAYwvIMOZufj468RNWYE_IgQXC9T7y7TvD3RZFT2m5X1hw6DpJf4DTxjezYpJFnZw5sPNtVK3V6r5XLH9IyeoG_bQceIk8veptE98-M3Psf_mtVT9LgFpPg4atAzdM9Wz9GjHZrCF-jnaOGRKZnYBsctEk_rNQwbn8RAd_x9ofCwnFsSk0TAUwTk7jWoxBPlLP5iA0OrCR8jcUvqOsdwCys89tahggpypuYVdDK5rYwn7a03V_isbur1IZqNhtOTU9KmbiAmSfKGWKNgNlZoeMOMK-5pAm1qlJOZNDyXrhSw9gclZ1xo5ZhxThmaG5sYbVzukpeoU9WVfYVwmVHqYCssFStT6qjWXDIlTMa0MEa4LqJb4RWm5TX36TWWRfBvqCym4-Hnwsu7aOXdRR_uHllFUo-_NT70MttpGMXURUdbFSnadX9VDATPAXGmHKo_3qnNH514Ddzr5PU_tX6DHvpi_CXyCHWa9ca-BWzU6HftKvgFB4IHtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Set+Direct+Torque+Control+via+Edge-Computing-Assisted+Safe+Reinforcement+Learning+for+a+Permanent-Magnet+Synchronous+Motor&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Schenke%2C+Maximilian&rft.au=Haucke-Korber%2C+Barnabas&rft.au=Wallscheid%2C+Oliver&rft.date=2023-11-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=38&rft.issue=11&rft.spage=13741&rft.epage=13756&rft_id=info:doi/10.1109%2FTPEL.2023.3303651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2023_3303651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon