Learning-Aided Evolution for Optimization

Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1794 - 1808
Main Authors Zhan, Zhi-Hui, Li, Jian-Yu, Kwong, Sam, Zhang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
1941-0026
DOI10.1109/TEVC.2022.3232776

Cover

Abstract Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving real-world problems, respectively. These have been two essential branches in artificial intelligence (AI) and computer science. However, in humans, learning and optimization are usually integrated together for problem solving. Therefore, how to efficiently integrate these two abilities together to develop powerful AI remains a significant but challenging issue. Motivated by this, this article proposes a novel learning-aided evolutionary optimization (LEO) framework that plus learning and evolution for solving optimization problems. The LEO is integrated with the evolution knowledge learned by ANN from the evolution process of EC to promote optimization efficiency. The LEO framework is applied to both classical EC algorithms and some state-of-the-art EC algorithms including a champion algorithm, with benchmarking against the IEEE Congress on EC competition data. The experimental results show that the LEO can significantly enhance the existing EC algorithms to better solve both single-objective and multi-/many-objective global optimization problems, suggesting that learning plus evolution is more intelligent for problem solving. Moreover, the experimental results have also validated the time efficiency of the LEO, where the additional time cost for using LEO is greatly deserved. Therefore, the promising LEO can lead to a new and more efficient paradigm for EC algorithms to solve global optimization problems by plus learning and evolution.
AbstractList Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving real-world problems, respectively. These have been two essential branches in artificial intelligence (AI) and computer science. However, in humans, learning and optimization are usually integrated together for problem solving. Therefore, how to efficiently integrate these two abilities together to develop powerful AI remains a significant but challenging issue. Motivated by this, this article proposes a novel learning-aided evolutionary optimization (LEO) framework that plus learning and evolution for solving optimization problems. The LEO is integrated with the evolution knowledge learned by ANN from the evolution process of EC to promote optimization efficiency. The LEO framework is applied to both classical EC algorithms and some state-of-the-art EC algorithms including a champion algorithm, with benchmarking against the IEEE Congress on EC competition data. The experimental results show that the LEO can significantly enhance the existing EC algorithms to better solve both single-objective and multi-/many-objective global optimization problems, suggesting that learning plus evolution is more intelligent for problem solving. Moreover, the experimental results have also validated the time efficiency of the LEO, where the additional time cost for using LEO is greatly deserved. Therefore, the promising LEO can lead to a new and more efficient paradigm for EC algorithms to solve global optimization problems by plus learning and evolution.
Author Zhan, Zhi-Hui
Li, Jian-Yu
Kwong, Sam
Zhang, Jun
Author_xml – sequence: 1
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Jian-Yu
  orcidid: 0000-0002-6143-9207
  surname: Li
  fullname: Li, Jian-Yu
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-4148-4294
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhanghk@gmail.com
  organization: Zhejiang Normal University, Jinhua, China
BookMark eNptkUtLAzEUhYNUsK3-AMFFwZWLqXnMI1mWUh9Q6KaKu5BmbiRlmoyZmUr99c44RaS4uuFyvsM5NyM0cN4BQtcETwnB4n69eJ1PKaZ0yiijWZaeoSERMYkwpumgfWMuoizjbxdoVFVbjEmcEDFEd0tQwVn3Hs1sDvlksfdFU1vvJsaHyaqs7c5-qW5xic6NKiq4Os4xenlYrOdP0XL1-DyfLSPNWFZHGjRJiNYmFyI1XHDGDFcGtyFjTEEpnqectyFjQ5hKBbCNiTc5TjBAniaKjRHtfRtXqsOnKgpZBrtT4SAJll1ZWcNey66sPJZtodseKoP_aKCq5dY3wbU5JeUi4TwmlLeqrFfp4KsqgJHa1j_l6qBs8evfHfPUn5yQp5n-Y256xgLAH337IyJO2Df8a394
CODEN ITEVF5
CitedBy_id crossref_primary_10_32604_cmc_2024_053564
crossref_primary_10_1007_s00158_023_03509_9
crossref_primary_10_1016_j_eswa_2025_126403
crossref_primary_10_32604_cmc_2024_049001
crossref_primary_10_1360_SST_2023_0356
crossref_primary_10_1016_j_oceaneng_2024_120138
crossref_primary_10_3390_biomimetics9110664
crossref_primary_10_1109_TII_2024_3399909
crossref_primary_10_3390_biomimetics9100596
crossref_primary_10_1109_TCYB_2025_3531449
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_1016_j_swevo_2024_101610
crossref_primary_10_1109_THMS_2023_3269047
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1109_TEVC_2023_3278132
crossref_primary_10_3390_drones9030218
crossref_primary_10_3390_biomimetics9100604
crossref_primary_10_1093_nsr_nwae132
crossref_primary_10_1016_j_swevo_2024_101648
crossref_primary_10_1007_s10462_024_10913_0
crossref_primary_10_1007_s12293_023_00400_4
crossref_primary_10_1109_TITS_2024_3502213
crossref_primary_10_1109_TSMC_2024_3448453
crossref_primary_10_1109_TCYB_2024_3469371
crossref_primary_10_1016_j_swevo_2025_101865
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1007_s12293_023_00389_w
crossref_primary_10_1109_ACCESS_2025_3541271
Cites_doi 10.1109/tevc.2021.3066606
10.1109/TEVC.2021.3103936
10.1109/TCYB.2019.2921602
10.1109/tcyb.2022.3153964
10.1109/tevc.2022.3210783
10.1109/TEVC.2019.2944180
10.1109/TEVC.2019.2895748
10.1162/106365603321828970
10.1109/TEVC.2021.3100576
10.1109/TITS.2020.3018903
10.1109/tevc.2022.3185665
10.1109/TEVC.2021.3065659
10.1109/TCYB.2014.2363878
10.1080/01969722.2020.1827797
10.1109/MCI.2022.3155330
10.1109/TEVC.2021.3097339
10.1007/s40747-022-00650-8
10.1109/tevc.2021.3117116
10.1109/tnnls.2021.3106399
10.1109/TITS.2022.3150471
10.1109/TITS.2022.3203629
10.1109/TPDS.2016.2597826
10.1080/03036758.2019.1609052
10.1109/TCYB.2019.2943928
10.1109/TNNLS.2019.2920887
10.1049/cit2.12106
10.1109/tcyb.2022.3174519
10.1016/j.neucom.2022.01.099
10.1109/TCYB.2020.3017017
10.1109/tai.2022.3156952
10.1109/TSMC.2017.2654301
10.1007/s10462-021-10042-y
10.1109/tcyb.2022.3158391
10.1109/CEC45853.2021.9504959
10.1109/TCYB.2019.2944873
10.1109/TEVC.2021.3131236
10.7551/mitpress/1090.001.0001
10.1109/tsmc.2022.3212045
10.1109/TEVC.2021.3061545
10.1109/MCI.2006.329691
10.1109/TETCI.2020.3047410
10.1109/TEVC.2018.2834881
10.1109/MCI.2011.942584
10.1109/4235.996017
10.1109/TEVC.2018.2808689
10.1109/TEVC.2019.2958921
10.1109/tcyb.2021.3102642
10.1109/TEVC.2020.2979740
10.1109/tevc.2022.3160196
10.1023/A:1008202821328
10.1016/0893-6080(89)90020-8
10.1109/TNNLS.2021.3075205
10.1038/nature14539
10.1109/cec.2002.1007032
10.4324/9780203771587
10.1109/TEVC.2007.892759
10.1007/s11633-022-1317-4
10.1109/TEVC.2016.2519378
10.1109/TEVC.2019.2954411
10.1109/TCYB.2020.3028070
10.1109/TCYB.2020.3008280
10.1109/TEVC.2021.3056514
10.1109/ICNN.1995.488968
10.1109/tits.2022.3180760
10.1109/tevc.2021.3064835
10.1109/TAI.2021.3067574
10.1109/tcyb.2021.3125362
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TEVC.2022.3232776
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1808
ExternalDocumentID 10.1109/tevc.2022.3232776
10_1109_TEVC_2022_3232776
10002945
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2022H1D3A2A01093478
  funderid: 10.13039/501100003725
– fundername: Hong Kong GRF-RGC General Research Fund
  grantid: 11209819 (CityU 9042816); 11203820 (CityU 9042598)
– fundername: Hong Kong Innovation and Technology Commission
  funderid: 10.13039/501100003452
– fundername: National Natural Science Foundation of China
  grantid: 62176094
  funderid: 10.13039/501100001809
– fundername: Guangdong Natural Science Foundation Research Team
  grantid: 2018B030312003
  funderid: 10.13039/501100003453
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c337t-cec151ccfd996f89833f8af0109402eaa8d6883234f13a69e3bf4bd050eed65a3
IEDL.DBID RIE
ISSN 1089-778X
1941-0026
IngestDate Tue Aug 19 17:49:06 EDT 2025
Mon Jun 30 05:13:21 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Wed Oct 01 02:39:38 EDT 2025
Wed Aug 27 02:07:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-cec151ccfd996f89833f8af0109402eaa8d6883234f13a69e3bf4bd050eed65a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7484-7261
0000-0002-6143-9207
0000-0003-0862-0514
0000-0003-4148-4294
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10002945
PQID 2895884128
PQPubID 85418
PageCount 15
ParticipantIDs crossref_primary_10_1109_TEVC_2022_3232776
proquest_journals_2895884128
crossref_citationtrail_10_1109_TEVC_2022_3232776
ieee_primary_10002945
unpaywall_primary_10_1109_tevc_2022_3232776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Storn (ref18) 1997; 11
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Wagdy (ref36) 2021
ref24
ref68
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref46
  doi: 10.1109/tevc.2021.3066606
– ident: ref10
  doi: 10.1109/TEVC.2021.3103936
– ident: ref52
  doi: 10.1109/TCYB.2019.2921602
– ident: ref67
  doi: 10.1109/tcyb.2022.3153964
– ident: ref65
  doi: 10.1109/tevc.2022.3210783
– ident: ref62
  doi: 10.1109/TEVC.2019.2944180
– ident: ref30
  doi: 10.1109/TEVC.2019.2895748
– ident: ref15
  doi: 10.1162/106365603321828970
– ident: ref17
  doi: 10.1109/TEVC.2021.3100576
– ident: ref47
  doi: 10.1109/TITS.2020.3018903
– ident: ref61
  doi: 10.1109/tevc.2022.3185665
– ident: ref23
  doi: 10.1109/TEVC.2021.3065659
– ident: ref56
  doi: 10.1109/TCYB.2014.2363878
– ident: ref68
  doi: 10.1080/01969722.2020.1827797
– ident: ref9
  doi: 10.1109/MCI.2022.3155330
– ident: ref13
  doi: 10.1109/TEVC.2021.3097339
– ident: ref21
  doi: 10.1007/s40747-022-00650-8
– ident: ref8
  doi: 10.1109/tevc.2021.3117116
– ident: ref29
  doi: 10.1109/tnnls.2021.3106399
– ident: ref27
  doi: 10.1109/TITS.2022.3150471
– ident: ref28
  doi: 10.1109/TITS.2022.3203629
– ident: ref19
  doi: 10.1109/TPDS.2016.2597826
– ident: ref33
  doi: 10.1080/03036758.2019.1609052
– ident: ref53
  doi: 10.1109/TCYB.2019.2943928
– ident: ref50
  doi: 10.1109/TNNLS.2019.2920887
– volume-title: Problem definitions and evaluation criteria for the CEC 2021 special session and competition on single objective bound constrained numerical optimization
  year: 2021
  ident: ref36
– ident: ref66
  doi: 10.1049/cit2.12106
– ident: ref16
  doi: 10.1109/tcyb.2022.3174519
– ident: ref32
  doi: 10.1016/j.neucom.2022.01.099
– ident: ref49
  doi: 10.1109/TCYB.2020.3017017
– ident: ref6
  doi: 10.1109/tai.2022.3156952
– ident: ref58
  doi: 10.1109/TSMC.2017.2654301
– ident: ref2
  doi: 10.1007/s10462-021-10042-y
– ident: ref60
  doi: 10.1109/tcyb.2022.3158391
– ident: ref40
  doi: 10.1109/CEC45853.2021.9504959
– ident: ref51
  doi: 10.1109/TCYB.2019.2944873
– ident: ref20
  doi: 10.1109/TEVC.2021.3131236
– ident: ref14
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref59
  doi: 10.1109/tsmc.2022.3212045
– ident: ref12
  doi: 10.1109/TEVC.2021.3061545
– ident: ref25
  doi: 10.1109/MCI.2006.329691
– ident: ref1
  doi: 10.1109/TETCI.2020.3047410
– ident: ref42
  doi: 10.1109/TEVC.2018.2834881
– ident: ref35
  doi: 10.1109/MCI.2011.942584
– ident: ref38
  doi: 10.1109/4235.996017
– ident: ref31
  doi: 10.1109/TEVC.2018.2808689
– ident: ref57
  doi: 10.1109/TEVC.2019.2958921
– ident: ref11
  doi: 10.1109/tcyb.2021.3102642
– ident: ref43
  doi: 10.1109/TEVC.2020.2979740
– ident: ref64
  doi: 10.1109/tevc.2022.3160196
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: ref18
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: ref41
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref7
  doi: 10.1109/TNNLS.2021.3075205
– ident: ref5
  doi: 10.1038/nature14539
– ident: ref37
  doi: 10.1109/cec.2002.1007032
– ident: ref55
  doi: 10.4324/9780203771587
– ident: ref39
  doi: 10.1109/TEVC.2007.892759
– ident: ref4
  doi: 10.1007/s11633-022-1317-4
– ident: ref54
  doi: 10.1109/TEVC.2016.2519378
– ident: ref3
  doi: 10.1109/TEVC.2019.2954411
– ident: ref24
  doi: 10.1109/TCYB.2020.3028070
– ident: ref44
  doi: 10.1109/TCYB.2020.3008280
– ident: ref48
  doi: 10.1109/TEVC.2021.3056514
– ident: ref22
  doi: 10.1109/ICNN.1995.488968
– ident: ref26
  doi: 10.1109/tits.2022.3180760
– ident: ref45
  doi: 10.1109/tevc.2021.3064835
– ident: ref34
  doi: 10.1109/TAI.2021.3067574
– ident: ref63
  doi: 10.1109/tcyb.2021.3125362
SSID ssj0014519
Score 2.6641564
Snippet Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1794
SubjectTerms Algorithms
Artificial intelligence
Artificial neural network (ANN)
Artificial neural networks
Benchmark testing
differential evolution (DE)
Evolution (biology)
Evolutionary computation
evolutionary computation (EC)
Global optimization
Human performance
Learning systems
learning-aided evolution
many-objective optimization
multiobjective optimization
Multiple objective analysis
Optimization
particle swarm optimization (PSO)
Problem solving
single-objective optimization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2F5AA9UEhbNVCQD1xKZcfOfmQtTlGUqkKicGiqVKpkrXdnq4oQInDKx69n1t5EKUhIcPNhLds7szvveWbfALwqjXJDTHnMLVEU7peiZmjiElGqXEkt6v4p787l2ZS_nYlZC95szsIgYl18hom_rHP5tzj_PuxT3Bd9Cu4EsLO-_ys9yLlIltY9gI4UBMTb0JmefxhdNSX1OeFGNatzypwIM1GNkNPM0rxf4Z2XLxwMEkaIYugFR7aiUt1m5R7ifLhaLPWPb3o-3wo-p7twvX7tpubkY7KqysT8_E3R8T-_6wk8DqA0GjVe9BRauOjC7rrhQxTWfxd2ttQL9-A4aLPexKNbizaa3AU3jggIR-9pL_oUDnnuw_R0cjE-i0PnhdgwNqxig4aQgDHOEh1yZDPGnNLOp9GIb6LWykpFewHjLmNa5shKx0ubipRCrhSaHUB78XmBhxBlTKQ2t4J4neM4EErSviadthkqrdD0IF3PfGGCLLnvjjEvanqS5sXF5HJceGMVwVg9eL25Zdlocvxt8L6f8K2BzQz34Ght3yIs268FsU9_cJdidg9ONjb_4yHefe495Nk_jX4Oj3zT-qYo5gja1ZcVviBoU5Uvgwv_Ai8d7iI
  priority: 102
  providerName: Unpaywall
Title Learning-Aided Evolution for Optimization
URI https://ieeexplore.ieee.org/document/10002945
https://www.proquest.com/docview/2895884128
https://ieeexplore.ieee.org/ielx7/4235/4358751/10002945.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYHIADb8R4TD1wAdStW9osPU5oaEJicGBonKo0cRBibAg6EPx6nDabBgjErYdUaeM49hfbnwEOUyVME4PQDzVBlNCqomSo_BSRi1hwGeX9Uy66vNMLz_tR3xWr57UwiJgnn2HVPuaxfD1SY3tVVrN30Y04jEpQagpeFGtNQwaWJ6XIpo_JZRR9F8KsB3Htun1zSlCw0agyciCall9kxgjlXVW-OJiL4-GTfH-Tg8GMrTlbhe7kK4sUk4fqOEur6uMbgeO_f2MNVpzX6bWKbbIOczjcgNVJRwfPKfgGLM_QE27CkSNfvfNb9xq11351-9QjT9e7pMPm0VVxbkHvrH192vFdawVfMdbMfIWKTL1SRhPeMSQUxoyQxsbJCFCilEJzQcrOQlNnksfIUhOmOogCsqk8kmwb5oejIe6AV2dRoGMdEXAzITYiweng4kbqOgopUJUhmKx1ohzvuG1_MUhy_BHEiRVPYsWTOPGU4Xj6ylNBuvHX4C27xDMDi9Utw_5EoonTy5eE4KWtzCWjXIaTqZR_TJLhq_oyye4vk-zBku0_X-S37MN89jzGA_JSsrSS784KLPS6V63bT5QD4e8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT-swDLf4OAAHvhHj6_XABZ66dUvSpUeEhsYDxmWg3ao0cRBiDAQdCP56nDabBughbj2kShvHsX-x_TPAfqalbWLEQ24IonCnioqhDjPEWCYyVqLon3LRidtX_F9P9HyxelELg4hF8hlW3WMRyzcPeuiuymruLrqRcDENs4JzLspyrXHQwDGllPn0CTmNsueDmPUoqXVb18cEBhuNKiMXoukYRibMUNFX5ZOLOTccPKq3V9XvT1ibkyXojL6zTDK5qw7zrKrfv1A4_vpHlmHR-53BUblRVmAKB6uwNOrpEHgVX4WFCYLCNTjw9Ks34dGtQRO0XvxODcjXDS7puLn3dZzrcHXS6h63Q99cIdSMNfNQoyZjr7U1hHgsiYUxK5V1kTKClKiUNLEkdWfc1pmKE2SZ5ZmJRERWNRaKbcDM4GGAmxDUmYhMYgRBN8uxIWRMR1dslamjVBJ1BaLRWqfaM4-7Bhj9tEAgUZI68aROPKkXTwUOx688lrQbPw1ed0s8MbBc3QrsjCSaes18TglgutpcMssV-DuW8rdJcnzRnybZ-s8kf2Cu3b04T89PO2fbMO-60ZfZLjswkz8NcZd8ljzbK3bqB3T144w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2F5AA9UEhbNVCQD1xKZcfOfmQtTlGUqkKicGiqVKpkrXdnq4oQInDKx69n1t5EKUhIcPNhLds7szvveWbfALwqjXJDTHnMLVEU7peiZmjiElGqXEkt6v4p787l2ZS_nYlZC95szsIgYl18hom_rHP5tzj_PuxT3Bd9Cu4EsLO-_ys9yLlIltY9gI4UBMTb0JmefxhdNSX1OeFGNatzypwIM1GNkNPM0rxf4Z2XLxwMEkaIYugFR7aiUt1m5R7ifLhaLPWPb3o-3wo-p7twvX7tpubkY7KqysT8_E3R8T-_6wk8DqA0GjVe9BRauOjC7rrhQxTWfxd2ttQL9-A4aLPexKNbizaa3AU3jggIR-9pL_oUDnnuw_R0cjE-i0PnhdgwNqxig4aQgDHOEh1yZDPGnNLOp9GIb6LWykpFewHjLmNa5shKx0ubipRCrhSaHUB78XmBhxBlTKQ2t4J4neM4EErSviadthkqrdD0IF3PfGGCLLnvjjEvanqS5sXF5HJceGMVwVg9eL25Zdlocvxt8L6f8K2BzQz34Ght3yIs268FsU9_cJdidg9ONjb_4yHefe495Nk_jX4Oj3zT-qYo5gja1ZcVviBoU5Uvgwv_Ai8d7iI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Aided+Evolution+for+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhan%2C+Zhi-Hui&rft.au=Li%2C+Jian-Yu&rft.au=Kwong%2C+Sam&rft.au=Zhang%2C+Jun&rft.date=2023-12-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1794&rft.epage=1808&rft_id=info:doi/10.1109%2FTEVC.2022.3232776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3232776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon