Formation and fragmentation of 2-hydroxyethylhydrazinium nitrate (HEHN) cluster ions: a combined electrospray ionization mass spectrometry, molecular dynamics and reaction potential surface study

The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation o...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 26; pp. 1737 - 17384
Main Authors Zhou, Wenjing, Liu, Jianbo, Chambreau, Steven D, Vaghjiani, Ghanshyam L
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 05.07.2023
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d3cp02610h

Cover

Abstract The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H] + and NO 3 − constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN) n HE + H] + , [(HEHN) n (HE) 2 + H] + , [(HE) n +1 + H] + and [(HE) n C 2 H 4 OH] + ( n = 0-2), of which [(HE) 1-2 + H] + dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO 3 , HE and HE·HNO 3 , and the latter two become dominant in larger clusters. [(HE) 2 + H] + and [(HE) n C 2 H 4 OH] + contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion. The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs.
AbstractList The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H] + and NO 3 − constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN) n HE + H] + , [(HEHN) n (HE) 2 + H] + , [(HE) n +1 + H] + and [(HE) n C 2 H 4 OH] + ( n = 0–2), of which [(HE) 1–2 + H] + dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO 3 , HE and HE·HNO 3 , and the latter two become dominant in larger clusters. [(HE) 2 + H] + and [(HE) n C 2 H 4 OH] + contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion.
The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H] + and NO 3 − constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN) n HE + H] + , [(HEHN) n (HE) 2 + H] + , [(HE) n +1 + H] + and [(HE) n C 2 H 4 OH] + ( n = 0-2), of which [(HE) 1-2 + H] + dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO 3 , HE and HE·HNO 3 , and the latter two become dominant in larger clusters. [(HE) 2 + H] + and [(HE) n C 2 H 4 OH] + contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion. The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs.
The 2-hydroxyethylhydrazinium nitrate ([HOCH CH NH NH ] NO , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H] and NO constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN) HE + H] , [(HEHN) (HE) + H] , [(HE) + H] and [(HE) C H OH] ( = 0-2), of which [(HE) + H] dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO , HE and HE·HNO , and the latter two become dominant in larger clusters. [(HE) + H] and [(HE) C H OH] contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion.
The 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3-, HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H]+ and NO3- constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN)nHE + H]+, [(HEHN)n(HE)2 + H]+, [(HE)n+1 + H]+ and [(HE)nC2H4OH]+ (n = 0-2), of which [(HE)1-2 + H]+ dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO3, HE and HE·HNO3, and the latter two become dominant in larger clusters. [(HE)2 + H]+ and [(HE)nC2H4OH]+ contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion.The 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3-, HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H]+ and NO3- constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN)nHE + H]+, [(HEHN)n(HE)2 + H]+, [(HE)n+1 + H]+ and [(HE)nC2H4OH]+ (n = 0-2), of which [(HE)1-2 + H]+ dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO3, HE and HE·HNO3, and the latter two become dominant in larger clusters. [(HE)2 + H]+ and [(HE)nC2H4OH]+ contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion.
The 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3−, HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H]+ and NO3− constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN)nHE + H]+, [(HEHN)n(HE)2 + H]+, [(HE)n+1 + H]+ and [(HE)nC2H4OH]+ (n = 0–2), of which [(HE)1–2 + H]+ dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO3, HE and HE·HNO3, and the latter two become dominant in larger clusters. [(HE)2 + H]+ and [(HE)nC2H4OH]+ contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion.
Author Zhou, Wenjing
Chambreau, Steven D
Liu, Jianbo
Vaghjiani, Ghanshyam L
AuthorAffiliation Jacobs Technology, Inc
Edwards Air Force Base
In-Space Propulsion Branch
the Graduate Center of the City University of New York
Department of Chemistry and Biochemistry
Queens College of the City University of New York
PhD Program in Chemistry
Air Force Research Laboratory
Rocket Propulsion Division
Aerospace Systems Directorate
AFRL/RQRS
AuthorAffiliation_xml – sequence: 0
  name: Aerospace Systems Directorate
– sequence: 0
  name: Jacobs Technology, Inc
– sequence: 0
  name: PhD Program in Chemistry
– sequence: 0
  name: the Graduate Center of the City University of New York
– sequence: 0
  name: Air Force Research Laboratory
– sequence: 0
  name: Department of Chemistry and Biochemistry
– sequence: 0
  name: In-Space Propulsion Branch
– sequence: 0
  name: Rocket Propulsion Division
– sequence: 0
  name: Queens College of the City University of New York
– sequence: 0
  name: AFRL/RQRS
– sequence: 0
  name: Edwards Air Force Base
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Zhou
  fullname: Zhou, Wenjing
– sequence: 2
  givenname: Jianbo
  surname: Liu
  fullname: Liu, Jianbo
– sequence: 3
  givenname: Steven D
  surname: Chambreau
  fullname: Chambreau, Steven D
– sequence: 4
  givenname: Ghanshyam L
  surname: Vaghjiani
  fullname: Vaghjiani, Ghanshyam L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37350058$$D View this record in MEDLINE/PubMed
BookMark eNptkk9v1DAQxS1URP_AhTvIEpeCCNhxEsfc0NKySBVwgHM0azusq9hObUci_Xr9YvVu2iJVnDzy_N7TaOYdowPnnUboJSUfKGHio2JyJGVDyfYJOqJVwwpB2urgoebNITqO8ZIQQmvKnqFDxllNSN0eoZtzHywk4x0Gp3Af4I_VLi0_vsdlsZ1V8H9nnbbzsKvh2jgzWexMCpA0Pl2frb-_xXKYYtIBZ138hAFLbzfGaYX1oGUKPo4B5l3XXC_mFmLEcdw3rU5hfo-tz-w0QMBqdmCNjPuhgga5l4w-5dkMDDhOoQepcUyTmp-jpz0MUb-4e0_Q7_OzX6t1cfHj67fV54tCMsZTAU0DciOakmvBeyIEbXrGAfIOOa0bUdGyrphoayqJUm1Z9Q0XjCkudA-0EuwEnS6-Y_BXk46psyZKPQzgtJ9iV7alqBgtqzqjbx6hl34KLk-XKcbqklctzdTrO2raWK26MRgLYe7uz5MBsgAyLzAG3XfSLLfJuzdDR0m3S0D3ha1-7hOwzpJ3jyT3rv-FXy1wiPKB-xcndgvODL3x
CitedBy_id crossref_primary_10_1021_acs_jpca_4c03190
crossref_primary_10_1039_D4CP02329C
crossref_primary_10_1021_acs_energyfuels_3c04880
crossref_primary_10_1021_acs_jpcb_4c02942
Cites_doi 10.1021/acs.jpclett.7b00672
10.1016/j.actaastro.2016.11.047
10.1021/jp805343h
10.1016/j.jcis.2004.08.132
10.1063/1.1679751
10.1039/D0CP01788D
10.1063/1.449799
10.1002/anie.200501328
10.1021/acs.chemrev.5b00158
10.1021/acs.jpca.0c07595
10.1039/c0cc02162h
10.1016/j.jasms.2007.03.011
10.1002/9783527340033
10.1021/acs.jpca.0c01973
10.1063/5.0102592
10.1016/j.combustflame.2020.06.028
10.1063/1.1700424
10.21474/IJAR01/1627
10.1021/acs.jpcb.0c07823
10.1021/jp905978z
10.1063/1.480224
10.1021/acs.jpca.6b06289
10.1063/1.1598281
10.1039/B313133E
10.1021/ef800286b
10.1021/cr500364t
10.1002/rcm.8587
10.1021/j100350a018
10.1071/CH06478
10.1063/1.1143254
10.1016/j.softx.2015.06.001
10.1063/5.0018516
10.1007/s008940100045
10.2514/1.B36292
10.1021/cr980032t
10.1021/ac0202583
10.1063/1.473494
10.1016/0263-7855(96)00018-5
10.1021/bk-2012-1117.ch002
10.1016/S1044-0305(98)00027-0
10.1021/acsami.9b16786
10.1063/1.323299
10.1039/D0CP06682F
10.1016/S1387-3806(00)00310-9
10.1255/ejms.476
10.1021/ct700301q
10.1063/1.1457438
10.1063/5.0063476
10.1093/bioinformatics/btt055
10.1038/s41467-022-33895-5
10.2514/1.49959
10.1021/acs.jpcb.9b01015
10.1002/anie.201101954
10.1063/1.4705754
10.1017/S0022112010003423
10.1021/ct100326h
10.2514/1.B37471
10.1021/acs.jpca.1c07408
10.3390/aerospace7100141
10.1016/0010-4655(95)00042-E
10.1039/D2CP01571D
10.1021/acs.analchem.2c04141
10.1021/acs.jpcb.0c02253
10.1021/ef500264z
10.1103/PhysRevE.99.061101
10.1021/ac010174e
10.1002/jcc.540120814
10.1142/9789812812162_0005
10.1021/jp804585y
10.1088/0022-3727/39/1/020
10.1021/acs.analchem.6b01212
10.1021/cr1003248
10.1021/j100027a010
10.1017/S0022112092002829
10.1021/acs.jpca.7b12072
10.1002/jcc.20291
10.1016/1044-0305(92)87067-9
10.1002/prep.200900103
10.1021/acs.analchem.6b00881
10.1002/rcm.1290040305
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cp02610h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 17384
ExternalDocumentID 37350058
10_1039_D3CP02610H
d3cp02610h
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-a66acb9627e97f09916f37aa103715694125439851c0dd824f67933d79efa1493
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 16:20:04 EDT 2025
Mon Jun 30 13:04:00 EDT 2025
Mon Jul 21 06:05:01 EDT 2025
Tue Jul 01 00:48:03 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Dec 17 20:58:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-a66acb9627e97f09916f37aa103715694125439851c0dd824f67933d79efa1493
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3cp02610h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2013-8376
0000-0001-9577-3740
0000-0001-7473-7388
0000-0001-6985-0263
PMID 37350058
PQID 2833527481
PQPubID 2047499
PageCount 15
ParticipantIDs crossref_primary_10_1039_D3CP02610H
crossref_citationtrail_10_1039_D3CP02610H
proquest_journals_2833527481
pubmed_primary_37350058
rsc_primary_d3cp02610h
proquest_miscellaneous_2829431245
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-05
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sowa-Resat (D3CP02610H/cit72/1) 1995; 99
Zhang (D3CP02610H/cit53/1) 2020; 124
Lozano (D3CP02610H/cit35/1)
Chambreau (D3CP02610H/cit29/1) 2017; 8
MacFarlane (D3CP02610H/cit2/1) 2017
Chiu (D3CP02610H/cit13/1) 2007
Abraham (D3CP02610H/cit82/1) 2015; 1–2
Lindahl (D3CP02610H/cit78/1) 2001; 7
Van Der Spoel (D3CP02610H/cit79/1) 2005; 26
Gamero-CastaÑO (D3CP02610H/cit38/1) 2010; 662
Ticknor (D3CP02610H/cit37/1)
Lozano (D3CP02610H/cit56/1) 2006; 39
Zhang (D3CP02610H/cit9/1) 2014; 114
Zeng (D3CP02610H/cit34/1) 2020; 124
Mier-Hicks (D3CP02610H/cit16/1) 2017; 33
Plante (D3CP02610H/cit49/1)
Chowdhury (D3CP02610H/cit62/1) 1990; 4
Krutchinsky (D3CP02610H/cit66/1) 1998; 9
Zhang (D3CP02610H/cit8/1) 2011; 50
Moe (D3CP02610H/cit71/1) 2021; 23
Pronk (D3CP02610H/cit81/1) 2013; 29
Hallett (D3CP02610H/cit4/1) 2011; 111
Bonhommeau (D3CP02610H/cit55/1) 2012; 136
Greaves (D3CP02610H/cit22/1) 2015; 115
Berg (D3CP02610H/cit15/1)
Rodgers (D3CP02610H/cit74/1) 1997; 106
Ghasemalizadeh (D3CP02610H/cit86/1) 2016; 4
Patrick (D3CP02610H/cit44/1) 2020; 34
Avid (D3CP02610H/cit5/1) 2022; 13
Miller (D3CP02610H/cit40/1)
Bakken (D3CP02610H/cit91/1) 1999; 111
Nanita (D3CP02610H/cit52/1) 2006; 45
Lifshitz (D3CP02610H/cit75/1) 2002; 8
Douglas (D3CP02610H/cit67/1) 1992; 3
Moision (D3CP02610H/cit65/1) 2007; 18
Peslherbe (D3CP02610H/cit94/1) 1999; 105
Bolton (D3CP02610H/cit90/1) 1998
McCrary (D3CP02610H/cit10/1) 2014; 28
Castro (D3CP02610H/cit100/1)
Donius (D3CP02610H/cit18/1) 2011; 48
Welton (D3CP02610H/cit3/1) 1999; 99
Chowdhury (D3CP02610H/cit25/1) 2010; 35
Chambreau (D3CP02610H/cit27/1) 2022; 126
Esparza (D3CP02610H/cit26/1) 2020; 220
Fernández de la Mora (D3CP02610H/cit48/1) 1992; 243
Stovbun (D3CP02610H/cit21/1) 2017; 135
Armentrout (D3CP02610H/cit61/1) 2004; 19
Wang (D3CP02610H/cit99/1) 1997
Sun (D3CP02610H/cit73/1) 2020; 20
Uchizono (D3CP02610H/cit45/1) 2020; 7
Fang (D3CP02610H/cit58/1) 2009; 113
Zhou (D3CP02610H/cit57/1) 2022; 24
Coles (D3CP02610H/cit39/1)
Wainwright (D3CP02610H/cit43/1) 2019; 35
Marcus (D3CP02610H/cit76/1) 1952; 20
Levine (D3CP02610H/cit68/1) 1987
Chambreau (D3CP02610H/cit30/1) 2016; 120
Hase (D3CP02610H/cit89/1) 1992
Baldridge (D3CP02610H/cit88/1) 1989; 93
Prince (D3CP02610H/cit17/1) 2019
Kim (D3CP02610H/cit63/1) 2001; 73
Hess (D3CP02610H/cit80/1) 2008; 4
Romero-Sanz (D3CP02610H/cit12/1) 2003; 94
Kohn (D3CP02610H/cit28/1) 1992; 63
Zhou (D3CP02610H/cit97/1) 2020; 124
Patrick (D3CP02610H/cit33/1) 2018; 122
Prince (D3CP02610H/cit14/1) 2012
Uchizono (D3CP02610H/cit46/1) 2021; 130
Luedtke (D3CP02610H/cit103/1) 2008; 112
Alecu (D3CP02610H/cit98/1) 2010; 6
Miller (D3CP02610H/cit41/1)
Lu (D3CP02610H/cit84/1) 2023
Páll (D3CP02610H/cit83/1) 2020; 153
MacFarlane (D3CP02610H/cit1/1) 2007; 60
Gamero-Castano (D3CP02610H/cit50/1) 2019; 99
Konermann (D3CP02610H/cit54/1) 2022; 94
Breddan (D3CP02610H/cit42/1)
Armentrout (D3CP02610H/cit60/1) 2000; 200
Liu (D3CP02610H/cit95/1) 2019; 123
Ervin (D3CP02610H/cit101/1) 1985; 83
Armentrout (D3CP02610H/cit102/1) 2008; 112
Lee (D3CP02610H/cit32/1) 2016; 88
(D3CP02610H/cit59/1) 1992
Lozano (D3CP02610H/cit36/1) 2005; 282
Berendsen (D3CP02610H/cit77/1) 1995; 91
Rovey (D3CP02610H/cit19/1) 2019
Shamshina (D3CP02610H/cit23/1) 2010; 46
Humphrey (D3CP02610H/cit87/1) 1996; 14
Hu (D3CP02610H/cit92/1) 1991; 12
Schneider (D3CP02610H/cit20/1) 2012
Liu (D3CP02610H/cit96/1) 2020; 124
Tang (D3CP02610H/cit64/1) 2002; 74
Schneider (D3CP02610H/cit7/1) 2008; 22
Uchizono (D3CP02610H/cit47/1) 2022; 121
Jain (D3CP02610H/cit11/1) 1989; 69
Rebick (D3CP02610H/cit69/1) 1973; 58
Zhou (D3CP02610H/cit31/1) 2016; 88
Liu (D3CP02610H/cit70/1) 2002; 116
Crowley (D3CP02610H/cit51/1) 1977; 48
Qi (D3CP02610H/cit6/1) 2020; 12
References_xml – doi: Castro Larriba Mora Lozano Sümer
– doi: Coles Lozano
– doi: Miller Lozano
– issn: 2016
  publication-title: Gaussian 16 Rev. B.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– issn: 2023
  publication-title: Sobtop, Beijing Kein Research Center for Natural Sciences
  doi: Lu
– doi: Breddan Collins Wirz
– doi: Plante Lee
– issn: 2012
  end-page: p 27-49
  publication-title: Ionic liquids: Science and Applications (ACS Symp. Ser.)
  doi: Prince Fritz Chiu
– issn: 2019
  publication-title: AIAA Propulsion and Energy 2019 Forum
  doi: Prince Annesley Bemish Hunt
– doi: Lozano Martinez-Sanchez
– issn: 2014
  doi: Hawkins Brand Drake
– issn: 1997
  end-page: p 137-174
  publication-title: Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications
  doi: Wang Cole
– issn: 2007
  end-page: p 138-160
  publication-title: Ionic Liquids IV (ACS Symp. Ser.)
  doi: Chiu Dressler
– issn: 1992
  publication-title: State-selected and state-to-state ion-molecule reaction dynamics. Part 1: Experiment
– issn: 1992
  publication-title: Advances in Classical Trajectory Methods, Intramolecular and Nonlinear Dynamics
  doi: Hase
– issn: 1998
  end-page: p 143-189
  publication-title: Modern Methods for Multidimensional Dynamics Computations in Chemistry
  doi: Bolton Hase Peslherbe
– issn: 1999
  publication-title: VENUS 99: A General Chemical Dynamics Computer Program
  doi: Hase Bolton de Sainte Claire Duchovic Hu Komornicki Li Lim Lu Peslherbe Song Swamy Vande Linde Varandas Wang Wolf
– issn: 2012
  end-page: p 1-25
  publication-title: Ionic Liquids: Science and Applications (ACS Symp. Ser.)
  doi: Schneider Hawkins Ahmed Deplazes Mills
– issn: 2017
  publication-title: Fundamentals of Ionic Liquids: From Chemistry to Applications
  doi: MacFarlane Kar Pringle
– doi: Miller Prince Bemish Rovey
– issn: 1987
  publication-title: Molecular Reaction Dynamics and Chemical Reactivity
  doi: Levine Bernstein
– issn: 2019
  publication-title: AIAA Propulsion and Energy 2019 Forum
  doi: Rovey Lyne Mundahl Rasmont Glascock Wainwright Berg
– doi: Ticknor Miller Chiu
– doi: Berg Rovey Prince Miller Bemish
– volume: 8
  start-page: 2126
  year: 2017
  ident: D3CP02610H/cit29/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00672
– volume: 135
  start-page: 110
  year: 2017
  ident: D3CP02610H/cit21/1
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.11.047
– volume: 112
  start-page: 10071
  year: 2008
  ident: D3CP02610H/cit102/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp805343h
– volume: 282
  start-page: 415
  year: 2005
  ident: D3CP02610H/cit36/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.132
– volume: 58
  start-page: 3942
  year: 1973
  ident: D3CP02610H/cit69/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1679751
– volume: 20
  start-page: 14875
  year: 2020
  ident: D3CP02610H/cit73/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01788D
– ident: D3CP02610H/cit41/1
– volume: 83
  start-page: 166
  year: 1985
  ident: D3CP02610H/cit101/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449799
– volume: 45
  start-page: 554
  year: 2006
  ident: D3CP02610H/cit52/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501328
– volume: 69
  start-page: 175
  year: 1989
  ident: D3CP02610H/cit11/1
  publication-title: J. Indian Inst. Sci.
– volume: 115
  start-page: 11379
  year: 2015
  ident: D3CP02610H/cit22/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00158
– volume-title: State-selected and state-to-state ion-molecule reaction dynamics. Part 1: Experiment
  year: 1992
  ident: D3CP02610H/cit59/1
– ident: D3CP02610H/cit49/1
– volume-title: Sobtop, Beijing Kein Research Center for Natural Sciences
  year: 2023
  ident: D3CP02610H/cit84/1
– volume: 105
  start-page: 171
  year: 1999
  ident: D3CP02610H/cit94/1
  publication-title: Adv. Chem. Phys.
– volume-title: AIAA Propulsion and Energy 2019 Forum
  year: 2019
  ident: D3CP02610H/cit19/1
– volume: 124
  start-page: 10507
  year: 2020
  ident: D3CP02610H/cit34/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c07595
– volume: 46
  start-page: 8965
  year: 2010
  ident: D3CP02610H/cit23/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02162h
– volume: 18
  start-page: 1124
  year: 2007
  ident: D3CP02610H/cit65/1
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2007.03.011
– volume-title: Fundamentals of Ionic Liquids: From Chemistry to Applications
  year: 2017
  ident: D3CP02610H/cit2/1
  doi: 10.1002/9783527340033
– volume: 124
  start-page: 3535
  year: 2020
  ident: D3CP02610H/cit53/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c01973
– volume: 121
  start-page: 074103
  year: 2022
  ident: D3CP02610H/cit47/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0102592
– volume-title: AIAA Propulsion and Energy 2019 Forum
  year: 2019
  ident: D3CP02610H/cit17/1
– start-page: 1
  volume-title: Ionic Liquids: Science and Applications (ACS Symp. Ser.)
  year: 2012
  ident: D3CP02610H/cit20/1
– volume: 220
  start-page: 1
  year: 2020
  ident: D3CP02610H/cit26/1
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.06.028
– volume: 20
  start-page: 359
  year: 1952
  ident: D3CP02610H/cit76/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700424
– volume: 4
  start-page: 1668
  year: 2016
  ident: D3CP02610H/cit86/1
  publication-title: Int. J. Adv. Res.
  doi: 10.21474/IJAR01/1627
– volume: 124
  start-page: 11175
  year: 2020
  ident: D3CP02610H/cit97/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c07823
– volume: 113
  start-page: 11250
  year: 2009
  ident: D3CP02610H/cit58/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905978z
– ident: D3CP02610H/cit15/1
– ident: D3CP02610H/cit35/1
– volume: 111
  start-page: 8773
  year: 1999
  ident: D3CP02610H/cit91/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480224
– volume: 120
  start-page: 8011
  year: 2016
  ident: D3CP02610H/cit30/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b06289
– ident: D3CP02610H/cit42/1
– volume: 94
  start-page: 3599
  year: 2003
  ident: D3CP02610H/cit12/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1598281
– volume: 19
  start-page: 571
  year: 2004
  ident: D3CP02610H/cit61/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/B313133E
– volume: 22
  start-page: 2871
  year: 2008
  ident: D3CP02610H/cit7/1
  publication-title: Energy Fuels
  doi: 10.1021/ef800286b
– volume: 114
  start-page: 10527
  year: 2014
  ident: D3CP02610H/cit9/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500364t
– volume: 34
  start-page: e8587
  year: 2020
  ident: D3CP02610H/cit44/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.8587
– ident: D3CP02610H/cit37/1
– ident: D3CP02610H/cit39/1
– volume: 93
  start-page: 5107
  year: 1989
  ident: D3CP02610H/cit88/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100350a018
– volume: 60
  start-page: 3
  year: 2007
  ident: D3CP02610H/cit1/1
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH06478
– volume: 63
  start-page: 4003
  year: 1992
  ident: D3CP02610H/cit28/1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1143254
– volume: 1–2
  start-page: 19
  year: 2015
  ident: D3CP02610H/cit82/1
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 153
  start-page: 134110
  year: 2020
  ident: D3CP02610H/cit83/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0018516
– volume: 7
  start-page: 306
  year: 2001
  ident: D3CP02610H/cit78/1
  publication-title: Mol. Modeling Annual
  doi: 10.1007/s008940100045
– volume: 33
  start-page: 456
  year: 2017
  ident: D3CP02610H/cit16/1
  publication-title: J. Propul. Power
  doi: 10.2514/1.B36292
– volume: 99
  start-page: 2071
  year: 1999
  ident: D3CP02610H/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr980032t
– volume: 74
  start-page: 5431
  year: 2002
  ident: D3CP02610H/cit64/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac0202583
– volume: 106
  start-page: 4499
  year: 1997
  ident: D3CP02610H/cit74/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473494
– volume: 14
  start-page: 33
  year: 1996
  ident: D3CP02610H/cit87/1
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– start-page: 27
  volume-title: Ionic liquids: Science and Applications (ACS Symp. Ser.)
  year: 2012
  ident: D3CP02610H/cit14/1
  doi: 10.1021/bk-2012-1117.ch002
– volume: 9
  start-page: 569
  year: 1998
  ident: D3CP02610H/cit66/1
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(98)00027-0
– volume: 12
  start-page: 591
  year: 2020
  ident: D3CP02610H/cit6/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16786
– ident: D3CP02610H/cit40/1
– volume: 48
  start-page: 145
  year: 1977
  ident: D3CP02610H/cit51/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323299
– volume: 23
  start-page: 9365
  year: 2021
  ident: D3CP02610H/cit71/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP06682F
– volume: 200
  start-page: 219
  year: 2000
  ident: D3CP02610H/cit60/1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/S1387-3806(00)00310-9
– volume: 8
  start-page: 85
  year: 2002
  ident: D3CP02610H/cit75/1
  publication-title: Eur. J. Mass Spectrom.
  doi: 10.1255/ejms.476
– volume: 4
  start-page: 435
  year: 2008
  ident: D3CP02610H/cit80/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– ident: D3CP02610H/cit100/1
– volume: 116
  start-page: 5530
  year: 2002
  ident: D3CP02610H/cit70/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1457438
– volume: 130
  start-page: 143301
  year: 2021
  ident: D3CP02610H/cit46/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0063476
– volume: 29
  start-page: 845
  year: 2013
  ident: D3CP02610H/cit81/1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt055
– volume: 13
  start-page: 6349
  year: 2022
  ident: D3CP02610H/cit5/1
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-022-33895-5
– volume-title: Molecular Reaction Dynamics and Chemical Reactivity
  year: 1987
  ident: D3CP02610H/cit68/1
– volume: 48
  start-page: 110
  year: 2011
  ident: D3CP02610H/cit18/1
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.49959
– volume: 123
  start-page: 2956
  year: 2019
  ident: D3CP02610H/cit95/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b01015
– volume: 50
  start-page: 9554
  year: 2011
  ident: D3CP02610H/cit8/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101954
– volume: 136
  start-page: 184503
  year: 2012
  ident: D3CP02610H/cit55/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4705754
– volume: 662
  start-page: 493
  year: 2010
  ident: D3CP02610H/cit38/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010003423
– volume: 6
  start-page: 2872
  year: 2010
  ident: D3CP02610H/cit98/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100326h
– volume: 35
  start-page: 922
  year: 2019
  ident: D3CP02610H/cit43/1
  publication-title: J. Propul. Power
  doi: 10.2514/1.B37471
– volume: 126
  start-page: 373
  year: 2022
  ident: D3CP02610H/cit27/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.1c07408
– volume: 7
  start-page: 141
  year: 2020
  ident: D3CP02610H/cit45/1
  publication-title: Aerospace
  doi: 10.3390/aerospace7100141
– volume: 91
  start-page: 43
  year: 1995
  ident: D3CP02610H/cit77/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-E
– volume: 24
  start-page: 14033
  year: 2022
  ident: D3CP02610H/cit57/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP01571D
– volume: 94
  start-page: 16491
  year: 2022
  ident: D3CP02610H/cit54/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04141
– volume: 124
  start-page: 4303
  year: 2020
  ident: D3CP02610H/cit96/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c02253
– volume: 28
  start-page: 3460
  year: 2014
  ident: D3CP02610H/cit10/1
  publication-title: Energy Fuels
  doi: 10.1021/ef500264z
– volume: 99
  start-page: 061101
  year: 2019
  ident: D3CP02610H/cit50/1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.061101
– volume: 73
  start-page: 4162
  year: 2001
  ident: D3CP02610H/cit63/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac010174e
– volume: 12
  start-page: 1014
  year: 1991
  ident: D3CP02610H/cit92/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540120814
– start-page: 143
  volume-title: Modern Methods for Multidimensional Dynamics Computations in Chemistry
  year: 1998
  ident: D3CP02610H/cit90/1
  doi: 10.1142/9789812812162_0005
– volume: 112
  start-page: 9628
  year: 2008
  ident: D3CP02610H/cit103/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp804585y
– start-page: 137
  volume-title: Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications
  year: 1997
  ident: D3CP02610H/cit99/1
– volume: 39
  start-page: 126
  year: 2006
  ident: D3CP02610H/cit56/1
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/1/020
– volume: 88
  start-page: 5542
  year: 2016
  ident: D3CP02610H/cit31/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01212
– volume: 111
  start-page: 3508
  year: 2011
  ident: D3CP02610H/cit4/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr1003248
– volume: 99
  start-page: 10736
  year: 1995
  ident: D3CP02610H/cit72/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100027a010
– volume: 243
  start-page: 561
  year: 1992
  ident: D3CP02610H/cit48/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112092002829
– volume-title: Advances in Classical Trajectory Methods, Intramolecular and Nonlinear Dynamics
  year: 1992
  ident: D3CP02610H/cit89/1
– volume: 122
  start-page: 1960
  year: 2018
  ident: D3CP02610H/cit33/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b12072
– volume: 26
  start-page: 1701
  year: 2005
  ident: D3CP02610H/cit79/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– start-page: 138
  volume-title: Ionic Liquids IV (ACS Symp. Ser.)
  year: 2007
  ident: D3CP02610H/cit13/1
– volume: 3
  start-page: 398
  year: 1992
  ident: D3CP02610H/cit67/1
  publication-title: J. Am. Mass Spectrom.
  doi: 10.1016/1044-0305(92)87067-9
– volume: 35
  start-page: 572
  year: 2010
  ident: D3CP02610H/cit25/1
  publication-title: Propellants, Explos., Pyrotech.
  doi: 10.1002/prep.200900103
– volume: 88
  start-page: 5453
  year: 2016
  ident: D3CP02610H/cit32/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b00881
– volume: 4
  start-page: 81
  year: 1990
  ident: D3CP02610H/cit62/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.1290040305
SSID ssj0001513
Score 2.4499567
Snippet The 2-hydroxyethylhydrazinium nitrate ([HOCH 2 CH 2 NH 2 NH 2 ] + NO 3 − , HEHN) ionic liquid has the potential to power both electric and chemical thrusters...
The 2-hydroxyethylhydrazinium nitrate ([HOCH CH NH NH ] NO , HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a...
The 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3−, HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a...
The 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3-, HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1737
SubjectTerms Classical mechanics
Clusters
Constituents
Covalent bonds
Density functional theory
Electrospraying
Fragmentation
Ion beams
Ion emission
Ionic liquids
Ionization
Ions
Mass spectrometry
Molecular dynamics
Optimization
Potential energy
Scientific imaging
Specific impulse
Thrusters
Title Formation and fragmentation of 2-hydroxyethylhydrazinium nitrate (HEHN) cluster ions: a combined electrospray ionization mass spectrometry, molecular dynamics and reaction potential surface study
URI https://www.ncbi.nlm.nih.gov/pubmed/37350058
https://www.proquest.com/docview/2833527481
https://www.proquest.com/docview/2829431245
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection (IReL)
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhsCAjEGJVsqRxHg23VWkpq1J6aFHFJXJem676om0O5e_xo7gy40eaaou0cIkiJ0oszWfPZ3tmPkJeR36Kx5kwkMJGYtiOFxvA8kPDBXLcdJETCDmgL323O7Ivxs64UvldilrKN-FZ9PNgXsn_WBXawK6YJfsPli0-Cg1wD_aFK1gYrjeycUdnHoojgHTFL2cqlUiQQMvItjGGqSRgjSneYy3pST6rwzjGEhFIL7vtbh-3BqJpjjUT6thZmQENPYZlMxBSJZWzXq74Fp-r1M36DIh3XaRqYs2DjTyQn2m93Xosxe5lEWjgplKUfLnYYIASpqnkq5TvVbhVJHmgsRNpNTp5h01yJ2YtdjIGrVaRnfY9W-QiXjCZX2lvjHFGE9F6AYMgXJRCGWYhdChXYW4w3-8Cn7_xy-xqIpWu6p8y8OTZls9UcobaHrGYCKV1SjO67TLDN6UO3VlyoE25Acspwd0qT-oNj0lxk2vuxmRYrTVm0RKXsma2c6o6kKD_NeiMer1g2B4P3yx_GCh3hmEBSvvlFjmywB2ZVXJ03h5-7hUkAogYk4lxsqe6si7z3-9-t8-lri2QgC6ttIyNoEvDe-SuWufQcwna-6SSzB-Q2y1t0IfkVwFeCvige-Cli5T-FbxUgZe-ReieUgVcisD9QDnVsKVl2NIdbCnClpZh-44WoKUatKJTGrS0AC1VoKUCtI_IqNMetrqGUhQxIsa8jcFdl0ch6k0lvpeauDZKmcc5Jss2HMzpxtoQPqxCIjOOm5aduuC_WOz5Scobts-OSXW-mCdPCLXBPTuJGbMkDO0otZph0-Om5_uW6QIt9mvkVNsmiFS5fVR9mQYi7IP5wUfWGgg7dmvkVfHuUhaZOfjWiTZxoCahdWCJpEnPbjZq5GXxGEyJ5358nixyfMfyYZ1g2U6NPJbQKH7DPOagtGiNHANWiuYdxp7e4LPPyJ3d0Dsh1c0qT54DV9-ELxSu_wCXlfVA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+and+fragmentation+of+2-hydroxyethylhydrazinium+nitrate+%28HEHN%29+cluster+ions%3A+a+combined+electrospray+ionization+mass+spectrometry%2C+molecular+dynamics+and+reaction+potential+surface+study&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Wenjing&rft.au=Liu%2C+Jianbo&rft.au=Chambreau%2C+Steven+D&rft.au=Vaghjiani%2C+Ghanshyam+L&rft.date=2023-07-05&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=25&rft.issue=26&rft.spage=17370&rft_id=info:doi/10.1039%2Fd3cp02610h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon