A metamodel-based multi-objective optimization method to balance thermal comfort and energy efficiency in a campus gymnasium

•A method for the metamodel-based multi-objective optimization of large space building, taking advantage of high performance computing, was developed.•An actual campus gymnasium in Qingdao, China was the case study.•The normalized degree-hours for naturally-ventilated seasons and the energy consumpt...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 253; p. 111513
Main Authors Yue, Naihua, Li, Lingling, Morandi, Alessandro, Zhao, Yang
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0378-7788
1872-6178
DOI10.1016/j.enbuild.2021.111513

Cover

Abstract •A method for the metamodel-based multi-objective optimization of large space building, taking advantage of high performance computing, was developed.•An actual campus gymnasium in Qingdao, China was the case study.•The normalized degree-hours for naturally-ventilated seasons and the energy consumption for air-conditioning seasons were the objective functions.•The energy consumption, thermal comfort and the optimization time of case study was drastically improved. Performing multi-objective optimization for actual public building design has become one of the most challenging subjects in buildings energy efficiency area. Gymnasium is a large energy consumer in public buildings. This study efforts to put forward a novel approach to tackle multi-objective optimization problems for building performance of Qingdao University (QUT) Gymnasium using a new metamodel method. For this purpose, the Nondominated Sorting Genetic Algorithm-II (NSGA-II) was dynamically combined with Multilayer Perception Artificial Neural Network (MLPANN) metamodel, which was previously trained with the co-simulation results conducted using EnergyPlus and Eppy. The new research method also proposes an optimal algorithm coupling Latin Hypercube Sample (LHS) with Principal Component Analysis (PCA) to minimize the total training samples, and guarantees the accuracy of optimization results. The most influential design factors like internal and external wall types, roof types, solar absorptance, windows shading as well as night ventilation (NV) strategy and displacement ventilation (DV) air conditioning system of the gymnasium were considered in three cases of 4×108 possibilities to obtain the optimal trade-off results (Pareto front) between energy consumption and thermal comfort. Finally, a normalized minimum distance decision method was adopted to choose the optimal design configuration from the Pareto front. The optimization results of the study cases showed that reductions were achieved not only in the normalized objectives (88.0% less fh and 85.3% less fc) but also in the sub-objectives: up to 78.2% fewer heating energy and 71.3% fewer cooling energy in air conditioning seasons, and up to 97.7% less heating degree-hours and 99.2% less cooling degree-hours in naturally-ventilated seasons, compared to the original configuration by using optimal design takes simultaneous advantage of NV and DV strategies. The method was confirmed to be an efficient and robust tool for gymnasium design, it could reduce the calculation time of whole optimization process from 10 months to 2 days.
AbstractList Performing multi-objective optimization for actual public building design has become one of the most challenging subjects in buildings energy efficiency area. Gymnasium is a large energy consumer in public buildings. This study efforts to put forward a novel approach to tackle multi-objective optimization problems for building performance of Qingdao University (QUT) Gymnasium using a new metamodel method. For this purpose, the Nondominated Sorting Genetic Algorithm-II (NSGA-II) was dynamically combined with Multilayer Perception Artificial Neural Network (MLPANN) metamodel, which was previously trained with the co-simulation results conducted using EnergyPlus and Eppy. The new research method also proposes an optimal algorithm coupling Latin Hypercube Sample (LHS) with Principal Component Analysis (PCA) to minimize the total training samples, and guarantees the accuracy of optimization results. The most influential design factors like internal and external wall types, roof types, solar absorptance, windows shading as well as night ventilation (NV) strategy and displacement ventilation (DV) air conditioning system of the gymnasium were considered in three cases of 4×108 possibilities to obtain the optimal trade-off results (Pareto front) between energy consumption and thermal comfort. Finally, a normalized minimum distance decision method was adopted to choose the optimal design configuration from the Pareto front. The optimization results of the study cases showed that reductions were achieved not only in the normalized objectives (88.0% less fh and 85.3% less fc) but also in the sub-objectives: up to 78.2% fewer heating energy and 71.3% fewer cooling energy in air conditioning seasons, and up to 97.7% less heating degree-hours and 99.2% less cooling degree-hours in naturally-ventilated seasons, compared to the original configuration by using optimal design takes simultaneous advantage of NV and DV strategies. The method was confirmed to be an efficient and robust tool for gymnasium design, it could reduce the calculation time of whole optimization process from 10 months to 2 days.
•A method for the metamodel-based multi-objective optimization of large space building, taking advantage of high performance computing, was developed.•An actual campus gymnasium in Qingdao, China was the case study.•The normalized degree-hours for naturally-ventilated seasons and the energy consumption for air-conditioning seasons were the objective functions.•The energy consumption, thermal comfort and the optimization time of case study was drastically improved. Performing multi-objective optimization for actual public building design has become one of the most challenging subjects in buildings energy efficiency area. Gymnasium is a large energy consumer in public buildings. This study efforts to put forward a novel approach to tackle multi-objective optimization problems for building performance of Qingdao University (QUT) Gymnasium using a new metamodel method. For this purpose, the Nondominated Sorting Genetic Algorithm-II (NSGA-II) was dynamically combined with Multilayer Perception Artificial Neural Network (MLPANN) metamodel, which was previously trained with the co-simulation results conducted using EnergyPlus and Eppy. The new research method also proposes an optimal algorithm coupling Latin Hypercube Sample (LHS) with Principal Component Analysis (PCA) to minimize the total training samples, and guarantees the accuracy of optimization results. The most influential design factors like internal and external wall types, roof types, solar absorptance, windows shading as well as night ventilation (NV) strategy and displacement ventilation (DV) air conditioning system of the gymnasium were considered in three cases of 4×108 possibilities to obtain the optimal trade-off results (Pareto front) between energy consumption and thermal comfort. Finally, a normalized minimum distance decision method was adopted to choose the optimal design configuration from the Pareto front. The optimization results of the study cases showed that reductions were achieved not only in the normalized objectives (88.0% less fh and 85.3% less fc) but also in the sub-objectives: up to 78.2% fewer heating energy and 71.3% fewer cooling energy in air conditioning seasons, and up to 97.7% less heating degree-hours and 99.2% less cooling degree-hours in naturally-ventilated seasons, compared to the original configuration by using optimal design takes simultaneous advantage of NV and DV strategies. The method was confirmed to be an efficient and robust tool for gymnasium design, it could reduce the calculation time of whole optimization process from 10 months to 2 days.
ArticleNumber 111513
Author Morandi, Alessandro
Yue, Naihua
Zhao, Yang
Li, Lingling
Author_xml – sequence: 1
  givenname: Naihua
  surname: Yue
  fullname: Yue, Naihua
  email: yuenaihua@qut.edu.cn
  organization: School of Architecture and Urban Planning, Qingdao University of Technology, No. 11 Fushun Road, Shibei District, Qingdao, Shandong 262011, China
– sequence: 2
  givenname: Lingling
  surname: Li
  fullname: Li, Lingling
  organization: School of Architecture, Harbin Institute of Technology, No. 66 Xidazhi Street, Nangang District, Harbin 150000, China
– sequence: 3
  givenname: Alessandro
  surname: Morandi
  fullname: Morandi, Alessandro
  organization: Department of Civil Environmental and Architectural Engineering, University of Padua, Via 8 Febbraio, Padua 2-35122, Italy
– sequence: 4
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: School of Architecture, Harbin Institute of Technology, No. 66 Xidazhi Street, Nangang District, Harbin 150000, China
BookMark eNqFkU1r3DAQhkXYQHaT_ISAIGdv9WFbNjmUsDRtIdBLexb6GCcylrSV5MCW_vh6s3vqJZeZy_vMMM9s0CrEAAjdUbKlhLafxi0EPbvJbhlhdEspbSi_QGvaCVa1VHQrtCZcdJUQXXeFNjmPhJC2EXSN_j5iD0X5aGGqtMpgsZ-n4qqoRzDFvQGO--K8-6OKi-EYfo0Wl4i1mlQwgMsrJK8mbKIfYipYBYshQHo5YBgGZxwEc8AuYIWN8vs545eDDyq72d-gy0FNGW7P_Rr9evryc_etev7x9fvu8bkynIuy1JpYTuuaNaKu9XIRs7ZVrIYBtNasB9MOhDeWEW0I6L4H3jekJwOrCe8sv0b3p7n7FH_PkIsc45zCslKylvatYLwlS6o5pUyKOScY5D45r9JBUiKPouUoz6LlUbQ8iV64h_8448q7rZKUmz6kP59oWAS8OUgyvysD69LyAGmj-2DCPwUZoOA
CitedBy_id crossref_primary_10_1016_j_jobe_2024_110731
crossref_primary_10_1007_s11665_024_10423_8
crossref_primary_10_1016_j_enbuild_2022_112202
crossref_primary_10_1016_j_enconman_2024_118651
crossref_primary_10_1016_j_jobe_2023_106376
crossref_primary_10_1016_j_enbuild_2024_114769
crossref_primary_10_3390_buildings15050734
crossref_primary_10_1007_s13762_024_06099_1
crossref_primary_10_1016_j_jobe_2023_107183
crossref_primary_10_1016_j_buildenv_2022_109684
crossref_primary_10_47480_isibted_1416709
crossref_primary_10_1016_j_enbuild_2024_115216
crossref_primary_10_1016_j_heliyon_2025_e42480
crossref_primary_10_1016_j_jclepro_2023_136538
crossref_primary_10_3390_smartcities6050108
crossref_primary_10_1016_j_energy_2023_127259
crossref_primary_10_1016_j_buildenv_2023_110596
crossref_primary_10_1016_j_buildenv_2024_111386
crossref_primary_10_1016_j_enbuild_2024_114125
crossref_primary_10_1016_j_energy_2023_127258
crossref_primary_10_3390_su16041656
crossref_primary_10_1038_s41598_025_85267_w
crossref_primary_10_1002_adma_202306423
crossref_primary_10_3390_en17092022
crossref_primary_10_1016_j_enbuild_2025_115390
crossref_primary_10_1016_j_enbuild_2022_112752
crossref_primary_10_3390_app12062868
crossref_primary_10_1016_j_solener_2024_113158
crossref_primary_10_1177_1420326X231165198
crossref_primary_10_3390_smartcities7040078
crossref_primary_10_1016_j_apenergy_2022_120481
crossref_primary_10_3390_en15020486
crossref_primary_10_1016_j_aej_2023_08_041
crossref_primary_10_1016_j_buildenv_2024_112147
crossref_primary_10_3390_en17164020
crossref_primary_10_1016_j_buildenv_2023_110980
crossref_primary_10_1016_j_buildenv_2024_112364
crossref_primary_10_1016_j_enbuild_2022_112255
crossref_primary_10_1016_j_enbuild_2025_115440
Cites_doi 10.1016/j.energy.2020.117121
10.1016/j.egypro.2017.09.681
10.1016/j.enbuild.2011.06.026
10.1109/4235.996017
10.1016/j.apenergy.2018.04.129
10.1016/j.enbuild.2017.08.002
10.1038/nature14539
10.1023/A:1022602019183
10.1016/j.sbspro.2016.05.161
10.1016/j.apenergy.2017.10.102
10.1016/j.enbuild.2014.06.009
10.1016/j.enbuild.2017.02.017
10.1016/j.rser.2018.04.080
10.1016/j.enbuild.2017.04.069
10.1016/j.enbuild.2019.05.057
10.1016/j.tust.2014.12.001
10.1016/j.enbuild.2019.109363
10.1016/j.enbuild.2017.11.002
10.1016/j.apenergy.2019.03.202
10.1016/j.enbuild.2016.05.090
10.1016/j.buildenv.2016.08.019
10.1016/j.enbuild.2019.109650
10.1016/j.buildenv.2016.09.024
10.1016/j.apenergy.2013.08.061
10.1016/j.enbuild.2016.03.035
10.1016/j.apenergy.2016.03.018
10.1016/j.enbuild.2013.07.014
10.1016/j.energy.2018.03.113
10.1016/j.enbuild.2017.06.033
10.1016/j.buildenv.2009.08.016
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2021.111513
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2021_111513
S0378778821007970
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c337t-c340d314425744b6172dd6a24efebbb29ec6f035d20bc0eb99e395090f24038d3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 09:05:10 EDT 2025
Thu Apr 24 23:16:20 EDT 2025
Thu Oct 16 04:38:01 EDT 2025
Fri Feb 23 02:43:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NSGA-II
Energy consumption
MLPANN
Thermal comfort
Multi-objective optimization
Gymnasium
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-c340d314425744b6172dd6a24efebbb29ec6f035d20bc0eb99e395090f24038d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619672360
PQPubID 2045483
ParticipantIDs proquest_journals_2619672360
crossref_primary_10_1016_j_enbuild_2021_111513
crossref_citationtrail_10_1016_j_enbuild_2021_111513
elsevier_sciencedirect_doi_10_1016_j_enbuild_2021_111513
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yang, Peng, Wang (b0025) 2006; 1
Lin, Tsai, Lin, Yang (b0030) 2016; 171
Hamdy, Nguyen, Hensen (b0145) 2016; 121
Brown, Mueller (b0005) 2016; 127
Zhai, Johnson, Krarti (b0190) 2011; 43
Subramanian, Clemmie (b0010) 2017; 3
Rashdi, Embi (b0095) 2016; 222
Lin, Zhou, Yang, Li (b0210) 2018; 10
Dietz, Vera, Bustamante (b0035) 2020; 199
Cheng, Li, Bahnfleth (b0050) 2016; 108
Nguyen, Reiter, Rigo (b0155) 2014; 113
Zhao, Liu, Ge (b0065) 2020; 208
Goldberg, Holland (b0150) 1988; 3
Asadi, da Silva, Antunes, Dias, Glicksman (b0135) 2014; 81
Ministry of Construction of the People's Republic of China, GB 50178-93 Climate zoning standards for buildings, Beijing. 1993.
American National Standards Institute (ANSI) and American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), ANSI/ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy, 2013.
Zaki, Damiati (b0045) 2016; 109
Ding, Zhang, Yuan, Yang (b0080) 2018; 159
Dong, Zhao, Xing (b0015) 2012; 6
Ascione, Bianco, De Stasio, Mauro, Vanoli (b0140) 2017; 146
Westermann, Evins (b0220) 2019; 198
Perera, Wickramasinghe, Nik, Scartezzini (b0225) 2019; 243
Hu, Kawaguchi, Ma (b0020) 2020; 2
Hazbei, Nematollahi, Behnia (b0040) 2015; 47
American Society of Heating (b0180) 2001
Gil-Lopez, Galvez-Huerta, Donohoe, Castejon-Navas, Dieguez-Elizondo (b0200) 2017; 140
Prada, Gasparella, Baggio (b0115) 2015; 225
Bre, Fachinotti (b0160) 2017; 154
Haykin (b0235) 2008
Li, Yang, Gan (b0070) 2010; 10
American Society of Heating (b0185) 2018
Reynolds, Rezgui, Kwan, Piriou (b0215) 2015; 151
Prada, Gasparella, Baggio (b0125) 2018; 225
Meggers, Guo, Teitelbaum, Aschwanden, Read, Houchois, Pantelic (b0090) 2017; 157
McKay (b0230) 1998; 54
U.S. Department of Energy, EnergyPlus™ Version 9.2.0 Documentation—Engineering Reference, USA, 2019.
American Society of Heating (b0195) 2019
Hamdy, Nguyen, Hensen (b0110) 2016; 121
Mikola, Kalamees, Koiv (b0085) 2017; 132
Deb, Pratap, Agarwal, Meyarivan (b0105) 2002; 6
Heiri (b0075) 2018; 92
Hu, Kawaguchi, Ma (b0060) 2020; 207
Magnier, Haghighat (b0100) 2010; 45
Østergård, Jensen, Maagaard (b0120) 2018; 211
China Meteorological Bureau, Climate Information Center, Climate Data Office and Tsinghua University, Department of Building Science and Technology (b0170) 2005
JMA. Control of natural ventilation. 1995.
LeCun, Bengio, Hinton (b0130) 2015; 521
Zhao, Liu, Yi (b0055) 2013; 66
Yang (10.1016/j.enbuild.2021.111513_b0025) 2006; 1
Dietz (10.1016/j.enbuild.2021.111513_b0035) 2020; 199
Gil-Lopez (10.1016/j.enbuild.2021.111513_b0200) 2017; 140
Østergård (10.1016/j.enbuild.2021.111513_b0120) 2018; 211
Haykin (10.1016/j.enbuild.2021.111513_b0235) 2008
Hamdy (10.1016/j.enbuild.2021.111513_b0145) 2016; 121
Ding (10.1016/j.enbuild.2021.111513_b0080) 2018; 159
Mikola (10.1016/j.enbuild.2021.111513_b0085) 2017; 132
Ascione (10.1016/j.enbuild.2021.111513_b0140) 2017; 146
LeCun (10.1016/j.enbuild.2021.111513_b0130) 2015; 521
Perera (10.1016/j.enbuild.2021.111513_b0225) 2019; 243
10.1016/j.enbuild.2021.111513_b0175
Lin (10.1016/j.enbuild.2021.111513_b0030) 2016; 171
Hazbei (10.1016/j.enbuild.2021.111513_b0040) 2015; 47
Li (10.1016/j.enbuild.2021.111513_b0070) 2010; 10
Dong (10.1016/j.enbuild.2021.111513_b0015) 2012; 6
Nguyen (10.1016/j.enbuild.2021.111513_b0155) 2014; 113
Hu (10.1016/j.enbuild.2021.111513_b0060) 2020; 207
Zhai (10.1016/j.enbuild.2021.111513_b0190) 2011; 43
Cheng (10.1016/j.enbuild.2021.111513_b0050) 2016; 108
Brown (10.1016/j.enbuild.2021.111513_b0005) 2016; 127
Heiri (10.1016/j.enbuild.2021.111513_b0075) 2018; 92
Reynolds (10.1016/j.enbuild.2021.111513_b0215) 2015; 151
Lin (10.1016/j.enbuild.2021.111513_b0210) 2018; 10
10.1016/j.enbuild.2021.111513_b0240
Zhao (10.1016/j.enbuild.2021.111513_b0065) 2020; 208
American Society of Heating (10.1016/j.enbuild.2021.111513_b0185) 2018
American Society of Heating (10.1016/j.enbuild.2021.111513_b0195) 2019
Zhao (10.1016/j.enbuild.2021.111513_b0055) 2013; 66
Magnier (10.1016/j.enbuild.2021.111513_b0100) 2010; 45
Meggers (10.1016/j.enbuild.2021.111513_b0090) 2017; 157
Hu (10.1016/j.enbuild.2021.111513_b0020) 2020; 2
Zaki (10.1016/j.enbuild.2021.111513_b0045) 2016; 109
Rashdi (10.1016/j.enbuild.2021.111513_b0095) 2016; 222
Hamdy (10.1016/j.enbuild.2021.111513_b0110) 2016; 121
Prada (10.1016/j.enbuild.2021.111513_b0125) 2018; 225
Asadi (10.1016/j.enbuild.2021.111513_b0135) 2014; 81
10.1016/j.enbuild.2021.111513_b0205
McKay (10.1016/j.enbuild.2021.111513_b0230) 1998; 54
Goldberg (10.1016/j.enbuild.2021.111513_b0150) 1988; 3
Deb (10.1016/j.enbuild.2021.111513_b0105) 2002; 6
Prada (10.1016/j.enbuild.2021.111513_b0115) 2015; 225
10.1016/j.enbuild.2021.111513_b0165
Subramanian (10.1016/j.enbuild.2021.111513_b0010) 2017; 3
Bre (10.1016/j.enbuild.2021.111513_b0160) 2017; 154
American Society of Heating (10.1016/j.enbuild.2021.111513_b0180) 2001
China Meteorological Bureau (10.1016/j.enbuild.2021.111513_b0170) 2005
Westermann (10.1016/j.enbuild.2021.111513_b0220) 2019; 198
References_xml – volume: 66
  start-page: 246
  year: 2013
  end-page: 257
  ident: b0055
  article-title: Application of radiant floor cooling in a large open space building with high-intensity solar radiation
  publication-title: Energy Build.
– volume: 211
  start-page: 89
  year: 2018
  end-page: 103
  ident: b0120
  article-title: A comparison of six metamodeling techniques applied to building performance simulations
  publication-title: Appl. Energy
– volume: 157
  start-page: 11
  year: 2017
  end-page: 19
  ident: b0090
  article-title: The “Air conditioning” without conditioning the air, using radiant cooling and indirect evaporation
  publication-title: Energy Build.
– volume: 208
  year: 2020
  ident: b0065
  article-title: Performance investigation of convective and radiant heat removal methods in large spaces
  publication-title: Energy Build.
– volume: 92
  start-page: 897
  year: 2018
  end-page: 920
  ident: b0075
  article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design
  publication-title: Renew Sustain Energy Rev.
– volume: 43
  start-page: 2251
  year: 2011
  end-page: 2261
  ident: b0190
  article-title: Assessment of natural and hybrid ventilation models in whole-building energy simulations
  publication-title: Energy Build.
– volume: 47
  start-page: 16
  year: 2015
  end-page: 27
  ident: b0040
  article-title: Reduction of energy consumption using passive architecture in hot and humid climates
  publication-title: Tunn. Undergr. Space Technol.
– volume: 3
  start-page: 167
  year: 2017
  end-page: 174
  ident: b0010
  article-title: Structural systems for Large span Sports Complex structures
  publication-title: International Journal of Recent Trends in Engineering & Research (IJRTER)
– start-page: 2005
  year: 2005
  ident: b0170
  publication-title: China Standard Weather Data for Analyzing Building Thermal Conditions
– volume: 6
  start-page: 224
  year: 2012
  end-page: 239
  ident: b0015
  article-title: Application and development of modern long-span space structures in China, Frontiers of Structural and Civil
  publication-title: Engineering
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0105
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: Ministry of Construction of the People's Republic of China, GB 50178-93 Climate zoning standards for buildings, Beijing. 1993.
– volume: 10
  start-page: 77
  year: 2010
  end-page: 80
  ident: b0070
  article-title: Simulation of air-distribution of the stratified air conditioning system for new aviation building of Hongqiao Airport
  publication-title: Refrig. Air Condit.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0130
  article-title: Deep learning
  publication-title: Nature
– volume: 243
  start-page: 191
  year: 2019
  end-page: 205
  ident: b0225
  article-title: Machine learning methods to assist energy system optimization
  publication-title: Appl. Energy
– volume: 140
  start-page: 371
  year: 2017
  end-page: 379
  ident: b0200
  article-title: Analysis of the influence of the return position in the vertical temperature gradient in displacement ventilation systems for large halls
  publication-title: Energy Build.
– volume: 81
  start-page: 444
  year: 2014
  end-page: 456
  ident: b0135
  article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application
  publication-title: Energy Build.
– volume: 207
  year: 2020
  ident: b0060
  article-title: Long-term building thermal performance of enclosed large-span swimming stadiums with retractable membrane ceilings Science Direct
  publication-title: Energy Build.
– reference: JMA. Control of natural ventilation. 1995.
– volume: 154
  start-page: 283
  year: 2017
  end-page: 294
  ident: b0160
  article-title: A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings
  publication-title: Energy Build.
– volume: 151
  start-page: 729
  year: 2015
  end-page: 739
  ident: b0215
  article-title: A zone-level, building energy optimization combining an artificial neural network, a genetic algorithm, and model predictive control
  publication-title: Energy
– volume: 121
  start-page: 57
  year: 2016
  end-page: 71
  ident: b0145
  article-title: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems
  publication-title: Energy Build.
– volume: 127
  start-page: 748
  year: 2016
  end-page: 761
  ident: b0005
  article-title: Design for structural and energy performance of long span buildings using geometric multi-objective optimization
  publication-title: Energy Build.
– volume: 171
  start-page: 336
  year: 2016
  end-page: 346
  ident: b0030
  article-title: Design optimization of office building envelope configuration for energy conservation
  publication-title: Applied Energy
– volume: 108
  start-page: 85
  year: 2016
  end-page: 98
  ident: b0050
  article-title: Natural ventilation potential for gymnasia – Case study of ventilation and comfort in a multisport facility in northeastern United States
  publication-title: Energy Build.
– volume: 222
  start-page: 782
  year: 2016
  end-page: 790
  ident: b0095
  article-title: Analysing optimum building form in relation to lower cooling load
  publication-title: Procedia – Social and Behavioral Sci.
– volume: 113
  start-page: 1043
  year: 2014
  end-page: 1058
  ident: b0155
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy
– volume: 225
  start-page: 814
  year: 2015
  end-page: 826
  ident: b0115
  article-title: On the performance of meta-models in building design optimization
  publication-title: Appl. Energy
– year: 2018
  ident: b0185
  article-title: Refrigerating and Air-conditioning Engineers Inc, ASHRAE 2018 Fundamentals Handbook
– volume: 225
  start-page: 814
  year: 2018
  end-page: 826
  ident: b0125
  article-title: On the performance of meta-models in building design optimization
  publication-title: Appl. Energy
– volume: 199
  start-page: 117
  year: 2020
  end-page: 121
  ident: b0035
  article-title: Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude
  publication-title: Energy
– reference: U.S. Department of Energy, EnergyPlus™ Version 9.2.0 Documentation—Engineering Reference, USA, 2019.
– year: 2001
  ident: b0180
  article-title: Refrigerating and Air-conditioning Engineers Inc, ASHRAE 2001 Fundamentals Handbook
– volume: 121
  start-page: 57
  year: 2016
  end-page: 71
  ident: b0110
  article-title: A performance comparison of multi- -objective optimization algorithms for solving nearly-zero-energy-building de- sign problems
  publication-title: Energy Build.
– volume: 146
  start-page: 200
  year: 2017
  end-page: 219
  ident: b0140
  article-title: CASA, Cost-optimal analysis by multi-objective optimization and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building
  publication-title: Energy Build.
– year: 2019
  ident: b0195
  article-title: Refrigerating and Air-conditioning Engineers Inc, 2019 ASHRAE Handbook – HVAC Applications
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b0150
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn.
– volume: 54
  start-page: 145
  year: 1998
  end-page: 186
  ident: b0230
  article-title: Sensitivity and uncertainty analysis using a statistical sample of input values
  publication-title: Uncertainty Anal.
– reference: American National Standards Institute (ANSI) and American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), ANSI/ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy, 2013.
– volume: 45
  start-page: 739
  year: 2010
  end-page: 746
  ident: b0100
  article-title: Multi-objective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build. Environ.
– volume: 2
  start-page: 156
  year: 2020
  end-page: 163
  ident: b0020
  article-title: Long-term building thermal performance of enclosed large-span swimming stadiums with retractable membrane ceilings – ScienceDirect
  publication-title: Energy Build.
– year: 2008
  ident: b0235
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 198
  start-page: 170
  year: 2019
  end-page: 186
  ident: b0220
  article-title: Surrogate modelling for sustainable building design – A review
  publication-title: Energy Build.
– volume: 109
  start-page: 208
  year: 2016
  end-page: 223
  ident: b0045
  article-title: H.B. Rijal Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season
  publication-title: Build. Environ.
– volume: 159
  start-page: 254
  year: 2018
  end-page: 270
  ident: b0080
  article-title: Model input selection for building heating load prediction: a case study for an office building in Tianjin
  publication-title: Energy Build.
– volume: 1
  start-page: 53
  year: 2006
  end-page: 56
  ident: b0025
  article-title: Characteristic analyze of air-condition's load in large space building
  publication-title: Refrigeration & Air Conditioning
– volume: 132
  start-page: 963
  year: 2017
  end-page: 968
  ident: b0085
  article-title: Performance of ventilation in Estonian apartment buildings
  publication-title: Energy Procedia
– volume: 10
  start-page: 2071
  year: 2018
  end-page: 11050
  ident: b0210
  article-title: Design optimization considering variable thermal mass, insulation, absorptance of solar radiation, and glazing ratio using a prediction model and genetic algorithm
  publication-title: Sustainability
– start-page: 2005
  year: 2005
  ident: 10.1016/j.enbuild.2021.111513_b0170
– volume: 199
  start-page: 117
  year: 2020
  ident: 10.1016/j.enbuild.2021.111513_b0035
  article-title: Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117121
– volume: 132
  start-page: 963
  year: 2017
  ident: 10.1016/j.enbuild.2021.111513_b0085
  article-title: Performance of ventilation in Estonian apartment buildings
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.681
– ident: 10.1016/j.enbuild.2021.111513_b0175
– volume: 43
  start-page: 2251
  year: 2011
  ident: 10.1016/j.enbuild.2021.111513_b0190
  article-title: Assessment of natural and hybrid ventilation models in whole-building energy simulations
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.06.026
– year: 2001
  ident: 10.1016/j.enbuild.2021.111513_b0180
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.enbuild.2021.111513_b0105
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 225
  start-page: 814
  year: 2018
  ident: 10.1016/j.enbuild.2021.111513_b0125
  article-title: On the performance of meta-models in building design optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.129
– volume: 154
  start-page: 283
  year: 2017
  ident: 10.1016/j.enbuild.2021.111513_b0160
  article-title: A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.002
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.enbuild.2021.111513_b0130
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 10.1016/j.enbuild.2021.111513_b0150
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn.
  doi: 10.1023/A:1022602019183
– year: 2019
  ident: 10.1016/j.enbuild.2021.111513_b0195
– volume: 222
  start-page: 782
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0095
  article-title: Analysing optimum building form in relation to lower cooling load
  publication-title: Procedia – Social and Behavioral Sci.
  doi: 10.1016/j.sbspro.2016.05.161
– volume: 211
  start-page: 89
  year: 2018
  ident: 10.1016/j.enbuild.2021.111513_b0120
  article-title: A comparison of six metamodeling techniques applied to building performance simulations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.102
– ident: 10.1016/j.enbuild.2021.111513_b0205
– volume: 81
  start-page: 444
  year: 2014
  ident: 10.1016/j.enbuild.2021.111513_b0135
  article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.009
– ident: 10.1016/j.enbuild.2021.111513_b0240
– volume: 3
  start-page: 167
  year: 2017
  ident: 10.1016/j.enbuild.2021.111513_b0010
  article-title: Structural systems for Large span Sports Complex structures
  publication-title: International Journal of Recent Trends in Engineering & Research (IJRTER)
– volume: 10
  start-page: 77
  year: 2010
  ident: 10.1016/j.enbuild.2021.111513_b0070
  article-title: Simulation of air-distribution of the stratified air conditioning system for new aviation building of Hongqiao Airport
  publication-title: Refrig. Air Condit.
– volume: 140
  start-page: 371
  year: 2017
  ident: 10.1016/j.enbuild.2021.111513_b0200
  article-title: Analysis of the influence of the return position in the vertical temperature gradient in displacement ventilation systems for large halls
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.017
– volume: 92
  start-page: 897
  year: 2018
  ident: 10.1016/j.enbuild.2021.111513_b0075
  article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design
  publication-title: Renew Sustain Energy Rev.
  doi: 10.1016/j.rser.2018.04.080
– volume: 146
  start-page: 200
  year: 2017
  ident: 10.1016/j.enbuild.2021.111513_b0140
  article-title: CASA, Cost-optimal analysis by multi-objective optimization and artificial neural networks: a new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.069
– volume: 198
  start-page: 170
  year: 2019
  ident: 10.1016/j.enbuild.2021.111513_b0220
  article-title: Surrogate modelling for sustainable building design – A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.057
– volume: 47
  start-page: 16
  year: 2015
  ident: 10.1016/j.enbuild.2021.111513_b0040
  article-title: Reduction of energy consumption using passive architecture in hot and humid climates
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2014.12.001
– volume: 54
  start-page: 145
  year: 1998
  ident: 10.1016/j.enbuild.2021.111513_b0230
  article-title: Sensitivity and uncertainty analysis using a statistical sample of input values
  publication-title: Uncertainty Anal.
– volume: 225
  start-page: 814
  year: 2015
  ident: 10.1016/j.enbuild.2021.111513_b0115
  article-title: On the performance of meta-models in building design optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.129
– volume: 207
  year: 2020
  ident: 10.1016/j.enbuild.2021.111513_b0060
  article-title: Long-term building thermal performance of enclosed large-span swimming stadiums with retractable membrane ceilings Science Direct
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109363
– volume: 159
  start-page: 254
  year: 2018
  ident: 10.1016/j.enbuild.2021.111513_b0080
  article-title: Model input selection for building heating load prediction: a case study for an office building in Tianjin
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.002
– volume: 243
  start-page: 191
  year: 2019
  ident: 10.1016/j.enbuild.2021.111513_b0225
  article-title: Machine learning methods to assist energy system optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.202
– volume: 127
  start-page: 748
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0005
  article-title: Design for structural and energy performance of long span buildings using geometric multi-objective optimization
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.05.090
– volume: 6
  start-page: 224
  year: 2012
  ident: 10.1016/j.enbuild.2021.111513_b0015
  article-title: Application and development of modern long-span space structures in China, Frontiers of Structural and Civil
  publication-title: Engineering
– volume: 10
  start-page: 2071
  year: 2018
  ident: 10.1016/j.enbuild.2021.111513_b0210
  article-title: Design optimization considering variable thermal mass, insulation, absorptance of solar radiation, and glazing ratio using a prediction model and genetic algorithm
  publication-title: Sustainability
– volume: 108
  start-page: 85
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0050
  article-title: Natural ventilation potential for gymnasia – Case study of ventilation and comfort in a multisport facility in northeastern United States
  publication-title: Energy Build.
  doi: 10.1016/j.buildenv.2016.08.019
– volume: 208
  year: 2020
  ident: 10.1016/j.enbuild.2021.111513_b0065
  article-title: Performance investigation of convective and radiant heat removal methods in large spaces
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109650
– volume: 109
  start-page: 208
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0045
  article-title: H.B. Rijal Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.09.024
– volume: 113
  start-page: 1043
  year: 2014
  ident: 10.1016/j.enbuild.2021.111513_b0155
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.061
– year: 2008
  ident: 10.1016/j.enbuild.2021.111513_b0235
– volume: 121
  start-page: 57
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0145
  article-title: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.03.035
– volume: 1
  start-page: 53
  year: 2006
  ident: 10.1016/j.enbuild.2021.111513_b0025
  article-title: Characteristic analyze of air-condition's load in large space building
  publication-title: Refrigeration & Air Conditioning
– volume: 171
  start-page: 336
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0030
  article-title: Design optimization of office building envelope configuration for energy conservation
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2016.03.018
– ident: 10.1016/j.enbuild.2021.111513_b0165
– volume: 2
  start-page: 156
  year: 2020
  ident: 10.1016/j.enbuild.2021.111513_b0020
  article-title: Long-term building thermal performance of enclosed large-span swimming stadiums with retractable membrane ceilings – ScienceDirect
  publication-title: Energy Build.
– volume: 66
  start-page: 246
  year: 2013
  ident: 10.1016/j.enbuild.2021.111513_b0055
  article-title: Application of radiant floor cooling in a large open space building with high-intensity solar radiation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.07.014
– year: 2018
  ident: 10.1016/j.enbuild.2021.111513_b0185
– volume: 151
  start-page: 729
  year: 2015
  ident: 10.1016/j.enbuild.2021.111513_b0215
  article-title: A zone-level, building energy optimization combining an artificial neural network, a genetic algorithm, and model predictive control
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.113
– volume: 157
  start-page: 11
  year: 2017
  ident: 10.1016/j.enbuild.2021.111513_b0090
  article-title: The “Air conditioning” without conditioning the air, using radiant cooling and indirect evaporation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.06.033
– volume: 121
  start-page: 57
  year: 2016
  ident: 10.1016/j.enbuild.2021.111513_b0110
  article-title: A performance comparison of multi- -objective optimization algorithms for solving nearly-zero-energy-building de- sign problems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.03.035
– volume: 45
  start-page: 739
  year: 2010
  ident: 10.1016/j.enbuild.2021.111513_b0100
  article-title: Multi-objective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.08.016
SSID ssj0006571
Score 2.5466695
Snippet •A method for the metamodel-based multi-objective optimization of large space building, taking advantage of high performance computing, was developed.•An...
Performing multi-objective optimization for actual public building design has become one of the most challenging subjects in buildings energy efficiency area....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111513
SubjectTerms Absorptance
Absorptivity
Air conditioning
Algorithms
Artificial neural networks
Building design
Configuration management
Cooling
Design factors
Design optimization
Energy consumption
Energy efficiency
External walls
Genetic algorithms
Green buildings
Gymnasium
Heating
Hypercubes
Metamodels
MLPANN
Multi-objective optimization
Multilayers
Multiple objective analysis
Neural networks
NSGA-II
Pareto optimization
Principal components analysis
Public buildings
Sorting algorithms
Thermal comfort
Ventilation
Title A metamodel-based multi-objective optimization method to balance thermal comfort and energy efficiency in a campus gymnasium
URI https://dx.doi.org/10.1016/j.enbuild.2021.111513
https://www.proquest.com/docview/2619672360
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AKRWK
  dateStart: 19770501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iFz2IKy7jkIPXzqRNuh2HQRm3QVzAW0jSRDrYzuB0DoL4281rUzcQwUtLS15b8tLvfY-8BaFjbSlsFlHfs9wjhhZmqZcqQT3jM0sOhAniGPKdr8bR6J6dP4QPS2jY5sJAWKXD_gbTa7R2d_puNvuzPO_fEmoXm_XgAtjoT2Pw2xmLoYtB7-0zzCMKa6cLBnsw-jOLpz_pQXmB_AkKhgY-gEfo09_s0w-krs3P6QZad7wRD5pP20RLutxCa1-qCW6j1wEudCXq3jYeWKcM1-GC3lROGljDUwsQhcu8xE3zaFxNsYT4RqUxkMHCvsVOhuWyFRZlhnWdHIh1XWoC8jRxXmKBlShmizl-fClKMc8XxQ66Pz25G44811zBU5TGlT0yklHrTtl_ljEJRCbLIhEwbbSUMki1igyhYRYQqYiWaappatkFMVDBL8noLloup6XeQ5j5iYHdQ6ZIwpgw0k-ksdKahIkyOt5HrJ1SrlzlcWiA8cTbELMJd5rgoAneaGIf9T7EZk3pjb8EklZf_Nsa4tY8_CXaafXL3U885-BcRnFAI3Lw_ycfolW4gggYP-yg5ep5oY8sj6lkt16oXbQyGN5cXsP57GI0fgdXrPUx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwELYQFHAFAu4Qy9MFbXad2HmVCIGWZwNIdJbt2Cgrkl2x2eKk0_32m0kcXhJCuiZF4nEsz3jmG3kehBxbgLBFwsMAsEeKLczyIDeKBy4UAA6Ui9IU851vbpPxg7h8jB-XyGmfC4NhlV73dzq91db-zcjv5mhWlqM7xkHYwIOL8KI_T8FvXxExzA1CPfz7FueRxK3XhaMDHP6WxjOaDLG-QPmMFUOjELVHHPKvDNQnVd3an_MNsu6BIz3p1rZJlmy9RX68Kyf4k_w5oZVtVNvcJkDzVNA2XjCY6kmn1-gUNETlUy9p1z2aNlOqMcDRWIposIK_wG4AmG2oqgtq2-xAattaE5ioScuaKmpUNVvM6dPvqlbzclH9Ig_nZ_en48B3VwgM52kDT8EKDv4UHFohNCKZokhUJKyzWusotyZxjMdFxLRhVue55TnAC-awhF9W8G2yXE9ru0OoCDOH14fCsEwI5XSYaQfUlsWZcTYdENFvqTS-9Dh2wHiWfYzZRHpOSOSE7DgxIMNXsllXe-M7gqznl_wgRBLsw3ek-z1_pT_Fc4neZZJGPGG7_z_zEVkd399cy-uL26s9soZfMBwmjPfJcvOysAcAahp92ArtP1ha9TE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+metamodel-based+multi-objective+optimization+method+to+balance+thermal+comfort+and+energy+efficiency+in+a+campus+gymnasium&rft.jtitle=Energy+and+buildings&rft.au=Yue%2C+Naihua&rft.au=Li%2C+Lingling&rft.au=Morandi%2C+Alessandro&rft.au=Zhao%2C+Yang&rft.date=2021-12-15&rft.pub=Elsevier+BV&rft.issn=0378-7788&rft.eissn=1872-6178&rft.volume=253&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enbuild.2021.111513&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon