Self-consistent field theory of a helix traveling wave tube amplifier

A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is presented for a configuration in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. A linear analysis of the interaction is carried out, subject to the boundary conditions i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on plasma science Vol. 20; no. 5; pp. 543 - 553
Main Authors Freund, J.P., Kodis, M.A., Vanderplaats, N.R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.1992
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0093-3813
DOI10.1109/27.163592

Cover

Abstract A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is presented for a configuration in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. A linear analysis of the interaction is carried out, subject to the boundary conditions imposed by the beam, helix, and wall. A detrimental dispersion equation is obtained which implicitly includes beam space-charge effects without recourse to a heuristic model of the space-charge field. The equation is valid for arbitrary azimuthal mode number and is solved numerically for the azimuthally symmetric case. The coupled-wave Pierce theory is recovered in the near-resonant limit. Numerical comparisons between the complete dispersion equation and the Pierce model are described. A discrepancy is found between the Pierce and the field theory even for low currents in the nominally ballistic regime, owing to the dielectric effect of the beam on the helix modes.< >
AbstractList A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is presented for a configuration in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. A linear analysis of the interaction is carried out, subject to the boundary conditions imposed by the beam, helix, and wall. A detrimental dispersion equation is obtained which implicitly includes beam space-charge effects without recourse to a heuristic model of the space-charge field. The equation is valid for arbitrary azimuthal mode number and is solved numerically for the azimuthally symmetric case. The coupled-wave Pierce theory is recovered in the near-resonant limit. Numerical comparisons between the complete dispersion equation and the Pierce model are described. A discrepancy is found between the Pierce and the field theory even for low currents in the nominally ballistic regime, owing to the dielectric effect of the beam on the helix modes
A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is developed on the basis of relativistic fluid equations and Maxwell's equations for a configuration in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is valid for arbitrary azimuthal mode numbers and for backward propagating waves. It is shown that the near-resonant limit for azimuthally symmetric forward-propagating waves reduces to a Pierce type of coupled-wave analysis. A comparison between the complete field theory and the coupled-wave theory made for a wide range of beam currents shows that the latter breaks down for sufficiently high currents. Particular attention is given to the ballistic and space-charge dominated regimes of the Pierce analysis, in which the gain scales as the cube and fourth root of the current, respectively. A discrepancy is found between the Pierce and the field theory which is caused by the dielectric effect of the beam on the helix modes. This can result in the gain increasing faster than the cube root of the current. (O.G.)
A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is presented for a configuration in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. A linear analysis of the interaction is carried out, subject to the boundary conditions imposed by the beam, helix, and wall. A detrimental dispersion equation is obtained which implicitly includes beam space-charge effects without recourse to a heuristic model of the space-charge field. The equation is valid for arbitrary azimuthal mode number and is solved numerically for the azimuthally symmetric case. The coupled-wave Pierce theory is recovered in the near-resonant limit. Numerical comparisons between the complete dispersion equation and the Pierce model are described. A discrepancy is found between the Pierce and the field theory even for low currents in the nominally ballistic regime, owing to the dielectric effect of the beam on the helix modes.< >
Author Freund, J.P.
Kodis, M.A.
Vanderplaats, N.R.
Author_xml – sequence: 1
  givenname: J.P.
  surname: Freund
  fullname: Freund, J.P.
  organization: US Naval Res. Lab., Washington, DC, USA
– sequence: 2
  givenname: M.A.
  surname: Kodis
  fullname: Kodis, M.A.
  organization: US Naval Res. Lab., Washington, DC, USA
– sequence: 3
  givenname: N.R.
  surname: Vanderplaats
  fullname: Vanderplaats, N.R.
  organization: US Naval Res. Lab., Washington, DC, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4380047$$DView record in Pascal Francis
BookMark eNqFkL9LAzEYhjNUsFUHV6cMIjhcm1wul8soxV9QcFDnI5f7YiPppSap2v_eK1cURHD6Xvie9xneCRp1vgOETimZUkrkLBdTWjIu8xEaEyJZxirKDtEkxldCaMFJPkbXj-BMpn0XbUzQJWwsuBanJfiwxd5ghZfg7CdOQb33oXvBH33AadMAVqu1s30hHKMDo1yEk_09Qs8310_zu2zxcHs_v1pkmjGRMsVKCtpQSQw1ouKMMgltA6SsCs7bthAll41muWgKBYxUhudGUk0BOG3ahh2hi8G7Dv5tAzHVKxs1OKc68JtY5xUvCynE_yCvSsII68HzPaiiVs4E1Wkb63WwKxW2dcEqQoqd73LAdPAxBjDfBCX1buw6F_Uwds_OfrHaJpWs7_oNrfuzcTY0LAD8mIfnF68djDM
CODEN ITPSBD
CitedBy_id crossref_primary_10_1088_0741_3335_47_1_003
crossref_primary_10_1063_5_0221820
crossref_primary_10_1109_16_293360
crossref_primary_10_1063_1_4811388
crossref_primary_10_1080_002072198134643
crossref_primary_10_1063_1_2435820
crossref_primary_10_1109_TPS_2002_801553
crossref_primary_10_1016_0168_9002_94_01504_X
crossref_primary_10_1109_27_887716
crossref_primary_10_1109_TED_2015_2388737
crossref_primary_10_1109_TPS_2002_807498
crossref_primary_10_1016_j_rinp_2016_08_022
crossref_primary_10_1063_1_873622
crossref_primary_10_1063_1_353223
crossref_primary_10_1063_1_872393
crossref_primary_10_1109_TPS_2006_874847
crossref_primary_10_1109_TPS_2017_2779622
crossref_primary_10_1109_27_256785
crossref_primary_10_1016_j_physleta_2004_12_094
crossref_primary_10_1109_TPS_2018_2890739
crossref_primary_10_1007_s40094_014_0135_7
crossref_primary_10_1109_27_782291
crossref_primary_10_1088_1674_1056_25_3_038401
crossref_primary_10_1103_PhysRevE_109_025211
crossref_primary_10_1109_TPS_2014_2306018
crossref_primary_10_1063_1_365733
crossref_primary_10_1109_TPS_2019_2905513
crossref_primary_10_1080_17455030_2016_1215569
crossref_primary_10_1063_1_1856987
crossref_primary_10_1109_TPS_2014_2329996
crossref_primary_10_1007_BF02073419
crossref_primary_10_1088_0256_307X_15_5_016
crossref_primary_10_1109_TPS_2004_828784
crossref_primary_10_1109_TPS_2016_2522980
crossref_primary_10_1016_j_nima_2008_04_034
crossref_primary_10_7498_aps_61_168401
crossref_primary_10_1139_p2012_102
crossref_primary_10_1063_1_5002082
crossref_primary_10_1109_27_533093
crossref_primary_10_1109_27_338259
crossref_primary_10_1109_TED_2020_3005362
crossref_primary_10_1109_TPS_2011_2158245
crossref_primary_10_1007_s10904_015_0320_4
crossref_primary_10_1007_s40094_014_0125_9
Cites_doi 10.1103/PhysRevA.37.3371
10.1109/JQE.1987.1073543
10.1109/JRPROC.1947.226216
10.1103/PhysRevA.26.2004
10.1103/PhysRevA.28.3438
10.1109/JRPROC.1948.230932
10.1063/1.330497
10.1109/JRPROC.1947.226217
ContentType Journal Article
Copyright 1993 INIST-CNRS
Copyright_xml – notice: 1993 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
H8D
L7M
7U5
DOI 10.1109/27.163592
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EndPage 553
ExternalDocumentID 4380047
10_1109_27_163592
163592
GroupedDBID -~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
AAYXX
CITATION
IQODW
RIG
8FD
H8D
L7M
7U5
ID FETCH-LOGICAL-c337t-a361ecf190f1f7853139edbe068455dd47659bc327b4ae308f52f91c1ee51bdb3
IEDL.DBID RIE
ISSN 0093-3813
IngestDate Thu Oct 02 11:30:36 EDT 2025
Sat Sep 27 20:50:09 EDT 2025
Mon Jul 21 09:12:17 EDT 2025
Wed Oct 01 00:29:50 EDT 2025
Thu Apr 24 23:05:53 EDT 2025
Tue Aug 26 16:39:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Helical shape
Travelling wave tube
Amplifier
Boundary condition
Annular beam
Frequency characteristic
Phase velocity
Relativistic theory
Frequency
Field theory
Maxwell equation
Comparative study
Gain
Electrical characteristic
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-a361ecf190f1f7853139edbe068455dd47659bc327b4ae308f52f91c1ee51bdb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 25860303
PQPubID 23500
PageCount 11
ParticipantIDs pascalfrancis_primary_4380047
crossref_primary_10_1109_27_163592
ieee_primary_163592
crossref_citationtrail_10_1109_27_163592
proquest_miscellaneous_28564977
proquest_miscellaneous_25860303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1992-10-01
PublicationDateYYYYMMDD 1992-10-01
PublicationDate_xml – month: 10
  year: 1992
  text: 1992-10-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on plasma science
PublicationTitleAbbrev TPS
PublicationYear 1992
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref12
stix (ref13) 1962
ref11
ref10
pierce (ref3) 1950
rydbeck (ref4) 1948; 46
ref2
ref1
ref8
ref9
beck (ref6) 1958
hutter (ref7) 1960
chu (ref5) 1948; 36
References_xml – ident: ref11
  doi: 10.1103/PhysRevA.37.3371
– ident: ref12
  doi: 10.1109/JQE.1987.1073543
– volume: 46
  start-page: 3
  year: 1948
  ident: ref4
  article-title: Theory of the traveling wave tube
  publication-title: Ericsson Technics
– year: 1962
  ident: ref13
  publication-title: The Theory of Plasma Waves
– year: 1950
  ident: ref3
  publication-title: Traveling-Wave Tubes
– ident: ref1
  doi: 10.1109/JRPROC.1947.226216
– ident: ref9
  doi: 10.1103/PhysRevA.26.2004
– ident: ref10
  doi: 10.1103/PhysRevA.28.3438
– volume: 36
  start-page: 853
  year: 1948
  ident: ref5
  article-title: field theory of traveling-wave tubes
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1948.230932
– year: 1958
  ident: ref6
  publication-title: Space Charge Waves
– ident: ref8
  doi: 10.1063/1.330497
– ident: ref2
  doi: 10.1109/JRPROC.1947.226217
– year: 1960
  ident: ref7
  publication-title: Beam and Wave Electronics in Microwave Tubes
SSID ssj0014502
Score 1.5902563
Snippet A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is presented for a configuration in which a thin annular beam propagates...
A self-consistent relativistic field theory of a helix traveling wave tube (TWT) is developed on the basis of relativistic fluid equations and Maxwell's...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 543
SubjectTerms Applied sciences
Boundary conditions
Dielectrics
Dispersion
Electronic tubes, masers
Electronics
Equations
Exact sciences and technology
Propagation losses
Title Self-consistent field theory of a helix traveling wave tube amplifier
URI https://ieeexplore.ieee.org/document/163592
https://www.proquest.com/docview/25860303
https://www.proquest.com/docview/28564977
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0093-3813
  databaseCode: RIE
  dateStart: 19730101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014502
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-UwFA4qCG583HGY6zOIi9n02javZimiiAs3KrgrSXrCDHPpFdvi49d7ktYrPhjclTahbU6S8yX5zncIOXSysM5j59VK-4SDgsRK7xMjdWVwvWKgimyLS3l-wy9uxe2gsx1jYQAgks9gEi7jWX41c13YKjtC7CA0zreLqpB9qNb8wICLtBcG1yxBJ8QGEaEs1Ud52EIJFd-5nphLJTAhTYON4fssFp8m5Ohlztb68O0mihMGcsm_SdfaiXv-IN34zR9YJ6sD2qTHfffYIAtQj8jagDzpMK6bEVmORFDX_CCnVzD1iQu0WbR_3dJIcaMx3vGJzjw19A9M_z7SNuQtCrHs9AEvaNtZoCbQ07HC_Sa5OTu9PjlPhlQLiWNMtYlhMgPnER34zCt04QgMobKQyoILUVVcSaGtY7my3ABLCy9yrzOXAYjMVpb9JEv1rIZfhCL-yI3QzEPhcO3NbBVkqnJRgM44CDsmv1-tULpBhzykw5iWcT2S6jJXZd9QY3IwL3rXi298VWgUGvqtwHB3951l54-Dwn7K1Zjsv1q6xAEVTklMDbOuKfFLJc587D8lCiE54uatL9-8TVYipTcS_nbIUnvfwS4Cl9buxS77An9K7CA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqUEUv0C4gFthioR64ZEnij8RHhEDblnIBJG6R7YxF1VUWkUR8_HrGTnYrCkK9RYmtJPbY82y_eUPINytzYx0ar8qUizhkEBnpXKSlKjWuVzSUgW1xLidX_Me1uO51tkMsDAAE8hmM_WU4yy9ntvVbZYeIHYTC-XZZcM5FF6y1ODLgIu6kwRWL0A2xXkYoidVh6jdRfNUXzidkU_FcSF1jc7guj8WrKTn4mdO1LoC7DvKEnl7yZ9w2Zmyf_hFv_M9f-ExWe7xJjzoD-UI-QDUgaz32pP3IrgfkY6CC2nqdnFzA1EXWE2fRAqqGBpIbDRGPj3TmqKY3MP39QBufuchHs9N7vKBNa4BqT1DHCncb5Or05PJ4EvXJFiLLWNZEmskErEN84BKXoRNHaAilgVjmXIiy5JkUyliWZoZrYHHuROpUYhMAkZjSsE2yVM0q2CIUEUiqhWIOcourb2ZKL1SVihxUwkGYITmY90JheyVynxBjWoQVSayKNCu6hhqS_UXR205-461CA9_Qfwv0d0cvenbx2Gvsxzwbkr15Txc4pPw5ia5g1tYFfqnEuY-9UyIXkiNy3n7zzXtkZXL566w4-37-c4d8CgTfQP_bJUvNXQsjhDGN-RrM9xn_Lu9t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-consistent+field+theory+of+a+helix+traveling+wave+tube+amplifier&rft.jtitle=IEEE+transactions+on+plasma+science&rft.au=Freund%2C+J+P&rft.au=Kodis%2C+M+A&rft.au=Vanderplaats%2C+N+R&rft.date=1992-10-01&rft.issn=0093-3813&rft.volume=20&rft.issue=5&rft.spage=543&rft.epage=553&rft_id=info:doi/10.1109%2F27.163592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-3813&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-3813&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-3813&client=summon