Forecasting Daily Tourism Demand for Tourist Attractions with Big Data: An Ensemble Deep Learning Method

Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are sele...

Full description

Saved in:
Bibliographic Details
Published inJournal of travel research Vol. 61; no. 8; pp. 1719 - 1737
Main Authors Bi, Jian-Wu, Li, Chunxiao, Xu, Hong, Li, Hui
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.11.2022
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN0047-2875
1552-6763
DOI10.1177/00472875211040569

Cover

Abstract Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are selected as the forecasting variables. To fully capture the relationship between these forecasting variables and actual tourism demand automatically, an ensemble of long short-term memory (LSTM) networks is proposed with a correlation-based predictor selection (CPS) algorithm. The effectiveness of the proposed method is verified in daily tourism demand forecasting for the Huangshan Mountain Area, benchmarked against 11 forecasting methods. This study contributes to the literature by (1) introducing the use of big data in daily tourism demand forecasting, (2) proposing an ensemble of LSTM networks for daily tourism demand forecasting, and (3) providing an effective predictor selection algorithm in ensemble learning.
AbstractList Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are selected as the forecasting variables. To fully capture the relationship between these forecasting variables and actual tourism demand automatically, an ensemble of long short-term memory (LSTM) networks is proposed with a correlation-based predictor selection (CPS) algorithm. The effectiveness of the proposed method is verified in daily tourism demand forecasting for the Huangshan Mountain Area, benchmarked against 11 forecasting methods. This study contributes to the literature by (1) introducing the use of big data in daily tourism demand forecasting, (2) proposing an ensemble of LSTM networks for daily tourism demand forecasting, and (3) providing an effective predictor selection algorithm in ensemble learning.
Author Li, Hui
Xu, Hong
Bi, Jian-Wu
Li, Chunxiao
Author_xml – sequence: 1
  givenname: Jian-Wu
  orcidid: 0000-0003-2253-3492
  surname: Bi
  fullname: Bi, Jian-Wu
– sequence: 2
  givenname: Chunxiao
  orcidid: 0000-0002-6087-8857
  surname: Li
  fullname: Li, Chunxiao
  email: lihuihit@gmail.com
– sequence: 3
  givenname: Hong
  surname: Xu
  fullname: Xu, Hong
– sequence: 4
  givenname: Hui
  orcidid: 0000-0002-5822-2795
  surname: Li
  fullname: Li, Hui
  email: lihuihit@gmail.com
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz1vzsdnseqv9UKHipZ6XbDrbpmyTmqRI_727tCAoehgGZt5n5uUdoJ51FhC6pWREqZT3hKSS5VIwSklKRFZcoD4VgiWZzHgP9bt90gmu0CCELSGEppz20WbuPGgVorFrPFWmOeKlO3gTdngKO2VXuHb-PIp4HKNXOhpnA_40cYMfTUdF9YDHFs9sgF3VQEvCHi9AedtdfYW4catrdFmrJsDNuQ_R-3y2nDwni7enl8l4kWjOZUwqVUhSUFaDrpkSEkhGi4rnlEOW5ylPWc65zkVFVgUTVEuodaWY0EQKwSHlQ3R3urv37uMAIZbb1rxtX5ZMUtkWTUmroieV9i4ED3W592an_LGkpOwCLX8F2jLyB6NNVF0YbSim-Zccncig1vDt52_gC8CWhtU
CitedBy_id crossref_primary_10_1080_13683500_2022_2048806
crossref_primary_10_1007_s13042_024_02157_9
crossref_primary_10_1177_13548166231158705
crossref_primary_10_1016_j_im_2024_104056
crossref_primary_10_1016_j_tourman_2024_105004
crossref_primary_10_1016_j_eswa_2024_125439
crossref_primary_10_1080_10941665_2023_2256431
crossref_primary_10_1016_j_annals_2023_103667
crossref_primary_10_1016_j_ijhm_2024_103987
crossref_primary_10_1002_widm_1549
crossref_primary_10_1080_19388160_2025_2474922
crossref_primary_10_1016_j_ijhm_2024_103802
crossref_primary_10_1007_s00521_023_09106_7
crossref_primary_10_1177_13548166231153908
crossref_primary_10_3727_108354224X17180286995735
crossref_primary_10_1016_j_compag_2024_109439
crossref_primary_10_1016_j_annals_2024_103791
crossref_primary_10_1016_j_annals_2023_103675
crossref_primary_10_1007_s40558_024_00291_2
crossref_primary_10_1016_j_annals_2025_103932
crossref_primary_10_1080_10941665_2024_2333499
crossref_primary_10_1007_s11424_024_2307_0
crossref_primary_10_1177_13548166231200932
crossref_primary_10_1016_j_tourman_2025_105138
crossref_primary_10_1080_10941665_2024_2324536
crossref_primary_10_1080_13683500_2023_2202308
crossref_primary_10_1177_10963480241305748
crossref_primary_10_1177_10963480221142873
crossref_primary_10_1002_for_3007
crossref_primary_10_1007_s40558_022_00223_y
crossref_primary_10_1007_s10479_024_05830_y
crossref_primary_10_1002_jtr_2812
crossref_primary_10_1080_13683500_2023_2273922
crossref_primary_10_1177_13548166241237845
crossref_primary_10_3390_smartcities7010026
crossref_primary_10_3390_su162310678
Cites_doi 10.1177/0047287520919522
10.1016/j.asoc.2014.10.022
10.1177/0047287518759226
10.1177/0047287512461569
10.1016/j.tourman.2014.07.014
10.1002/jtr.865
10.1016/j.tourman.2017.10.014
10.1002/for.1220
10.1016/S0169-2070(01)00134-0
10.1016/S0261-5177(02)00009-2
10.1016/S0261-5177(02)00012-2
10.1016/j.ijforecast.2020.06.010
10.1080/07350015.1995.10524599
10.1177/0047287520906220
10.1016/j.annals.2020.102923
10.1016/j.tourman.2019.06.005
10.1177/004728759403300102
10.1016/j.tourman.2019.103998
10.1016/j.tourman.2006.08.003
10.1016/j.tourman.2004.05.004
10.1016/j.tourman.2016.07.005
10.1016/j.annals.2020.102925
10.1016/j.jairtraman.2016.01.005
10.1016/j.techfore.2018.01.018
10.5367/000000010790872079
10.1177/1354816617706852
10.1016/j.tourman.2009.07.015
10.1016/j.ijforecast.2005.03.006
10.1016/j.annals.2021.103255
10.1016/j.tourman.2018.03.006
10.1016/j.ijforecast.2019.03.010
10.1016/j.annals.2016.10.007
10.1016/j.annals.2019.04.005
10.1016/j.tourman.2014.07.019
10.1016/j.annals.2017.07.019
10.1016/j.tourman.2004.02.013
10.1162/neco.1997.9.8.1735
10.1016/j.tourman.2019.04.015
10.1016/j.annals.2020.102943
10.1177/0047287516669050
10.1016/j.tourman.2018.05.005
10.1016/j.annals.2019.01.014
10.1108/IJCHM-05-2015-0249
10.1177/0047287518824158
10.1038/nmeth.3968
10.1016/j.annals.2018.11.006
10.1016/j.ijforecast.2010.11.002
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID AAYXX
CITATION
DOI 10.1177/00472875211040569
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1552-6763
EndPage 1737
ExternalDocumentID 10_1177_00472875211040569
10.1177_00472875211040569
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: fundamental research funds for the central universities
  funderid: https://doi.org/10.13039/501100012226
– fundername: national natural science foundation of china
  grantid: 71971124
  funderid: https://doi.org/10.13039/501100001809
– fundername: nankai university
  funderid: https://doi.org/10.13039/501100004945
– fundername: science foundation of ministry of education of china
  grantid: 20YJC630002
  funderid: https://doi.org/10.13039/501100019048
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M661000
  funderid: https://doi.org/10.13039/501100002858
– fundername: national natural science foundation of china
  grantid: 71932005
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -TM
-~X
.2G
.2L
01A
09Z
0R~
18M
1~K
29L
31S
31V
31W
31X
3EH
4.4
54M
56W
5GY
5VS
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAIKC
AAJPV
AAKTJ
AAMFR
AAMNW
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAUIH
AAWLO
AAYOK
AAZCK
ABAWP
ABCCA
ABCJG
ABDPE
ABEIX
ABFXH
ABHQH
ABIDT
ABIVO
ABJNI
ABKRH
ABPNF
ABQDK
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGFO
ACGFS
ACHQT
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ADDLC
ADEBD
ADEIA
ADMHC
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
AEDXQ
AEILP
AEOBU
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGUGZ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BAAKF
BDZRT
BKOMP
BMVBW
BPACV
BYIEH
C2-
CAG
CBRKF
CCGJY
CEADM
COF
CS3
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
H~9
IAO
IEA
IHT
INH
INR
IOF
IPY
ITC
IVC
J8X
MS~
N95
N9A
O9-
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
RWL
RXW
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFT
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPP
SQCSI
SSDHQ
TAE
TAF
TN5
U5U
WH7
YK4
ZPLXX
ZPPRI
ZY4
~32
0SE
AAEJI
AAPII
AAYXX
ACCVC
AJGYC
AJHME
AJVBE
AMNSR
CITATION
ID FETCH-LOGICAL-c337t-ba970912fecf2a57e0619b3813e6884342833c85b0d9251c7efcba25c07553e43
ISSN 0047-2875
IngestDate Fri Jul 25 07:57:47 EDT 2025
Wed Oct 01 06:46:34 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Tue Jun 17 22:29:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ensemble learning
deep learning
tourism demand forecasting
multisource time series
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-ba970912fecf2a57e0619b3813e6884342833c85b0d9251c7efcba25c07553e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2253-3492
0000-0002-5822-2795
0000-0002-6087-8857
PQID 2717271140
PQPubID 37246
PageCount 19
ParticipantIDs proquest_journals_2717271140
crossref_primary_10_1177_00472875211040569
crossref_citationtrail_10_1177_00472875211040569
sage_journals_10_1177_00472875211040569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: Boulder
PublicationTitle Journal of travel research
PublicationYear 2022
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Theodosiou 2011; 27
Craig 2019; 75
Beria, Laurino 2016; 53
Li, Song, Witt 2006; 22
Zhou, Wu, Tang 2002; 137
Bangwayo-Skeete, Skeete 2015; 46
Song, Qiu, Park 2019; 75
Costantini, Kunst 2021; 37
Zhang, Li, Muskat, Law 2020; 60
Cao, Li, Song 2017; 67
Seddighi, Theocharous 2002; 23
Song, Witt, Jensen 2003; 19
Silva, Hassani, Heravi, Huang 2019; 74
Li, Pan, Law, Huang 2017; 59
Assaf, Li, Song, Tsionas 2018; 58
Becken 2013; 52
Crouch 1994; 33
Chan, Lim, Mcaleer 2005; 26
Björn, Lessmann 2019; 75
Diebold, Mariano 1995; 13
Li, Ge, Liu, Zheng 2020; 83
Bi, Li, Fan 2021; 90
Falk 2013; 15
Gunter, Önder 2016; 61
Wen, Liu, Song, Liu 2020; 60
Goh, Law 2002; 23
Sirakaya, Woodside 2005; 26
Wu, Song, Shen 2017; 29
Wong, Song, Witt, Wu 2007; 28
Yang, Pan, Evans, Lv 2015; 46
Li, Law 2020; 59
Claveria, Monte, Torra 2016; 23
Bi, Liu, Li 2020; 83
Chen, Liang, Hong, Gu 2015; 26
Zhang, Wu, Pan, Li, Ma, Zhang, Wang 2017; 23
Husein, Kara 2020; 77
Hochreiter, Schmidhuber 1997; 9
Álvarez-Díaz, Rosselló-Nadal 2010; 16
Pan, Yang 2017; 56
Beneki, Eeckels, Leon 2012; 31
Eugenio-Martin, Campos-Soria 2010; 31
Li, Chen, Wang, Ming 2018; 68
Law, Li, Fong, Han 2019; 75
Kulshrestha, Krishnaswamy, Sharma 2020; 83
Lever, Krzywinski, Altman 2016; 13
Atzori, Fyall, Miller 2018; 69
Dergiades, Mavragani, Pan 2018; 66
Atiya 2020; 36
Liu, Tseng, Tseng 2018; 130
Liu, Wu 2019; 76
bibr45-00472875211040569
bibr32-00472875211040569
bibr25-00472875211040569
bibr7-00472875211040569
bibr38-00472875211040569
bibr40-00472875211040569
bibr20-00472875211040569
bibr37-00472875211040569
bibr17-00472875211040569
bibr1-00472875211040569
bibr11-00472875211040569
bibr24-00472875211040569
bibr44-00472875211040569
Claveria O. (bibr15-00472875211040569) 2016; 23
bibr36-00472875211040569
bibr10-00472875211040569
bibr6-00472875211040569
bibr46-00472875211040569
bibr16-00472875211040569
bibr26-00472875211040569
Song H. (bibr41-00472875211040569) 2019; 75
bibr5-00472875211040569
bibr22-00472875211040569
bibr35-00472875211040569
bibr48-00472875211040569
bibr30-00472875211040569
bibr27-00472875211040569
Zhou Z. H. (bibr50-00472875211040569) 2002; 137
bibr34-00472875211040569
bibr21-00472875211040569
bibr4-00472875211040569
bibr14-00472875211040569
bibr47-00472875211040569
bibr29-00472875211040569
bibr3-00472875211040569
bibr31-00472875211040569
bibr9-00472875211040569
bibr23-00472875211040569
bibr13-00472875211040569
bibr49-00472875211040569
bibr33-00472875211040569
bibr39-00472875211040569
bibr43-00472875211040569
bibr8-00472875211040569
bibr18-00472875211040569
bibr28-00472875211040569
bibr42-00472875211040569
bibr12-00472875211040569
Diebold F. X. (bibr19-00472875211040569) 1995; 13
bibr2-00472875211040569
References_xml – volume: 26
  year: 2015
  article-title: Forecasting Holiday Daily Tourist Flow Based on Seasonal Support Vector Regression with Adaptive Genetic Algorithm
  publication-title: Applied Soft Computing
– volume: 19
  year: 2003
  article-title: Tourism Forecasting: Accuracy of Alternative Econometric Models
  publication-title: International Journal of Forecasting
– volume: 13
  start-page: 703
  issue: 9
  year: 2016
  end-page: 705
  article-title: Points of significance: model selection and overfitting
  publication-title: Nature methods
– volume: 27
  issue: 4
  year: 2011
  article-title: Forecasting Monthly and Quarterly Time Series Using STL Decomposition
  publication-title: International Journal of Forecasting
– volume: 59
  start-page: 57
  year: 2017
  end-page: 66
  article-title: Forecasting Tourism Demand with Composite Search Index
  publication-title: Tourism Management
– volume: 16
  issue: 1
  year: 2010
  article-title: Forecasting British Tourist Arrivals in the Balearic Islands Using Meteorological Variables
  publication-title: Tourism Economics
– volume: 56
  issue: 7
  year: 2017
  article-title: Forecasting Destination Weekly Hotel Occupancy with Big Data
  publication-title: Journal of Travel Research
– volume: 69
  start-page: 12
  year: 2018
  end-page: 22
  article-title: Tourist Responses to Climate Change: Potential Impacts and Adaptation in Florida’s Coastal Destinations
  publication-title: Tourism Management
– volume: 58
  issue: 3
  year: 2018
  article-title: Modeling and Forecasting Regional Tourism Demand Using the Bayesian Global Vector Autoregressive (BGVAR) Model
  publication-title: Journal of Travel Research
– volume: 90
  start-page: 103255
  year: 2021
  article-title: Tourism Demand Forecasting with Time Series Imaging: A Deep Learning Model
  publication-title: Annals of Tourism Research
– volume: 83
  start-page: 102925
  year: 2020
  article-title: Bayesian BILSTM Approach for Tourism Demand Forecasting
  publication-title: Annals of Tourism Research
– volume: 59
  start-page: 52
  issue: 1
  year: 2020
  end-page: 68
  article-title: Forecasting Tourism Demand with Decomposed Search Cycles
  publication-title: Journal of Travel Research
– volume: 23
  year: 2016
  article-title: Combination Forecasts of Tourism Demand with Machine Learning Models
  publication-title: Applied Economics Letters
– volume: 26
  year: 2005
  article-title: Modelling Multivariate International Tourism Demand and Volatility
  publication-title: Tourism Management
– volume: 33
  start-page: 12
  issue: 1
  year: 1994
  end-page: 23
  article-title: The Study of International Tourism Demand: A Review of Findings
  publication-title: Journal of Travel Research
– volume: 66
  year: 2018
  article-title: Google Trends and Tourists’ Arrivals: Emerging Biases and Proposed Corrections
  publication-title: Tourism Management
– volume: 83
  start-page: 102943
  year: 2020
  article-title: Forecasting Tourist Arrivals Using Denoising and Potential Factors
  publication-title: Annals of Tourism Research
– volume: 74
  year: 2019
  article-title: Forecasting Tourism Demand with Denoised Neural Networks
  publication-title: Annals of Tourism Research
– volume: 46
  year: 2015
  article-title: Can Google Data Improve the Forecasting Performance of Tourist Arrivals? Mixed-Data Sampling Approach
  publication-title: Tourism Management
– volume: 75
  year: 2019
  article-title: The Weather-Proximity-Cognition (WPC) Framework: A Camping, Weather, and Climate Change Case
  publication-title: Tourism Management
– volume: 13
  issue: 3
  year: 1995
  article-title: Comparing Predictive Accuracy
  publication-title: Journal of Business and Economic Statistics
– volume: 83
  start-page: 102923
  year: 2020
  article-title: Daily Tourism Volume Forecasting for Tourist Attractions
  publication-title: Annals of Tourism Research
– volume: 22
  start-page: 57
  year: 2006
  end-page: 71
  article-title: Time Varying Parameter and Fixed Parameter Linear AIDS: An Application to Tourism Demand Forecasting
  publication-title: International Journal of Forecasting
– volume: 77
  start-page: 103998
  year: 2020
  article-title: Nonlinear ARDL Estimation of Tourism Demand for Puerto Rico from the USA
  publication-title: Tourism Management
– volume: 23
  issue: 5
  year: 2002
  article-title: A Model of Tourism Destination Choice: A Theoretical and Empirical Analysis
  publication-title: Tourism Management
– volume: 60
  issue: 2
  year: 2020
  article-title: Forecasting Tourism Demand with an Improved Mixed Data Sampling Model
  publication-title: Journal of Travel Research
– volume: 46
  year: 2015
  article-title: Forecasting Chinese Tourist Volume with Search Engine Data
  publication-title: Tourism Management
– volume: 23
  issue: 7
  year: 2017
  article-title: Improving Daily Occupancy Forecasting Accuracy for Hotels Based on EEMD-ARIMA Model
  publication-title: Tourism Economics
– volume: 23
  start-page: 499
  issue: 5
  year: 2002
  end-page: 510
  article-title: Modeling and Forecasting Tourism Demand for Arrivals with Stochastic Nonstationary Seasonality and Intervention
  publication-title: Tourism Management
– volume: 67
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Modelling the Interdependence of Tourism Demand: The Global Vector Autoregressive Approach
  publication-title: Annals of Tourism Research
– volume: 75
  year: 2019
  article-title: Tourism Demand Forecasting: A Deep Learning Approach
  publication-title: Annals of Tourism Research
– volume: 29
  issue: 1
  year: 2017
  article-title: New Developments in Tourism and Hotel Demand Modeling and Forecasting
  publication-title: International Journal of Contemporary Hospitality Management
– volume: 137
  issue: 1/2
  year: 2002
  article-title: Ensembling Neural Networks: Many Could Be Better Than All
  publication-title: Artificial Intelligence
– volume: 52
  issue: 2
  year: 2013
  article-title: Measuring the Effect of Weather on Tourism: A Destination- and Activity-Based Analysis
  publication-title: Journal of Travel Research
– volume: 53
  start-page: 73
  year: 2016
  end-page: 84
  article-title: Determinants of Daily Fluctuations in Air Passenger Volumes. The Effect of Events and Holidays on Milan Malpensa Airport
  publication-title: Journal of Air Transport Management
– volume: 68
  year: 2018
  article-title: Effective Tourist Volume Forecasting Supported by PCA and Improved BPNN Using Baidu Index
  publication-title: Tourism Management
– volume: 75
  year: 2019
  article-title: A Review of Research on Tourism Demand Forecasting
  publication-title: Annals of Tourism Research
– volume: 9
  issue: 8
  year: 1997
  article-title: Long Short-Term Memory
  publication-title: Neural Computation
– volume: 76
  year: 2019
  article-title: Tourism Productivity and Economic Growth
  publication-title: Annals of Tourism Research
– volume: 60
  start-page: 981
  issue: 5
  year: 2020
  end-page: 997
  article-title: Tourism Demand Forecasting: A Decomposed Deep Learning Approach
  publication-title: Journal of Travel Research
– volume: 31
  start-page: 391
  year: 2012
  end-page: 400
  article-title: Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach
  publication-title: Journal of Forecasting
– volume: 28
  issue: 4
  year: 2007
  article-title: Tourism Forecasting: To Combine or Not to Combine?
  publication-title: Tourism Management
– volume: 31
  issue: 6
  year: 2010
  article-title: Climate in the Region of Origin and Destination Choice in Outbound Tourism Demand
  publication-title: Tourism Management
– volume: 61
  start-page: 199
  year: 2016
  end-page: 212
  article-title: Forecasting City Arrivals with Google Analytics
  publication-title: Annals of Tourism Research
– volume: 26
  issue: 6
  year: 2005
  article-title: Building and Testing Theories of Decision Making by Travellers
  publication-title: Tourism Management
– volume: 15
  start-page: 1
  issue: 1
  year: 2013
  end-page: 17
  article-title: Impact of Long-Term Weather on Domestic and Foreign Winter Tourism Demand
  publication-title: International Journal of Tourism Research
– volume: 75
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Spurious Patterns in Google Trends Data—An Analysis of the Effects on Tourism Demand Forecasting in Germany
  publication-title: Tourism Management
– volume: 130
  year: 2018
  article-title: Big Data Analytics for Forecasting Tourism Destination Arrivals with the Applied Vector Autoregression Model
  publication-title: Technological Forecasting and Social Change
– volume: 37
  issue: 2
  year: 2021
  article-title: On Using Predictive-Ability Tests in the Selection of Time-Series Prediction Models: A Monte Carlo Evaluation
  publication-title: International Journal of Forecasting
– volume: 36
  start-page: 197
  issue: 1
  year: 2020
  end-page: 200
  article-title: Why Does Forecast Combination Work So Well?
  publication-title: International Journal of Forecasting
– ident: bibr49-00472875211040569
  doi: 10.1177/0047287520919522
– ident: bibr14-00472875211040569
  doi: 10.1016/j.asoc.2014.10.022
– ident: bibr2-00472875211040569
  doi: 10.1177/0047287518759226
– volume: 23
  year: 2016
  ident: bibr15-00472875211040569
  publication-title: Applied Economics Letters
– ident: bibr7-00472875211040569
  doi: 10.1177/0047287512461569
– ident: bibr5-00472875211040569
  doi: 10.1016/j.tourman.2014.07.014
– ident: bibr22-00472875211040569
  doi: 10.1002/jtr.865
– ident: bibr20-00472875211040569
  doi: 10.1016/j.tourman.2017.10.014
– ident: bibr8-00472875211040569
  doi: 10.1002/for.1220
– ident: bibr42-00472875211040569
  doi: 10.1016/S0169-2070(01)00134-0
– ident: bibr23-00472875211040569
  doi: 10.1016/S0261-5177(02)00009-2
– ident: bibr38-00472875211040569
  doi: 10.1016/S0261-5177(02)00012-2
– ident: bibr16-00472875211040569
  doi: 10.1016/j.ijforecast.2020.06.010
– volume: 13
  issue: 3
  year: 1995
  ident: bibr19-00472875211040569
  publication-title: Journal of Business and Economic Statistics
  doi: 10.1080/07350015.1995.10524599
– ident: bibr44-00472875211040569
  doi: 10.1177/0047287520906220
– ident: bibr10-00472875211040569
  doi: 10.1016/j.annals.2020.102923
– ident: bibr17-00472875211040569
  doi: 10.1016/j.tourman.2019.06.005
– ident: bibr18-00472875211040569
  doi: 10.1177/004728759403300102
– ident: bibr26-00472875211040569
  doi: 10.1016/j.tourman.2019.103998
– ident: bibr45-00472875211040569
  doi: 10.1016/j.tourman.2006.08.003
– ident: bibr40-00472875211040569
  doi: 10.1016/j.tourman.2004.05.004
– ident: bibr34-00472875211040569
  doi: 10.1016/j.tourman.2016.07.005
– ident: bibr27-00472875211040569
  doi: 10.1016/j.annals.2020.102925
– ident: bibr6-00472875211040569
  doi: 10.1016/j.jairtraman.2016.01.005
– ident: bibr36-00472875211040569
  doi: 10.1016/j.techfore.2018.01.018
– ident: bibr1-00472875211040569
  doi: 10.5367/000000010790872079
– ident: bibr48-00472875211040569
  doi: 10.1177/1354816617706852
– ident: bibr21-00472875211040569
  doi: 10.1016/j.tourman.2009.07.015
– ident: bibr31-00472875211040569
  doi: 10.1016/j.ijforecast.2005.03.006
– ident: bibr9-00472875211040569
  doi: 10.1016/j.annals.2021.103255
– ident: bibr32-00472875211040569
  doi: 10.1016/j.tourman.2018.03.006
– ident: bibr3-00472875211040569
  doi: 10.1016/j.ijforecast.2019.03.010
– ident: bibr24-00472875211040569
  doi: 10.1016/j.annals.2016.10.007
– ident: bibr35-00472875211040569
  doi: 10.1016/j.annals.2019.04.005
– ident: bibr47-00472875211040569
  doi: 10.1016/j.tourman.2014.07.019
– ident: bibr12-00472875211040569
  doi: 10.1016/j.annals.2017.07.019
– ident: bibr13-00472875211040569
  doi: 10.1016/j.tourman.2004.02.013
– ident: bibr25-00472875211040569
  doi: 10.1162/neco.1997.9.8.1735
– volume: 75
  year: 2019
  ident: bibr41-00472875211040569
  publication-title: Annals of Tourism Research
– volume: 137
  issue: 1
  year: 2002
  ident: bibr50-00472875211040569
  publication-title: Artificial Intelligence
– ident: bibr11-00472875211040569
  doi: 10.1016/j.tourman.2019.04.015
– ident: bibr30-00472875211040569
  doi: 10.1016/j.annals.2020.102943
– ident: bibr37-00472875211040569
  doi: 10.1177/0047287516669050
– ident: bibr4-00472875211040569
  doi: 10.1016/j.tourman.2018.05.005
– ident: bibr28-00472875211040569
  doi: 10.1016/j.annals.2019.01.014
– ident: bibr46-00472875211040569
  doi: 10.1108/IJCHM-05-2015-0249
– ident: bibr33-00472875211040569
  doi: 10.1177/0047287518824158
– ident: bibr29-00472875211040569
  doi: 10.1038/nmeth.3968
– ident: bibr39-00472875211040569
  doi: 10.1016/j.annals.2018.11.006
– ident: bibr43-00472875211040569
  doi: 10.1016/j.ijforecast.2010.11.002
SSID ssj0001431
Score 2.5491571
Snippet Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1719
SubjectTerms Big Data
Deep learning
Demand
Forecasting techniques
Tourism
Tourist attractions
Title Forecasting Daily Tourism Demand for Tourist Attractions with Big Data: An Ensemble Deep Learning Method
URI https://journals.sagepub.com/doi/full/10.1177/00472875211040569
https://www.proquest.com/docview/2717271140
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: Sage journals
  customDbUrl:
  eissn: 1552-6763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001431
  issn: 0047-2875
  databaseCode: AYPQM
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://journals.sagepub.com
  providerName: SAGE Publications
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wAviE9RNpAfEEhMnprvmLfCOiq0DpBaUZ4ix3FGJJZ2qyMh_hj-Vu5iJ003NgEPjRo3cVTfL-fz-e53hLzwkKQulC7LcsGZnwqXcV9lLPO93BduLLjE3OHpSTiZ-x8WwaLX-9WJWqp0eiB__jGv5H-kCm0gV8yS_QfJtp1CA3wH-cIRJAzHv5Ix1tWUYl1HLh8KdFRYUkBQI2foEccYQtOk90daX5gsBpvR9rbAu7SwvsFxuVZnmEd1qNSq4V093Z_WJaavsWE1Fi_CygAdnxiG4wDm2Jeqxk7RhvwUZnu_Kn8UYtm0LuqrJks7gbbXTaqi65CAtayz5ZC4kgm9lXlltDCyQ8SmYsqBsoo3cFnYKDurmQ1Nu0Vg3FGzTmT1rLKnhjjm6nRQb0jXjJjwOFzrgn0a8s3c1-z3n3xMjubHx8lsvJi9XJ0zrEqGu_e2RMstsuPCrDHsk53R10-fp-1cD9amqclo_5HdN68pvS4_ddvy2SxnOhGEtVEzu0fuWknSkYHWfdJT5QNy-72yPOYPybcOxGgNMWohRg3EKEDMNmnagRhFiFGAGEWIvaGjkjYAowgw2gCMGoA9IvOj8ezdhNniHEx6XqRZKngEtqabK5m7IogUGIY8BfvPU2Ec-x4S-XkyDtJhxsGGlpHKJWiCQIKNGnjK9x6Tfrks1ROMrnNkyn0uYcB8KRUP8jgTMh5GIRfwGZBhM3CJtMz1WEDle-I0ZPWXx3pAXre3rAxty00X7zXSSOzbvU7cCE17x_GHA_IKJbT56dqOnt7c0S65s3lf9khfX1TqGZi0On1ucfUbE2eYkw
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt7g-cxAEoUu3SR_xtr5YHxUFBcVDSdPUXVyr7HYP-uudtOn6QEU89NJmwjSTZr6kM98AbFFNUudJx0pSwS0WC8fiTCVWwmjKhBMILnXucHjuta_ZyY17Y6IqdS6MGcFBQ4dVoUbFYj36uv2CjMdHlO_qjQuCDY-Pw0RBalaDidbtxWU4WocRCZT18jQXAUqYf5rfdvLZK71DzQ_RXYXDOZqBu0rVMs7koTHMUcvXLyyO_3uXWZg2OJS0yokzB2Mqm4dJUxK987IAHV20U4qBDosmB6LbeyGGcZAcqEeRJQThrrmVk1ae98sUiQHRR7tkr6ulcrFLWhk5zAbqMe4plFTPxFC63pOwqF69CNdHh1f7bcuUZbAkpX5uxYL7iDKcVMnUEa6vEBLwGD0_VV4QMKop3KgM3NhOOKIn6atU4hxwJaITlypGl6CWPWVqWcdVNWXMGZc4DkxKxd00SIQMbN_jAq862JVZImk4y3XpjF7UrGjKvw5hHXZGIs8lYcdvjdcqW0eVtSLH16AO94l2Hba16d4f_djRyp9bbsJk-yo8i86Oz09XYcrR2RRFauMa1PL-UK0jxsnjDTOZ3wCjSOs4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYJODCjiirD0hISIE2dhZzK7RVWVqBBFI5RY7j0IoSKhoO8PXMJE6BChDikEvisWzPxH62Z94QsseQpM5VthXFUlg8lLYluI6siLOYS9uXQmHscKvtNm_5ecfpmAM3jIUxIzg8RLcqaFE2WePfPYjiI3PHeJRRHALQxs0LAA5XTJJpH_YxYNXT1bur69ZoLgY0kOfMQz4CkDD3mt9W8nVl-oCbnzy8skWnsUCCorm5r8nD4UsKLX0bY3L8f38WybzBo7SaG9ASmdDJMpk1qdG7ryuki8k7lRyiezStyV7_lRrmQVrTjzKJKMBe8yql1TR9zkMlhhSPeOlJD6VSeUyrCa0nQ_0Y9jVI6gE11K73tJVlsV4lt436zWnTMukZLMWYl1qhFB6gDTvWKral42mABiIEBMC06_ucIZUbU74TliMBKEp5OlZgC44ClOIwzdkamUqeEr2O_lUVFQouFIwDV0oLJ_Yjqfyy5woJT4mUC9UEynCXYwqNflAp6MrHh7BEDkYig5y447fCW4W-g0Jjge0huIP9YrlE9lF9H59-rGjjzyV3ycxVrRFcnrUvNsmcjUEVWYTjFplKn1_0NkCdNNwx9vwOj2vtrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Daily+Tourism+Demand+for+Tourist+Attractions+with+Big+Data%3A+An+Ensemble+Deep+Learning+Method&rft.jtitle=Journal+of+travel+research&rft.au=Jian-Wu%2C+Bi&rft.au=Li%2C+Chunxiao&rft.au=Xu%2C+Hong&rft.au=Li%2C+Hui&rft.date=2022-11-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=0047-2875&rft.eissn=1552-6763&rft.volume=61&rft.issue=8&rft.spage=1719&rft.epage=1737&rft_id=info:doi/10.1177%2F00472875211040569&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2875&client=summon