Forecasting Daily Tourism Demand for Tourist Attractions with Big Data: An Ensemble Deep Learning Method
Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are sele...
        Saved in:
      
    
          | Published in | Journal of travel research Vol. 61; no. 8; pp. 1719 - 1737 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Los Angeles, CA
          SAGE Publications
    
        01.11.2022
     SAGE PUBLICATIONS, INC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0047-2875 1552-6763  | 
| DOI | 10.1177/00472875211040569 | 
Cover
| Abstract | Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are selected as the forecasting variables. To fully capture the relationship between these forecasting variables and actual tourism demand automatically, an ensemble of long short-term memory (LSTM) networks is proposed with a correlation-based predictor selection (CPS) algorithm. The effectiveness of the proposed method is verified in daily tourism demand forecasting for the Huangshan Mountain Area, benchmarked against 11 forecasting methods. This study contributes to the literature by (1) introducing the use of big data in daily tourism demand forecasting, (2) proposing an ensemble of LSTM networks for daily tourism demand forecasting, and (3) providing an effective predictor selection algorithm in ensemble learning. | 
    
|---|---|
| AbstractList | Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are selected as the forecasting variables. To fully capture the relationship between these forecasting variables and actual tourism demand automatically, an ensemble of long short-term memory (LSTM) networks is proposed with a correlation-based predictor selection (CPS) algorithm. The effectiveness of the proposed method is verified in daily tourism demand forecasting for the Huangshan Mountain Area, benchmarked against 11 forecasting methods. This study contributes to the literature by (1) introducing the use of big data in daily tourism demand forecasting, (2) proposing an ensemble of LSTM networks for daily tourism demand forecasting, and (3) providing an effective predictor selection algorithm in ensemble learning. | 
    
| Author | Li, Hui Xu, Hong Bi, Jian-Wu Li, Chunxiao  | 
    
| Author_xml | – sequence: 1 givenname: Jian-Wu orcidid: 0000-0003-2253-3492 surname: Bi fullname: Bi, Jian-Wu – sequence: 2 givenname: Chunxiao orcidid: 0000-0002-6087-8857 surname: Li fullname: Li, Chunxiao email: lihuihit@gmail.com – sequence: 3 givenname: Hong surname: Xu fullname: Xu, Hong – sequence: 4 givenname: Hui orcidid: 0000-0002-5822-2795 surname: Li fullname: Li, Hui email: lihuihit@gmail.com  | 
    
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz1vzsdnseqv9UKHipZ6XbDrbpmyTmqRI_727tCAoehgGZt5n5uUdoJ51FhC6pWREqZT3hKSS5VIwSklKRFZcoD4VgiWZzHgP9bt90gmu0CCELSGEppz20WbuPGgVorFrPFWmOeKlO3gTdngKO2VXuHb-PIp4HKNXOhpnA_40cYMfTUdF9YDHFs9sgF3VQEvCHi9AedtdfYW4catrdFmrJsDNuQ_R-3y2nDwni7enl8l4kWjOZUwqVUhSUFaDrpkSEkhGi4rnlEOW5ylPWc65zkVFVgUTVEuodaWY0EQKwSHlQ3R3urv37uMAIZbb1rxtX5ZMUtkWTUmroieV9i4ED3W592an_LGkpOwCLX8F2jLyB6NNVF0YbSim-Zccncig1vDt52_gC8CWhtU | 
    
| CitedBy_id | crossref_primary_10_1080_13683500_2022_2048806 crossref_primary_10_1007_s13042_024_02157_9 crossref_primary_10_1177_13548166231158705 crossref_primary_10_1016_j_im_2024_104056 crossref_primary_10_1016_j_tourman_2024_105004 crossref_primary_10_1016_j_eswa_2024_125439 crossref_primary_10_1080_10941665_2023_2256431 crossref_primary_10_1016_j_annals_2023_103667 crossref_primary_10_1016_j_ijhm_2024_103987 crossref_primary_10_1002_widm_1549 crossref_primary_10_1080_19388160_2025_2474922 crossref_primary_10_1016_j_ijhm_2024_103802 crossref_primary_10_1007_s00521_023_09106_7 crossref_primary_10_1177_13548166231153908 crossref_primary_10_3727_108354224X17180286995735 crossref_primary_10_1016_j_compag_2024_109439 crossref_primary_10_1016_j_annals_2024_103791 crossref_primary_10_1016_j_annals_2023_103675 crossref_primary_10_1007_s40558_024_00291_2 crossref_primary_10_1016_j_annals_2025_103932 crossref_primary_10_1080_10941665_2024_2333499 crossref_primary_10_1007_s11424_024_2307_0 crossref_primary_10_1177_13548166231200932 crossref_primary_10_1016_j_tourman_2025_105138 crossref_primary_10_1080_10941665_2024_2324536 crossref_primary_10_1080_13683500_2023_2202308 crossref_primary_10_1177_10963480241305748 crossref_primary_10_1177_10963480221142873 crossref_primary_10_1002_for_3007 crossref_primary_10_1007_s40558_022_00223_y crossref_primary_10_1007_s10479_024_05830_y crossref_primary_10_1002_jtr_2812 crossref_primary_10_1080_13683500_2023_2273922 crossref_primary_10_1177_13548166241237845 crossref_primary_10_3390_smartcities7010026 crossref_primary_10_3390_su162310678  | 
    
| Cites_doi | 10.1177/0047287520919522 10.1016/j.asoc.2014.10.022 10.1177/0047287518759226 10.1177/0047287512461569 10.1016/j.tourman.2014.07.014 10.1002/jtr.865 10.1016/j.tourman.2017.10.014 10.1002/for.1220 10.1016/S0169-2070(01)00134-0 10.1016/S0261-5177(02)00009-2 10.1016/S0261-5177(02)00012-2 10.1016/j.ijforecast.2020.06.010 10.1080/07350015.1995.10524599 10.1177/0047287520906220 10.1016/j.annals.2020.102923 10.1016/j.tourman.2019.06.005 10.1177/004728759403300102 10.1016/j.tourman.2019.103998 10.1016/j.tourman.2006.08.003 10.1016/j.tourman.2004.05.004 10.1016/j.tourman.2016.07.005 10.1016/j.annals.2020.102925 10.1016/j.jairtraman.2016.01.005 10.1016/j.techfore.2018.01.018 10.5367/000000010790872079 10.1177/1354816617706852 10.1016/j.tourman.2009.07.015 10.1016/j.ijforecast.2005.03.006 10.1016/j.annals.2021.103255 10.1016/j.tourman.2018.03.006 10.1016/j.ijforecast.2019.03.010 10.1016/j.annals.2016.10.007 10.1016/j.annals.2019.04.005 10.1016/j.tourman.2014.07.019 10.1016/j.annals.2017.07.019 10.1016/j.tourman.2004.02.013 10.1162/neco.1997.9.8.1735 10.1016/j.tourman.2019.04.015 10.1016/j.annals.2020.102943 10.1177/0047287516669050 10.1016/j.tourman.2018.05.005 10.1016/j.annals.2019.01.014 10.1108/IJCHM-05-2015-0249 10.1177/0047287518824158 10.1038/nmeth.3968 10.1016/j.annals.2018.11.006 10.1016/j.ijforecast.2010.11.002  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 | 
    
| Copyright_xml | – notice: The Author(s) 2021 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1177/00472875211040569 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1552-6763 | 
    
| EndPage | 1737 | 
    
| ExternalDocumentID | 10_1177_00472875211040569 10.1177_00472875211040569  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: fundamental research funds for the central universities funderid: https://doi.org/10.13039/501100012226 – fundername: national natural science foundation of china grantid: 71971124 funderid: https://doi.org/10.13039/501100001809 – fundername: nankai university funderid: https://doi.org/10.13039/501100004945 – fundername: science foundation of ministry of education of china grantid: 20YJC630002 funderid: https://doi.org/10.13039/501100019048 – fundername: China Postdoctoral Science Foundation grantid: 2019M661000 funderid: https://doi.org/10.13039/501100002858 – fundername: national natural science foundation of china grantid: 71932005 funderid: https://doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -TM -~X .2G .2L 01A 09Z 0R~ 18M 1~K 29L 31S 31V 31W 31X 3EH 4.4 54M 56W 5GY 5VS AABOD AACKU AADIR AADUE AAGGD AAGLT AAIKC AAJPV AAKTJ AAMFR AAMNW AANSI AAPEO AAQDB AAQXI AARIX AATAA AAUIH AAWLO AAYOK AAZCK ABAWP ABCCA ABCJG ABDPE ABEIX ABFXH ABHQH ABIDT ABIVO ABJNI ABKRH ABPNF ABQDK ABQKF ABQPY ABQXT ABRHV ABUJY ABYTW ACAEP ACDXX ACFUR ACFZE ACGFO ACGFS ACHQT ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMHC ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS AEDXQ AEILP AEOBU AESMA AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGUGZ AGWNL AHDMH AHHFK AHWHD AJUZI ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BAAKF BDZRT BKOMP BMVBW BPACV BYIEH C2- CAG CBRKF CCGJY CEADM COF CS3 DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ H~9 IAO IEA IHT INH INR IOF IPY ITC IVC J8X MS~ N95 N9A O9- P.B P2P PQQKQ Q1R Q7O Q7P Q7X RWL RXW S01 SASJQ SAUOL SBI SCNPE SFB SFC SFK SFT SGP SGU SGV SHB SHF SHM SPJ SPP SQCSI SSDHQ TAE TAF TN5 U5U WH7 YK4 ZPLXX ZPPRI ZY4 ~32 0SE AAEJI AAPII AAYXX ACCVC AJGYC AJHME AJVBE AMNSR CITATION  | 
    
| ID | FETCH-LOGICAL-c337t-ba970912fecf2a57e0619b3813e6884342833c85b0d9251c7efcba25c07553e43 | 
    
| ISSN | 0047-2875 | 
    
| IngestDate | Fri Jul 25 07:57:47 EDT 2025 Wed Oct 01 06:46:34 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Tue Jun 17 22:29:26 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | ensemble learning deep learning tourism demand forecasting multisource time series  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c337t-ba970912fecf2a57e0619b3813e6884342833c85b0d9251c7efcba25c07553e43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2253-3492 0000-0002-5822-2795 0000-0002-6087-8857  | 
    
| PQID | 2717271140 | 
    
| PQPubID | 37246 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_journals_2717271140 crossref_primary_10_1177_00472875211040569 crossref_citationtrail_10_1177_00472875211040569 sage_journals_10_1177_00472875211040569  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-01 | 
    
| PublicationDateYYYYMMDD | 2022-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Los Angeles, CA | 
    
| PublicationPlace_xml | – name: Los Angeles, CA – name: Boulder  | 
    
| PublicationTitle | Journal of travel research | 
    
| PublicationYear | 2022 | 
    
| Publisher | SAGE Publications SAGE PUBLICATIONS, INC  | 
    
| Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC  | 
    
| References | Theodosiou 2011; 27 Craig 2019; 75 Beria, Laurino 2016; 53 Li, Song, Witt 2006; 22 Zhou, Wu, Tang 2002; 137 Bangwayo-Skeete, Skeete 2015; 46 Song, Qiu, Park 2019; 75 Costantini, Kunst 2021; 37 Zhang, Li, Muskat, Law 2020; 60 Cao, Li, Song 2017; 67 Seddighi, Theocharous 2002; 23 Song, Witt, Jensen 2003; 19 Silva, Hassani, Heravi, Huang 2019; 74 Li, Pan, Law, Huang 2017; 59 Assaf, Li, Song, Tsionas 2018; 58 Becken 2013; 52 Crouch 1994; 33 Chan, Lim, Mcaleer 2005; 26 Björn, Lessmann 2019; 75 Diebold, Mariano 1995; 13 Li, Ge, Liu, Zheng 2020; 83 Bi, Li, Fan 2021; 90 Falk 2013; 15 Gunter, Önder 2016; 61 Wen, Liu, Song, Liu 2020; 60 Goh, Law 2002; 23 Sirakaya, Woodside 2005; 26 Wu, Song, Shen 2017; 29 Wong, Song, Witt, Wu 2007; 28 Yang, Pan, Evans, Lv 2015; 46 Li, Law 2020; 59 Claveria, Monte, Torra 2016; 23 Bi, Liu, Li 2020; 83 Chen, Liang, Hong, Gu 2015; 26 Zhang, Wu, Pan, Li, Ma, Zhang, Wang 2017; 23 Husein, Kara 2020; 77 Hochreiter, Schmidhuber 1997; 9 Álvarez-Díaz, Rosselló-Nadal 2010; 16 Pan, Yang 2017; 56 Beneki, Eeckels, Leon 2012; 31 Eugenio-Martin, Campos-Soria 2010; 31 Li, Chen, Wang, Ming 2018; 68 Law, Li, Fong, Han 2019; 75 Kulshrestha, Krishnaswamy, Sharma 2020; 83 Lever, Krzywinski, Altman 2016; 13 Atzori, Fyall, Miller 2018; 69 Dergiades, Mavragani, Pan 2018; 66 Atiya 2020; 36 Liu, Tseng, Tseng 2018; 130 Liu, Wu 2019; 76 bibr45-00472875211040569 bibr32-00472875211040569 bibr25-00472875211040569 bibr7-00472875211040569 bibr38-00472875211040569 bibr40-00472875211040569 bibr20-00472875211040569 bibr37-00472875211040569 bibr17-00472875211040569 bibr1-00472875211040569 bibr11-00472875211040569 bibr24-00472875211040569 bibr44-00472875211040569 Claveria O. (bibr15-00472875211040569) 2016; 23 bibr36-00472875211040569 bibr10-00472875211040569 bibr6-00472875211040569 bibr46-00472875211040569 bibr16-00472875211040569 bibr26-00472875211040569 Song H. (bibr41-00472875211040569) 2019; 75 bibr5-00472875211040569 bibr22-00472875211040569 bibr35-00472875211040569 bibr48-00472875211040569 bibr30-00472875211040569 bibr27-00472875211040569 Zhou Z. H. (bibr50-00472875211040569) 2002; 137 bibr34-00472875211040569 bibr21-00472875211040569 bibr4-00472875211040569 bibr14-00472875211040569 bibr47-00472875211040569 bibr29-00472875211040569 bibr3-00472875211040569 bibr31-00472875211040569 bibr9-00472875211040569 bibr23-00472875211040569 bibr13-00472875211040569 bibr49-00472875211040569 bibr33-00472875211040569 bibr39-00472875211040569 bibr43-00472875211040569 bibr8-00472875211040569 bibr18-00472875211040569 bibr28-00472875211040569 bibr42-00472875211040569 bibr12-00472875211040569 Diebold F. X. (bibr19-00472875211040569) 1995; 13 bibr2-00472875211040569  | 
    
| References_xml | – volume: 26 year: 2015 article-title: Forecasting Holiday Daily Tourist Flow Based on Seasonal Support Vector Regression with Adaptive Genetic Algorithm publication-title: Applied Soft Computing – volume: 19 year: 2003 article-title: Tourism Forecasting: Accuracy of Alternative Econometric Models publication-title: International Journal of Forecasting – volume: 13 start-page: 703 issue: 9 year: 2016 end-page: 705 article-title: Points of significance: model selection and overfitting publication-title: Nature methods – volume: 27 issue: 4 year: 2011 article-title: Forecasting Monthly and Quarterly Time Series Using STL Decomposition publication-title: International Journal of Forecasting – volume: 59 start-page: 57 year: 2017 end-page: 66 article-title: Forecasting Tourism Demand with Composite Search Index publication-title: Tourism Management – volume: 16 issue: 1 year: 2010 article-title: Forecasting British Tourist Arrivals in the Balearic Islands Using Meteorological Variables publication-title: Tourism Economics – volume: 56 issue: 7 year: 2017 article-title: Forecasting Destination Weekly Hotel Occupancy with Big Data publication-title: Journal of Travel Research – volume: 69 start-page: 12 year: 2018 end-page: 22 article-title: Tourist Responses to Climate Change: Potential Impacts and Adaptation in Florida’s Coastal Destinations publication-title: Tourism Management – volume: 58 issue: 3 year: 2018 article-title: Modeling and Forecasting Regional Tourism Demand Using the Bayesian Global Vector Autoregressive (BGVAR) Model publication-title: Journal of Travel Research – volume: 90 start-page: 103255 year: 2021 article-title: Tourism Demand Forecasting with Time Series Imaging: A Deep Learning Model publication-title: Annals of Tourism Research – volume: 83 start-page: 102925 year: 2020 article-title: Bayesian BILSTM Approach for Tourism Demand Forecasting publication-title: Annals of Tourism Research – volume: 59 start-page: 52 issue: 1 year: 2020 end-page: 68 article-title: Forecasting Tourism Demand with Decomposed Search Cycles publication-title: Journal of Travel Research – volume: 23 year: 2016 article-title: Combination Forecasts of Tourism Demand with Machine Learning Models publication-title: Applied Economics Letters – volume: 26 year: 2005 article-title: Modelling Multivariate International Tourism Demand and Volatility publication-title: Tourism Management – volume: 33 start-page: 12 issue: 1 year: 1994 end-page: 23 article-title: The Study of International Tourism Demand: A Review of Findings publication-title: Journal of Travel Research – volume: 66 year: 2018 article-title: Google Trends and Tourists’ Arrivals: Emerging Biases and Proposed Corrections publication-title: Tourism Management – volume: 83 start-page: 102943 year: 2020 article-title: Forecasting Tourist Arrivals Using Denoising and Potential Factors publication-title: Annals of Tourism Research – volume: 74 year: 2019 article-title: Forecasting Tourism Demand with Denoised Neural Networks publication-title: Annals of Tourism Research – volume: 46 year: 2015 article-title: Can Google Data Improve the Forecasting Performance of Tourist Arrivals? Mixed-Data Sampling Approach publication-title: Tourism Management – volume: 75 year: 2019 article-title: The Weather-Proximity-Cognition (WPC) Framework: A Camping, Weather, and Climate Change Case publication-title: Tourism Management – volume: 13 issue: 3 year: 1995 article-title: Comparing Predictive Accuracy publication-title: Journal of Business and Economic Statistics – volume: 83 start-page: 102923 year: 2020 article-title: Daily Tourism Volume Forecasting for Tourist Attractions publication-title: Annals of Tourism Research – volume: 22 start-page: 57 year: 2006 end-page: 71 article-title: Time Varying Parameter and Fixed Parameter Linear AIDS: An Application to Tourism Demand Forecasting publication-title: International Journal of Forecasting – volume: 77 start-page: 103998 year: 2020 article-title: Nonlinear ARDL Estimation of Tourism Demand for Puerto Rico from the USA publication-title: Tourism Management – volume: 23 issue: 5 year: 2002 article-title: A Model of Tourism Destination Choice: A Theoretical and Empirical Analysis publication-title: Tourism Management – volume: 60 issue: 2 year: 2020 article-title: Forecasting Tourism Demand with an Improved Mixed Data Sampling Model publication-title: Journal of Travel Research – volume: 46 year: 2015 article-title: Forecasting Chinese Tourist Volume with Search Engine Data publication-title: Tourism Management – volume: 23 issue: 7 year: 2017 article-title: Improving Daily Occupancy Forecasting Accuracy for Hotels Based on EEMD-ARIMA Model publication-title: Tourism Economics – volume: 23 start-page: 499 issue: 5 year: 2002 end-page: 510 article-title: Modeling and Forecasting Tourism Demand for Arrivals with Stochastic Nonstationary Seasonality and Intervention publication-title: Tourism Management – volume: 67 start-page: 1 year: 2017 end-page: 13 article-title: Modelling the Interdependence of Tourism Demand: The Global Vector Autoregressive Approach publication-title: Annals of Tourism Research – volume: 75 year: 2019 article-title: Tourism Demand Forecasting: A Deep Learning Approach publication-title: Annals of Tourism Research – volume: 29 issue: 1 year: 2017 article-title: New Developments in Tourism and Hotel Demand Modeling and Forecasting publication-title: International Journal of Contemporary Hospitality Management – volume: 137 issue: 1/2 year: 2002 article-title: Ensembling Neural Networks: Many Could Be Better Than All publication-title: Artificial Intelligence – volume: 52 issue: 2 year: 2013 article-title: Measuring the Effect of Weather on Tourism: A Destination- and Activity-Based Analysis publication-title: Journal of Travel Research – volume: 53 start-page: 73 year: 2016 end-page: 84 article-title: Determinants of Daily Fluctuations in Air Passenger Volumes. The Effect of Events and Holidays on Milan Malpensa Airport publication-title: Journal of Air Transport Management – volume: 68 year: 2018 article-title: Effective Tourist Volume Forecasting Supported by PCA and Improved BPNN Using Baidu Index publication-title: Tourism Management – volume: 75 year: 2019 article-title: A Review of Research on Tourism Demand Forecasting publication-title: Annals of Tourism Research – volume: 9 issue: 8 year: 1997 article-title: Long Short-Term Memory publication-title: Neural Computation – volume: 76 year: 2019 article-title: Tourism Productivity and Economic Growth publication-title: Annals of Tourism Research – volume: 60 start-page: 981 issue: 5 year: 2020 end-page: 997 article-title: Tourism Demand Forecasting: A Decomposed Deep Learning Approach publication-title: Journal of Travel Research – volume: 31 start-page: 391 year: 2012 end-page: 400 article-title: Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach publication-title: Journal of Forecasting – volume: 28 issue: 4 year: 2007 article-title: Tourism Forecasting: To Combine or Not to Combine? publication-title: Tourism Management – volume: 31 issue: 6 year: 2010 article-title: Climate in the Region of Origin and Destination Choice in Outbound Tourism Demand publication-title: Tourism Management – volume: 61 start-page: 199 year: 2016 end-page: 212 article-title: Forecasting City Arrivals with Google Analytics publication-title: Annals of Tourism Research – volume: 26 issue: 6 year: 2005 article-title: Building and Testing Theories of Decision Making by Travellers publication-title: Tourism Management – volume: 15 start-page: 1 issue: 1 year: 2013 end-page: 17 article-title: Impact of Long-Term Weather on Domestic and Foreign Winter Tourism Demand publication-title: International Journal of Tourism Research – volume: 75 start-page: 1 year: 2019 end-page: 12 article-title: Spurious Patterns in Google Trends Data—An Analysis of the Effects on Tourism Demand Forecasting in Germany publication-title: Tourism Management – volume: 130 year: 2018 article-title: Big Data Analytics for Forecasting Tourism Destination Arrivals with the Applied Vector Autoregression Model publication-title: Technological Forecasting and Social Change – volume: 37 issue: 2 year: 2021 article-title: On Using Predictive-Ability Tests in the Selection of Time-Series Prediction Models: A Monte Carlo Evaluation publication-title: International Journal of Forecasting – volume: 36 start-page: 197 issue: 1 year: 2020 end-page: 200 article-title: Why Does Forecast Combination Work So Well? publication-title: International Journal of Forecasting – ident: bibr49-00472875211040569 doi: 10.1177/0047287520919522 – ident: bibr14-00472875211040569 doi: 10.1016/j.asoc.2014.10.022 – ident: bibr2-00472875211040569 doi: 10.1177/0047287518759226 – volume: 23 year: 2016 ident: bibr15-00472875211040569 publication-title: Applied Economics Letters – ident: bibr7-00472875211040569 doi: 10.1177/0047287512461569 – ident: bibr5-00472875211040569 doi: 10.1016/j.tourman.2014.07.014 – ident: bibr22-00472875211040569 doi: 10.1002/jtr.865 – ident: bibr20-00472875211040569 doi: 10.1016/j.tourman.2017.10.014 – ident: bibr8-00472875211040569 doi: 10.1002/for.1220 – ident: bibr42-00472875211040569 doi: 10.1016/S0169-2070(01)00134-0 – ident: bibr23-00472875211040569 doi: 10.1016/S0261-5177(02)00009-2 – ident: bibr38-00472875211040569 doi: 10.1016/S0261-5177(02)00012-2 – ident: bibr16-00472875211040569 doi: 10.1016/j.ijforecast.2020.06.010 – volume: 13 issue: 3 year: 1995 ident: bibr19-00472875211040569 publication-title: Journal of Business and Economic Statistics doi: 10.1080/07350015.1995.10524599 – ident: bibr44-00472875211040569 doi: 10.1177/0047287520906220 – ident: bibr10-00472875211040569 doi: 10.1016/j.annals.2020.102923 – ident: bibr17-00472875211040569 doi: 10.1016/j.tourman.2019.06.005 – ident: bibr18-00472875211040569 doi: 10.1177/004728759403300102 – ident: bibr26-00472875211040569 doi: 10.1016/j.tourman.2019.103998 – ident: bibr45-00472875211040569 doi: 10.1016/j.tourman.2006.08.003 – ident: bibr40-00472875211040569 doi: 10.1016/j.tourman.2004.05.004 – ident: bibr34-00472875211040569 doi: 10.1016/j.tourman.2016.07.005 – ident: bibr27-00472875211040569 doi: 10.1016/j.annals.2020.102925 – ident: bibr6-00472875211040569 doi: 10.1016/j.jairtraman.2016.01.005 – ident: bibr36-00472875211040569 doi: 10.1016/j.techfore.2018.01.018 – ident: bibr1-00472875211040569 doi: 10.5367/000000010790872079 – ident: bibr48-00472875211040569 doi: 10.1177/1354816617706852 – ident: bibr21-00472875211040569 doi: 10.1016/j.tourman.2009.07.015 – ident: bibr31-00472875211040569 doi: 10.1016/j.ijforecast.2005.03.006 – ident: bibr9-00472875211040569 doi: 10.1016/j.annals.2021.103255 – ident: bibr32-00472875211040569 doi: 10.1016/j.tourman.2018.03.006 – ident: bibr3-00472875211040569 doi: 10.1016/j.ijforecast.2019.03.010 – ident: bibr24-00472875211040569 doi: 10.1016/j.annals.2016.10.007 – ident: bibr35-00472875211040569 doi: 10.1016/j.annals.2019.04.005 – ident: bibr47-00472875211040569 doi: 10.1016/j.tourman.2014.07.019 – ident: bibr12-00472875211040569 doi: 10.1016/j.annals.2017.07.019 – ident: bibr13-00472875211040569 doi: 10.1016/j.tourman.2004.02.013 – ident: bibr25-00472875211040569 doi: 10.1162/neco.1997.9.8.1735 – volume: 75 year: 2019 ident: bibr41-00472875211040569 publication-title: Annals of Tourism Research – volume: 137 issue: 1 year: 2002 ident: bibr50-00472875211040569 publication-title: Artificial Intelligence – ident: bibr11-00472875211040569 doi: 10.1016/j.tourman.2019.04.015 – ident: bibr30-00472875211040569 doi: 10.1016/j.annals.2020.102943 – ident: bibr37-00472875211040569 doi: 10.1177/0047287516669050 – ident: bibr4-00472875211040569 doi: 10.1016/j.tourman.2018.05.005 – ident: bibr28-00472875211040569 doi: 10.1016/j.annals.2019.01.014 – ident: bibr46-00472875211040569 doi: 10.1108/IJCHM-05-2015-0249 – ident: bibr33-00472875211040569 doi: 10.1177/0047287518824158 – ident: bibr29-00472875211040569 doi: 10.1038/nmeth.3968 – ident: bibr39-00472875211040569 doi: 10.1016/j.annals.2018.11.006 – ident: bibr43-00472875211040569 doi: 10.1016/j.ijforecast.2010.11.002  | 
    
| SSID | ssj0001431 | 
    
| Score | 2.5491571 | 
    
| Snippet | Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource... | 
    
| SourceID | proquest crossref sage  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1719 | 
    
| SubjectTerms | Big Data Deep learning Demand Forecasting techniques Tourism Tourist attractions  | 
    
| Title | Forecasting Daily Tourism Demand for Tourist Attractions with Big Data: An Ensemble Deep Learning Method | 
    
| URI | https://journals.sagepub.com/doi/full/10.1177/00472875211040569 https://www.proquest.com/docview/2717271140  | 
    
| Volume | 61 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: Sage journals customDbUrl: eissn: 1552-6763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001431 issn: 0047-2875 databaseCode: AYPQM dateStart: 19990201 isFulltext: true titleUrlDefault: https://journals.sagepub.com providerName: SAGE Publications  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wAviE9RNpAfEEhMnprvmLfCOiq0DpBaUZ4ix3FGJJZ2qyMh_hj-Vu5iJ003NgEPjRo3cVTfL-fz-e53hLzwkKQulC7LcsGZnwqXcV9lLPO93BduLLjE3OHpSTiZ-x8WwaLX-9WJWqp0eiB__jGv5H-kCm0gV8yS_QfJtp1CA3wH-cIRJAzHv5Ix1tWUYl1HLh8KdFRYUkBQI2foEccYQtOk90daX5gsBpvR9rbAu7SwvsFxuVZnmEd1qNSq4V093Z_WJaavsWE1Fi_CygAdnxiG4wDm2Jeqxk7RhvwUZnu_Kn8UYtm0LuqrJks7gbbXTaqi65CAtayz5ZC4kgm9lXlltDCyQ8SmYsqBsoo3cFnYKDurmQ1Nu0Vg3FGzTmT1rLKnhjjm6nRQb0jXjJjwOFzrgn0a8s3c1-z3n3xMjubHx8lsvJi9XJ0zrEqGu_e2RMstsuPCrDHsk53R10-fp-1cD9amqclo_5HdN68pvS4_ddvy2SxnOhGEtVEzu0fuWknSkYHWfdJT5QNy-72yPOYPybcOxGgNMWohRg3EKEDMNmnagRhFiFGAGEWIvaGjkjYAowgw2gCMGoA9IvOj8ezdhNniHEx6XqRZKngEtqabK5m7IogUGIY8BfvPU2Ec-x4S-XkyDtJhxsGGlpHKJWiCQIKNGnjK9x6Tfrks1ROMrnNkyn0uYcB8KRUP8jgTMh5GIRfwGZBhM3CJtMz1WEDle-I0ZPWXx3pAXre3rAxty00X7zXSSOzbvU7cCE17x_GHA_IKJbT56dqOnt7c0S65s3lf9khfX1TqGZi0On1ucfUbE2eYkw | 
    
| linkProvider | SAGE Publications | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt7g-cxAEoUu3SR_xtr5YHxUFBcVDSdPUXVyr7HYP-uudtOn6QEU89NJmwjSTZr6kM98AbFFNUudJx0pSwS0WC8fiTCVWwmjKhBMILnXucHjuta_ZyY17Y6IqdS6MGcFBQ4dVoUbFYj36uv2CjMdHlO_qjQuCDY-Pw0RBalaDidbtxWU4WocRCZT18jQXAUqYf5rfdvLZK71DzQ_RXYXDOZqBu0rVMs7koTHMUcvXLyyO_3uXWZg2OJS0yokzB2Mqm4dJUxK987IAHV20U4qBDosmB6LbeyGGcZAcqEeRJQThrrmVk1ae98sUiQHRR7tkr6ulcrFLWhk5zAbqMe4plFTPxFC63pOwqF69CNdHh1f7bcuUZbAkpX5uxYL7iDKcVMnUEa6vEBLwGD0_VV4QMKop3KgM3NhOOKIn6atU4hxwJaITlypGl6CWPWVqWcdVNWXMGZc4DkxKxd00SIQMbN_jAq862JVZImk4y3XpjF7UrGjKvw5hHXZGIs8lYcdvjdcqW0eVtSLH16AO94l2Hba16d4f_djRyp9bbsJk-yo8i86Oz09XYcrR2RRFauMa1PL-UK0jxsnjDTOZ3wCjSOs4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYJODCjiirD0hISIE2dhZzK7RVWVqBBFI5RY7j0IoSKhoO8PXMJE6BChDikEvisWzPxH62Z94QsseQpM5VthXFUlg8lLYluI6siLOYS9uXQmHscKvtNm_5ecfpmAM3jIUxIzg8RLcqaFE2WePfPYjiI3PHeJRRHALQxs0LAA5XTJJpH_YxYNXT1bur69ZoLgY0kOfMQz4CkDD3mt9W8nVl-oCbnzy8skWnsUCCorm5r8nD4UsKLX0bY3L8f38WybzBo7SaG9ASmdDJMpk1qdG7ryuki8k7lRyiezStyV7_lRrmQVrTjzKJKMBe8yql1TR9zkMlhhSPeOlJD6VSeUyrCa0nQ_0Y9jVI6gE11K73tJVlsV4lt436zWnTMukZLMWYl1qhFB6gDTvWKral42mABiIEBMC06_ucIZUbU74TliMBKEp5OlZgC44ClOIwzdkamUqeEr2O_lUVFQouFIwDV0oLJ_Yjqfyy5woJT4mUC9UEynCXYwqNflAp6MrHh7BEDkYig5y447fCW4W-g0Jjge0huIP9YrlE9lF9H59-rGjjzyV3ycxVrRFcnrUvNsmcjUEVWYTjFplKn1_0NkCdNNwx9vwOj2vtrQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Daily+Tourism+Demand+for+Tourist+Attractions+with+Big+Data%3A+An+Ensemble+Deep+Learning+Method&rft.jtitle=Journal+of+travel+research&rft.au=Jian-Wu%2C+Bi&rft.au=Li%2C+Chunxiao&rft.au=Xu%2C+Hong&rft.au=Li%2C+Hui&rft.date=2022-11-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=0047-2875&rft.eissn=1552-6763&rft.volume=61&rft.issue=8&rft.spage=1719&rft.epage=1737&rft_id=info:doi/10.1177%2F00472875211040569&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2875&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2875&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2875&client=summon |