Learning-Aided Evolution for Optimization
Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving...
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1794 - 1808 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 1941-0026 |
| DOI | 10.1109/TEVC.2022.3232776 |
Cover
| Abstract | Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving real-world problems, respectively. These have been two essential branches in artificial intelligence (AI) and computer science. However, in humans, learning and optimization are usually integrated together for problem solving. Therefore, how to efficiently integrate these two abilities together to develop powerful AI remains a significant but challenging issue. Motivated by this, this article proposes a novel learning-aided evolutionary optimization (LEO) framework that plus learning and evolution for solving optimization problems. The LEO is integrated with the evolution knowledge learned by ANN from the evolution process of EC to promote optimization efficiency. The LEO framework is applied to both classical EC algorithms and some state-of-the-art EC algorithms including a champion algorithm, with benchmarking against the IEEE Congress on EC competition data. The experimental results show that the LEO can significantly enhance the existing EC algorithms to better solve both single-objective and multi-/many-objective global optimization problems, suggesting that learning plus evolution is more intelligent for problem solving. Moreover, the experimental results have also validated the time efficiency of the LEO, where the additional time cost for using LEO is greatly deserved. Therefore, the promising LEO can lead to a new and more efficient paradigm for EC algorithms to solve global optimization problems by plus learning and evolution. |
|---|---|
| AbstractList | Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design artificial neural network (ANN) and evolutionary computation (EC) to simulate the learning ability and the optimization ability for solving real-world problems, respectively. These have been two essential branches in artificial intelligence (AI) and computer science. However, in humans, learning and optimization are usually integrated together for problem solving. Therefore, how to efficiently integrate these two abilities together to develop powerful AI remains a significant but challenging issue. Motivated by this, this article proposes a novel learning-aided evolutionary optimization (LEO) framework that plus learning and evolution for solving optimization problems. The LEO is integrated with the evolution knowledge learned by ANN from the evolution process of EC to promote optimization efficiency. The LEO framework is applied to both classical EC algorithms and some state-of-the-art EC algorithms including a champion algorithm, with benchmarking against the IEEE Congress on EC competition data. The experimental results show that the LEO can significantly enhance the existing EC algorithms to better solve both single-objective and multi-/many-objective global optimization problems, suggesting that learning plus evolution is more intelligent for problem solving. Moreover, the experimental results have also validated the time efficiency of the LEO, where the additional time cost for using LEO is greatly deserved. Therefore, the promising LEO can lead to a new and more efficient paradigm for EC algorithms to solve global optimization problems by plus learning and evolution. |
| Author | Zhan, Zhi-Hui Li, Jian-Yu Kwong, Sam Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Jian-Yu orcidid: 0000-0002-6143-9207 surname: Li fullname: Li, Jian-Yu organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Sam orcidid: 0000-0001-7484-7261 surname: Kwong fullname: Kwong, Sam organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 4 givenname: Jun orcidid: 0000-0003-4148-4294 surname: Zhang fullname: Zhang, Jun email: junzhanghk@gmail.com organization: Zhejiang Normal University, Jinhua, China |
| BookMark | eNptkUtLAzEUhYNUsK3-AMFFwZWLqXnMI1mWUh9Q6KaKu5BmbiRlmoyZmUr99c44RaS4uuFyvsM5NyM0cN4BQtcETwnB4n69eJ1PKaZ0yiijWZaeoSERMYkwpumgfWMuoizjbxdoVFVbjEmcEDFEd0tQwVn3Hs1sDvlksfdFU1vvJsaHyaqs7c5-qW5xic6NKiq4Os4xenlYrOdP0XL1-DyfLSPNWFZHGjRJiNYmFyI1XHDGDFcGtyFjTEEpnqectyFjQ5hKBbCNiTc5TjBAniaKjRHtfRtXqsOnKgpZBrtT4SAJll1ZWcNey66sPJZtodseKoP_aKCq5dY3wbU5JeUi4TwmlLeqrFfp4KsqgJHa1j_l6qBs8evfHfPUn5yQp5n-Y256xgLAH337IyJO2Df8a394 |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_32604_cmc_2024_053564 crossref_primary_10_1007_s00158_023_03509_9 crossref_primary_10_1016_j_eswa_2025_126403 crossref_primary_10_32604_cmc_2024_049001 crossref_primary_10_1360_SST_2023_0356 crossref_primary_10_1016_j_oceaneng_2024_120138 crossref_primary_10_3390_biomimetics9110664 crossref_primary_10_1109_TII_2024_3399909 crossref_primary_10_3390_biomimetics9100596 crossref_primary_10_1109_TCYB_2025_3531449 crossref_primary_10_1109_TEVC_2023_3294307 crossref_primary_10_1016_j_swevo_2024_101610 crossref_primary_10_1109_THMS_2023_3269047 crossref_primary_10_1109_TCYB_2025_3535722 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1109_TEVC_2023_3278132 crossref_primary_10_3390_drones9030218 crossref_primary_10_3390_biomimetics9100604 crossref_primary_10_1093_nsr_nwae132 crossref_primary_10_1016_j_swevo_2024_101648 crossref_primary_10_1007_s10462_024_10913_0 crossref_primary_10_1007_s12293_023_00400_4 crossref_primary_10_1109_TITS_2024_3502213 crossref_primary_10_1109_TSMC_2024_3448453 crossref_primary_10_1109_TCYB_2024_3469371 crossref_primary_10_1016_j_swevo_2025_101865 crossref_primary_10_1109_TEVC_2023_3340678 crossref_primary_10_1007_s12293_023_00389_w crossref_primary_10_1109_ACCESS_2025_3541271 |
| Cites_doi | 10.1109/tevc.2021.3066606 10.1109/TEVC.2021.3103936 10.1109/TCYB.2019.2921602 10.1109/tcyb.2022.3153964 10.1109/tevc.2022.3210783 10.1109/TEVC.2019.2944180 10.1109/TEVC.2019.2895748 10.1162/106365603321828970 10.1109/TEVC.2021.3100576 10.1109/TITS.2020.3018903 10.1109/tevc.2022.3185665 10.1109/TEVC.2021.3065659 10.1109/TCYB.2014.2363878 10.1080/01969722.2020.1827797 10.1109/MCI.2022.3155330 10.1109/TEVC.2021.3097339 10.1007/s40747-022-00650-8 10.1109/tevc.2021.3117116 10.1109/tnnls.2021.3106399 10.1109/TITS.2022.3150471 10.1109/TITS.2022.3203629 10.1109/TPDS.2016.2597826 10.1080/03036758.2019.1609052 10.1109/TCYB.2019.2943928 10.1109/TNNLS.2019.2920887 10.1049/cit2.12106 10.1109/tcyb.2022.3174519 10.1016/j.neucom.2022.01.099 10.1109/TCYB.2020.3017017 10.1109/tai.2022.3156952 10.1109/TSMC.2017.2654301 10.1007/s10462-021-10042-y 10.1109/tcyb.2022.3158391 10.1109/CEC45853.2021.9504959 10.1109/TCYB.2019.2944873 10.1109/TEVC.2021.3131236 10.7551/mitpress/1090.001.0001 10.1109/tsmc.2022.3212045 10.1109/TEVC.2021.3061545 10.1109/MCI.2006.329691 10.1109/TETCI.2020.3047410 10.1109/TEVC.2018.2834881 10.1109/MCI.2011.942584 10.1109/4235.996017 10.1109/TEVC.2018.2808689 10.1109/TEVC.2019.2958921 10.1109/tcyb.2021.3102642 10.1109/TEVC.2020.2979740 10.1109/tevc.2022.3160196 10.1023/A:1008202821328 10.1016/0893-6080(89)90020-8 10.1109/TNNLS.2021.3075205 10.1038/nature14539 10.1109/cec.2002.1007032 10.4324/9780203771587 10.1109/TEVC.2007.892759 10.1007/s11633-022-1317-4 10.1109/TEVC.2016.2519378 10.1109/TEVC.2019.2954411 10.1109/TCYB.2020.3028070 10.1109/TCYB.2020.3008280 10.1109/TEVC.2021.3056514 10.1109/ICNN.1995.488968 10.1109/tits.2022.3180760 10.1109/tevc.2021.3064835 10.1109/TAI.2021.3067574 10.1109/tcyb.2021.3125362 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/TEVC.2022.3232776 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1808 |
| ExternalDocumentID | 10.1109/tevc.2022.3232776 10_1109_TEVC_2022_3232776 10002945 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2022H1D3A2A01093478 funderid: 10.13039/501100003725 – fundername: Hong Kong GRF-RGC General Research Fund grantid: 11209819 (CityU 9042816); 11203820 (CityU 9042598) – fundername: Hong Kong Innovation and Technology Commission funderid: 10.13039/501100003452 – fundername: National Natural Science Foundation of China grantid: 62176094 funderid: 10.13039/501100001809 – fundername: Guangdong Natural Science Foundation Research Team grantid: 2018B030312003 funderid: 10.13039/501100003453 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c337t-cec151ccfd996f89833f8af0109402eaa8d6883234f13a69e3bf4bd050eed65a3 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X 1941-0026 |
| IngestDate | Tue Aug 19 17:49:06 EDT 2025 Mon Jun 30 05:13:21 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Wed Oct 01 02:39:38 EDT 2025 Wed Aug 27 02:07:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-cec151ccfd996f89833f8af0109402eaa8d6883234f13a69e3bf4bd050eed65a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7484-7261 0000-0002-6143-9207 0000-0003-0862-0514 0000-0003-4148-4294 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10002945 |
| PQID | 2895884128 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2022_3232776 proquest_journals_2895884128 crossref_citationtrail_10_1109_TEVC_2022_3232776 ieee_primary_10002945 unpaywall_primary_10_1109_tevc_2022_3232776 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Storn (ref18) 1997; 11 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Wagdy (ref36) 2021 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref46 doi: 10.1109/tevc.2021.3066606 – ident: ref10 doi: 10.1109/TEVC.2021.3103936 – ident: ref52 doi: 10.1109/TCYB.2019.2921602 – ident: ref67 doi: 10.1109/tcyb.2022.3153964 – ident: ref65 doi: 10.1109/tevc.2022.3210783 – ident: ref62 doi: 10.1109/TEVC.2019.2944180 – ident: ref30 doi: 10.1109/TEVC.2019.2895748 – ident: ref15 doi: 10.1162/106365603321828970 – ident: ref17 doi: 10.1109/TEVC.2021.3100576 – ident: ref47 doi: 10.1109/TITS.2020.3018903 – ident: ref61 doi: 10.1109/tevc.2022.3185665 – ident: ref23 doi: 10.1109/TEVC.2021.3065659 – ident: ref56 doi: 10.1109/TCYB.2014.2363878 – ident: ref68 doi: 10.1080/01969722.2020.1827797 – ident: ref9 doi: 10.1109/MCI.2022.3155330 – ident: ref13 doi: 10.1109/TEVC.2021.3097339 – ident: ref21 doi: 10.1007/s40747-022-00650-8 – ident: ref8 doi: 10.1109/tevc.2021.3117116 – ident: ref29 doi: 10.1109/tnnls.2021.3106399 – ident: ref27 doi: 10.1109/TITS.2022.3150471 – ident: ref28 doi: 10.1109/TITS.2022.3203629 – ident: ref19 doi: 10.1109/TPDS.2016.2597826 – ident: ref33 doi: 10.1080/03036758.2019.1609052 – ident: ref53 doi: 10.1109/TCYB.2019.2943928 – ident: ref50 doi: 10.1109/TNNLS.2019.2920887 – volume-title: Problem definitions and evaluation criteria for the CEC 2021 special session and competition on single objective bound constrained numerical optimization year: 2021 ident: ref36 – ident: ref66 doi: 10.1049/cit2.12106 – ident: ref16 doi: 10.1109/tcyb.2022.3174519 – ident: ref32 doi: 10.1016/j.neucom.2022.01.099 – ident: ref49 doi: 10.1109/TCYB.2020.3017017 – ident: ref6 doi: 10.1109/tai.2022.3156952 – ident: ref58 doi: 10.1109/TSMC.2017.2654301 – ident: ref2 doi: 10.1007/s10462-021-10042-y – ident: ref60 doi: 10.1109/tcyb.2022.3158391 – ident: ref40 doi: 10.1109/CEC45853.2021.9504959 – ident: ref51 doi: 10.1109/TCYB.2019.2944873 – ident: ref20 doi: 10.1109/TEVC.2021.3131236 – ident: ref14 doi: 10.7551/mitpress/1090.001.0001 – ident: ref59 doi: 10.1109/tsmc.2022.3212045 – ident: ref12 doi: 10.1109/TEVC.2021.3061545 – ident: ref25 doi: 10.1109/MCI.2006.329691 – ident: ref1 doi: 10.1109/TETCI.2020.3047410 – ident: ref42 doi: 10.1109/TEVC.2018.2834881 – ident: ref35 doi: 10.1109/MCI.2011.942584 – ident: ref38 doi: 10.1109/4235.996017 – ident: ref31 doi: 10.1109/TEVC.2018.2808689 – ident: ref57 doi: 10.1109/TEVC.2019.2958921 – ident: ref11 doi: 10.1109/tcyb.2021.3102642 – ident: ref43 doi: 10.1109/TEVC.2020.2979740 – ident: ref64 doi: 10.1109/tevc.2022.3160196 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: ref18 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: ref41 doi: 10.1016/0893-6080(89)90020-8 – ident: ref7 doi: 10.1109/TNNLS.2021.3075205 – ident: ref5 doi: 10.1038/nature14539 – ident: ref37 doi: 10.1109/cec.2002.1007032 – ident: ref55 doi: 10.4324/9780203771587 – ident: ref39 doi: 10.1109/TEVC.2007.892759 – ident: ref4 doi: 10.1007/s11633-022-1317-4 – ident: ref54 doi: 10.1109/TEVC.2016.2519378 – ident: ref3 doi: 10.1109/TEVC.2019.2954411 – ident: ref24 doi: 10.1109/TCYB.2020.3028070 – ident: ref44 doi: 10.1109/TCYB.2020.3008280 – ident: ref48 doi: 10.1109/TEVC.2021.3056514 – ident: ref22 doi: 10.1109/ICNN.1995.488968 – ident: ref26 doi: 10.1109/tits.2022.3180760 – ident: ref45 doi: 10.1109/tevc.2021.3064835 – ident: ref34 doi: 10.1109/TAI.2021.3067574 – ident: ref63 doi: 10.1109/tcyb.2021.3125362 |
| SSID | ssj0014519 |
| Score | 2.6641564 |
| Snippet | Learning and optimization are the two essential abilities of human beings for problem solving. Similarly, computer scientists have made great efforts to design... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1794 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural network (ANN) Artificial neural networks Benchmark testing differential evolution (DE) Evolution (biology) Evolutionary computation evolutionary computation (EC) Global optimization Human performance Learning systems learning-aided evolution many-objective optimization multiobjective optimization Multiple objective analysis Optimization particle swarm optimization (PSO) Problem solving single-objective optimization |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2F5AA9UEhbNVCQD1xKZcfOfmQtTlGUqkKicGiqVKpkrXdnq4oQInDKx69n1t5EKUhIcPNhLds7szvveWbfALwqjXJDTHnMLVEU7peiZmjiElGqXEkt6v4p787l2ZS_nYlZC95szsIgYl18hom_rHP5tzj_PuxT3Bd9Cu4EsLO-_ys9yLlIltY9gI4UBMTb0JmefxhdNSX1OeFGNatzypwIM1GNkNPM0rxf4Z2XLxwMEkaIYugFR7aiUt1m5R7ifLhaLPWPb3o-3wo-p7twvX7tpubkY7KqysT8_E3R8T-_6wk8DqA0GjVe9BRauOjC7rrhQxTWfxd2ttQL9-A4aLPexKNbizaa3AU3jggIR-9pL_oUDnnuw_R0cjE-i0PnhdgwNqxig4aQgDHOEh1yZDPGnNLOp9GIb6LWykpFewHjLmNa5shKx0ubipRCrhSaHUB78XmBhxBlTKQ2t4J4neM4EErSviadthkqrdD0IF3PfGGCLLnvjjEvanqS5sXF5HJceGMVwVg9eL25Zdlocvxt8L6f8K2BzQz34Ght3yIs268FsU9_cJdidg9ONjb_4yHefe495Nk_jX4Oj3zT-qYo5gja1ZcVviBoU5Uvgwv_Ai8d7iI priority: 102 providerName: Unpaywall |
| Title | Learning-Aided Evolution for Optimization |
| URI | https://ieeexplore.ieee.org/document/10002945 https://www.proquest.com/docview/2895884128 https://ieeexplore.ieee.org/ielx7/4235/4358751/10002945.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYHIADb8R4TD1wAdStW9osPU5oaEJicGBonKo0cRBibAg6EPx6nDabBgjErYdUaeM49hfbnwEOUyVME4PQDzVBlNCqomSo_BSRi1hwGeX9Uy66vNMLz_tR3xWr57UwiJgnn2HVPuaxfD1SY3tVVrN30Y04jEpQagpeFGtNQwaWJ6XIpo_JZRR9F8KsB3Htun1zSlCw0agyciCall9kxgjlXVW-OJiL4-GTfH-Tg8GMrTlbhe7kK4sUk4fqOEur6uMbgeO_f2MNVpzX6bWKbbIOczjcgNVJRwfPKfgGLM_QE27CkSNfvfNb9xq11351-9QjT9e7pMPm0VVxbkHvrH192vFdawVfMdbMfIWKTL1SRhPeMSQUxoyQxsbJCFCilEJzQcrOQlNnksfIUhOmOogCsqk8kmwb5oejIe6AV2dRoGMdEXAzITYiweng4kbqOgopUJUhmKx1ohzvuG1_MUhy_BHEiRVPYsWTOPGU4Xj6ylNBuvHX4C27xDMDi9Utw_5EoonTy5eE4KWtzCWjXIaTqZR_TJLhq_oyye4vk-zBku0_X-S37MN89jzGA_JSsrSS784KLPS6V63bT5QD4e8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT-swDLf4OAAHvhHj6_XABZ66dUvSpUeEhsYDxmWg3ao0cRBiDAQdCP56nDabBughbj2kShvHsX-x_TPAfqalbWLEQ24IonCnioqhDjPEWCYyVqLon3LRidtX_F9P9HyxelELg4hF8hlW3WMRyzcPeuiuymruLrqRcDENs4JzLspyrXHQwDGllPn0CTmNsueDmPUoqXVb18cEBhuNKiMXoukYRibMUNFX5ZOLOTccPKq3V9XvT1ibkyXojL6zTDK5qw7zrKrfv1A4_vpHlmHR-53BUblRVmAKB6uwNOrpEHgVX4WFCYLCNTjw9Ks34dGtQRO0XvxODcjXDS7puLn3dZzrcHXS6h63Q99cIdSMNfNQoyZjr7U1hHgsiYUxK5V1kTKClKiUNLEkdWfc1pmKE2SZ5ZmJRERWNRaKbcDM4GGAmxDUmYhMYgRBN8uxIWRMR1dslamjVBJ1BaLRWqfaM4-7Bhj9tEAgUZI68aROPKkXTwUOx688lrQbPw1ed0s8MbBc3QrsjCSaes18TglgutpcMssV-DuW8rdJcnzRnybZ-s8kf2Cu3b04T89PO2fbMO-60ZfZLjswkz8NcZd8ljzbK3bqB3T144w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2F5AA9UEhbNVCQD1xKZcfOfmQtTlGUqkKicGiqVKpkrXdnq4oQInDKx69n1t5EKUhIcPNhLds7szvveWbfALwqjXJDTHnMLVEU7peiZmjiElGqXEkt6v4p787l2ZS_nYlZC95szsIgYl18hom_rHP5tzj_PuxT3Bd9Cu4EsLO-_ys9yLlIltY9gI4UBMTb0JmefxhdNSX1OeFGNatzypwIM1GNkNPM0rxf4Z2XLxwMEkaIYugFR7aiUt1m5R7ifLhaLPWPb3o-3wo-p7twvX7tpubkY7KqysT8_E3R8T-_6wk8DqA0GjVe9BRauOjC7rrhQxTWfxd2ttQL9-A4aLPexKNbizaa3AU3jggIR-9pL_oUDnnuw_R0cjE-i0PnhdgwNqxig4aQgDHOEh1yZDPGnNLOp9GIb6LWykpFewHjLmNa5shKx0ubipRCrhSaHUB78XmBhxBlTKQ2t4J4neM4EErSviadthkqrdD0IF3PfGGCLLnvjjEvanqS5sXF5HJceGMVwVg9eL25Zdlocvxt8L6f8K2BzQz34Ght3yIs268FsU9_cJdidg9ONjb_4yHefe495Nk_jX4Oj3zT-qYo5gja1ZcVviBoU5Uvgwv_Ai8d7iI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Aided+Evolution+for+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhan%2C+Zhi-Hui&rft.au=Li%2C+Jian-Yu&rft.au=Kwong%2C+Sam&rft.au=Zhang%2C+Jun&rft.date=2023-12-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1794&rft.epage=1808&rft_id=info:doi/10.1109%2FTEVC.2022.3232776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3232776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |