Research on Mathematical Method Image Classification of Convolutional Neural Network Based on Firework Algorithm Optimization

The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this exploration. AlexNet, GoogLeNet, and ResNet50 are the most well-known convolutional neural networks for object discovery and item classification arrange...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 2022; no. 1
Main Authors Cui, Liping, Yang, Xin, Liu, Yan
Format Journal Article
LanguageEnglish
Published Oxford Hindawi 2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1530-8669
1530-8677
1530-8677
DOI10.1155/2022/8646994

Cover

Abstract The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this exploration. AlexNet, GoogLeNet, and ResNet50 are the most well-known convolutional neural networks for object discovery and item classification arrangement from pictures. To survey the exhibition of various kinds, a variety of photo informative indexes are provided by CNNs. Standard benchmark datasets for estimating a convolutional neural organization’s exhibition include ImageNet, CIFAR10, CIFAR100, and MNIST picture informational indexes. The performance of the three well-known channels, Alexandra cash flow, search engine net, and recurrent neural networks, is investigated in this research. Because analyzing a cable network efficiency on a single dataset does not demonstrate all of its possibilities and limits, we mentioned two of the most prominent large datasets for research: significantly improve performance, FARCICAL, and CIFAR110. Clips are exploited as testing statistics rather than teaching statistics; it should have been mentioned. GoogLeNet and ResNet50, in comparison to AlexNet, are better at recognizing objects with greater precision. Furthermore, the performance of trained CNNs varies significantly across different object categories, and we will analyze the possible causes for this. The characterization rate is the goal work assessed by PSO in the main methodology; in the subsequent methodology, the fireworks produce various boundaries per layer, and the goal work is made out of the recognition rate related to the Akaike data model, which assists with finding the best organization per layer. As per the discoveries, the proposed strategy delivered positive results with a recognition pace of more prominent than close to 100%, exhibiting serious outcomes when contrasted with other cutting edge draws near.
AbstractList The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this exploration. AlexNet, GoogLeNet, and ResNet50 are the most well-known convolutional neural networks for object discovery and item classification arrangement from pictures. To survey the exhibition of various kinds, a variety of photo informative indexes are provided by CNNs. Standard benchmark datasets for estimating a convolutional neural organization’s exhibition include ImageNet, CIFAR10, CIFAR100, and MNIST picture informational indexes. The performance of the three well-known channels, Alexandra cash flow, search engine net, and recurrent neural networks, is investigated in this research. Because analyzing a cable network efficiency on a single dataset does not demonstrate all of its possibilities and limits, we mentioned two of the most prominent large datasets for research: significantly improve performance, FARCICAL, and CIFAR110. Clips are exploited as testing statistics rather than teaching statistics; it should have been mentioned. GoogLeNet and ResNet50, in comparison to AlexNet, are better at recognizing objects with greater precision. Furthermore, the performance of trained CNNs varies significantly across different object categories, and we will analyze the possible causes for this. The characterization rate is the goal work assessed by PSO in the main methodology; in the subsequent methodology, the fireworks produce various boundaries per layer, and the goal work is made out of the recognition rate related to the Akaike data model, which assists with finding the best organization per layer. As per the discoveries, the proposed strategy delivered positive results with a recognition pace of more prominent than close to 100%, exhibiting serious outcomes when contrasted with other cutting edge draws near.
Author Liu, Yan
Yang, Xin
Cui, Liping
Author_xml – sequence: 1
  givenname: Liping
  surname: Cui
  fullname: Cui, Liping
  organization: School of Medical EngineeringXinxiang Medical UniversityXinxiang 453003Chinaxxmu.edu.cn
– sequence: 2
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: School of Medical EngineeringXinxiang Medical UniversityXinxiang 453003Chinaxxmu.edu.cn
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-0489-3905
  surname: Liu
  fullname: Liu, Yan
  organization: School of Medical EngineeringXinxiang Medical UniversityXinxiang 453003Chinaxxmu.edu.cn
BookMark eNqFkF9PwjAUxRuDiYC--QGW-KiT_hnt-ohElAQkMfq81K5jxW3FtpNg4nd3A-KDifp0721_99yc0wOdylQKgHMErxEaDgcYYjyIaUQ5j45AFw0JDGPKWOe7p_wE9JxbQQgJxKgLPh-VU8LKPDBVMBc-V6XwWooimCufmzSYlmKpgnEhnNNZ8-F1A5osGJvq3RR1Ozbwg6rtrviNsa_BjXAqbRUn2qrdy6hYGqt9XgaLtdel_tgJnYLjTBROnR1qHzxPbp_G9-FscTcdj2ahJIT5kEuSIcRTyhBJY5JiFWPMBeMMI4lYnGaksSciqEjEFBcvEW1cp1JSHjMKCemDcK9bV2ux3YiiSNZWl8JuEwSTNrukzS45ZNfwF3t-bc1brZxPVqa2jVGXYIYwpRjyYUNd7SlpjXNWZf-J4h-41H4Xg7dCF78tXe6Xcl2lYqP_PvEFB7ibOw
CitedBy_id crossref_primary_10_1155_2023_5983284
crossref_primary_10_1155_2023_9784187
Cites_doi 10.1609/aaai.v30i1.10171
10.1155/2021/3773688
10.1109/TIP.2016.2535342
10.1145/2185520.2185540
10.1109/CVAUI.2014.10
10.1109/JSEN.2016.2517823
10.1109/TLA.2017.7854627
10.1145/1290082.1290111
10.1155/2021/5078799
10.1109/NEUREL.2016.7800104
10.1109/TPAMI.2004.97
10.1109/MSP.2013.2279894
10.1007/978-981-19-1122-4_47
10.1142/S0219467808003209
10.1109/TIP.2013.2264676
10.1155/2021/1155116
10.1126/science.1127647
10.1007/978-3-030-72711-6_4
10.1109/ACSAT.2012.40
10.1109/34.982883
10.3389/frobt.2015.00036
10.1109/5.726791
10.1109/SPAC.2014.6982701
10.3390/iot1020029
10.1109/TGRS.2016.2584107
10.1109/CVPR.2012.6248110
10.1006/cviu.2001.0921
10.1109/CVPR.2005.177
10.1109/72.554195
10.1109/TCSVT.2007.894035
ContentType Journal Article
Copyright Copyright © 2022 Liping Cui et al.
Copyright © 2022 Liping Cui et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Liping Cui et al.
– notice: Copyright © 2022 Liping Cui et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1155/2022/8646994
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Rosales, Hamurabi Gamboa
Editor_xml – sequence: 1
  givenname: Hamurabi Gamboa
  surname: Rosales
  fullname: Rosales, Hamurabi Gamboa
ExternalDocumentID 10.1155/2022/8646994
10_1155_2022_8646994
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
.Y3
24P
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
PHGZM
PHGZT
PQGLB
PUEGO
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c337t-9c3f119d6713d83d2e8229a79721c178df3530a40e347e9ab46677dcc69876033
IEDL.DBID BENPR
ISSN 1530-8669
1530-8677
IngestDate Wed Oct 01 16:30:42 EDT 2025
Fri Jul 25 09:32:22 EDT 2025
Wed Oct 01 05:25:13 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Sun Jun 02 19:21:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-9c3f119d6713d83d2e8229a79721c178df3530a40e347e9ab46677dcc69876033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0489-3905
OpenAccessLink https://www.proquest.com/docview/2712662095?pq-origsite=%requestingapplication%&accountid=15518
PQID 2712662095
PQPubID 2034344
ParticipantIDs unpaywall_primary_10_1155_2022_8646994
proquest_journals_2712662095
crossref_primary_10_1155_2022_8646994
crossref_citationtrail_10_1155_2022_8646994
hindawi_primary_10_1155_2022_8646994
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_11_30_2
e_1_2_11_13_2
Srivastava N. (e_1_2_11_34_2) 2014; 15
e_1_2_11_35_2
e_1_2_11_11_2
e_1_2_11_10_2
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
LeCun Y. (e_1_2_11_33_2) 1995; 261
e_1_2_11_1_2
e_1_2_11_29_2
Krizhevsky A. (e_1_2_11_31_2) 2009
e_1_2_11_20_2
Yang S. (e_1_2_11_8_2) 2012; 25
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_16_2
Chen Y. (e_1_2_11_12_2) 2005; 21
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_36_2
e_1_2_11_37_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_18_2
Wang Y. (e_1_2_11_23_2) 2014
References_xml – ident: e_1_2_11_6_2
– volume-title: Scene Classification with Deep Convolutional Neural Networks
  year: 2014
  ident: e_1_2_11_23_2
– ident: e_1_2_11_36_2
  doi: 10.1609/aaai.v30i1.10171
– ident: e_1_2_11_18_2
  doi: 10.1155/2021/3773688
– ident: e_1_2_11_2_2
  doi: 10.1109/TIP.2016.2535342
– ident: e_1_2_11_35_2
  doi: 10.1145/2185520.2185540
– ident: e_1_2_11_3_2
  doi: 10.1109/CVAUI.2014.10
– ident: e_1_2_11_4_2
  doi: 10.1109/JSEN.2016.2517823
– ident: e_1_2_11_5_2
  doi: 10.1109/TLA.2017.7854627
– ident: e_1_2_11_25_2
  doi: 10.1145/1290082.1290111
– ident: e_1_2_11_9_2
  doi: 10.1155/2021/5078799
– ident: e_1_2_11_30_2
  doi: 10.1109/NEUREL.2016.7800104
– ident: e_1_2_11_14_2
  doi: 10.1109/TPAMI.2004.97
– ident: e_1_2_11_7_2
  doi: 10.1109/MSP.2013.2279894
– ident: e_1_2_11_21_2
  doi: 10.1007/978-981-19-1122-4_47
– ident: e_1_2_11_22_2
– ident: e_1_2_11_13_2
  doi: 10.1142/S0219467808003209
– ident: e_1_2_11_10_2
  doi: 10.1109/TIP.2013.2264676
– ident: e_1_2_11_16_2
  doi: 10.1155/2021/1155116
– volume: 21
  year: 2005
  ident: e_1_2_11_12_2
  article-title: Fingerprint deformation for spoof detection
  publication-title: Biometric Symposium
– ident: e_1_2_11_19_2
  doi: 10.1126/science.1127647
– ident: e_1_2_11_27_2
  doi: 10.1007/978-3-030-72711-6_4
– ident: e_1_2_11_28_2
  doi: 10.1109/ACSAT.2012.40
– ident: e_1_2_11_15_2
  doi: 10.1109/34.982883
– ident: e_1_2_11_20_2
  doi: 10.3389/frobt.2015.00036
– ident: e_1_2_11_32_2
  doi: 10.1109/5.726791
– ident: e_1_2_11_26_2
  doi: 10.1109/SPAC.2014.6982701
– ident: e_1_2_11_38_2
  doi: 10.3390/iot1020029
– volume: 261
  year: 1995
  ident: e_1_2_11_33_2
  article-title: Learning algorithms for classification: a comparison on handwritten digit recognition
  publication-title: Neural networks: the statistical mechanics perspective
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_11_34_2
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of machine learning research
– ident: e_1_2_11_1_2
  doi: 10.1109/TGRS.2016.2584107
– ident: e_1_2_11_37_2
  doi: 10.1109/CVPR.2012.6248110
– ident: e_1_2_11_17_2
  doi: 10.1006/cviu.2001.0921
– ident: e_1_2_11_24_2
  doi: 10.1109/CVPR.2005.177
– ident: e_1_2_11_29_2
  doi: 10.1109/72.554195
– volume: 25
  start-page: 3122
  year: 2012
  ident: e_1_2_11_8_2
  article-title: Unsupervised template learning for finegrained object recognition
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_11_11_2
  doi: 10.1109/TCSVT.2007.894035
– volume-title: Learning multiple layers of features from tiny images
  year: 2009
  ident: e_1_2_11_31_2
SSID ssj0003021
Score 2.2897708
Snippet The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this...
SourceID unpaywall
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Brain research
Classification
Datasets
Fireworks
Image classification
Neural networks
Object recognition
Optimization
Performance enhancement
Performance indices
Recurrent neural networks
Search engines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uIOqD-InTKXmYvkixbbKkfZzDMYUpiIO9lbZp3aBrx9Y5fPB_95KlZVP8eCotlwTu0rv7NdffIdQImexKGAmDyq4m1AbMKnnSjCCyfNMOhE_UQXvvkXX79GHQHGiSpNn3I3yIdhKe2zcOAxzn0gqqOExWbj13B6XDJaataVFNw4G1i_r2L2PXIs_mUELexWgtsdyapxP_feEnyUqM6eyhXZ0c4tbSmvtoI0oP0M4KZeAh-ihK5XCW4l7JuQqjeqoXNL4fg4fAqtelrAJSisdZjNtZ-qa3GQhLTg51UUXg-BZimZAzdsADqiet5DWbjvLhGD-BUxnrvzWPUL9z99LuGrqFghESwnPDDUlsWa5ggEWFQ4QdSYJ3n0vOntDijogJaM2nZkQoj1w_oIxxLsIQLMiZScgxqqZZGp0gDKkW5xaNJSCilDt-YMbcNWPwAhYTLKyh60K9Xqj5xWWbi8RTOKPZ9KQxPG2MGrospSdLXo0f5BraUn-I1QszevolnHk2tyD9sCGJrKGr0rS_znP6v-XO0La8XX6KqaNqPp1H55Cc5MGF2pqfrwXY4g
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgh44HOIwob8MHhB6ZLYsROJl25aNZA6EKLSEJoix3bYRJtUW0oF_wH_9c6OU61IfIinfOh0SXyX8_2S8-8AdhW3XQmNDpjtasJixKyWJy0oTCTDuNCSuh_t42N-NGFvT5KTDXjdrYXRliK-lvpycGYx6fLcRWs_rpd7SzVTFq_HeylHYJexwVyXN2CTJ5iJ92Bzcvx--KmlSA2DlLuOdn5fiK7uPUnWVKzNSDf9ZdcSzluLai6_L-V0em3uGd2D0-6u25KTr4NFUwzUj18IHf_3se7DXZ-UkmHrRQ9gw1QP4c41qsJH8PPzB9M4amd9SrpyPVJXZLzifUUNY9ePmryZYZQirt-mrURyxid1SQ7q6pt3dRS2vCBu4wrRyT7Op9pqHGEUdmeG0y_1xXlzNiPvMLDN_IrRLZiMDj8eHAW-jUOgKBVNkClaRlGmOeJhnVIdG0syL4XlDVKRSHVJ0UKShYYyYTJZMI7G0kqhFwkeUvoYelVdmSdAMN0TImKlBWWMiVQWYSmysMRIFHHNVR9edabMlec4t602prnDOkmS20HO_SD34cVKet5ye_xGbtdb7S9i253L5J1l81hEmALFmMj24eXKjf6o5-m_Cj6D2_aw_SC0Db3mYmF2MEVqiuf-TbgCkhwKdA
  priority: 102
  providerName: Unpaywall
Title Research on Mathematical Method Image Classification of Convolutional Neural Network Based on Firework Algorithm Optimization
URI https://dx.doi.org/10.1155/2022/8646994
https://www.proquest.com/docview/2712662095
https://downloads.hindawi.com/journals/wcmc/2022/8646994.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0003021
  issn: 1530-8677
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1530-8677
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003021
  issn: 1530-8677
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9MwFH_aOiHggPia6BiTD4MLipbEjp0c0NR9lILUMlVUKqfIsROG1CaFdUwc-N_3nut024FxSRTrxYr8nPdhP_9-APtGEithaQNBrCYixpyVcNKCoox0GBdWc7fRPhzJwUR8nibTDRi1Z2GorLK1ic5Q28bQGvlBrCL0JTFGBIeLnwGxRtHuakuhoT21gv3gIMY2YSsmZKwObB2djs7Ga9vMw9gjqIZBip_ZlsInCa0CxAepxHQxE3ec1INzyo6vftyJQR9e1gv950rPZrfcUf8pPPFxJOutFP8MNsr6OTy-hS74Av62VXWsqdlwDc-Kbw0dbTT7NEdjwhwtJhUMOR2xpmLHTf3bz0gUJvgOd3P14uwI3Z6lHvtoLF1Lb_YdB2p5Pmdf0P7M_cHOlzDpn349HgSebSEwnKtlkBleRVFmJaatNuU2LgkLXiuC9zGRSm3FcdS0CEsuVJnpQkiplDUGla1kyPk2dOqmLl8Bw6hMqUhUlDsJoVJdhJXKwgoNRiStNF143w5vbjwUOTFizHKXkiRJTsrIvTK68HYtvVhBcPxDbt9r6j9iu60ac_-_XuQ3s6sL79aqvbefnfv7eQ2PSHq1WrMLneWvy_INxi_LYg820_7HPT818elkHON1PJhi22R01vt2DcxU7hg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQqKI9VH2qW2jrA_RSRSS2YycHhICy2i3stqpA4pY6tlMq7SZbWLriwF_rb-uM19nCofTEKVI0thTPZB72-PsI2TASWQmdjQSymggGNSvipEWlS3TMSqu5P2gfDGXvRHw6TU-XyO_2Lgy2VbY-0Ttq2xjcI99iKoFYwiAj2Jn8jJA1Ck9XWwoNHagV7LaHGAsXOw7d1QxKuIvt_kfQ9yZj3YPj_V4UWAYiw7maRrnhVZLkVkK5ZjNumUMMdK0Q1sYkKrMVT3msRey4UC7XpZBSKWsMfKSSMW6IQghYEVzkUPyt7B0Mv3xdxAIes4DYGkcZLEvbep-muOvAtjIJ5WkubgXFB2dYjc9-3Mp5Vy_rib6a6dHoRvjrPiGPQ95Kd-eG9pQsufoZeXQDzfA5uW67-GhT08ECDhZGDTxNNe2PwXlRT8OJDUreJmhT0f2m_hX-ABBGuBD_8P3pdA_CrMUZu-Cc_Zvd0XdQzPRsTD-DvxuHi6QvyMm9rPtLslw3tXtFKGSBSiWiwlpNCJXpMq5UHlfgoBJppemQD-3yFiZAnyMDx6jwJVCaFqiMIiijQzYX0pM55Mc_5DaCpv4jtt6qsQj-4aL4a80d8n6h2jvneX33PO_Iau94cFQc9YeHa-QhjpzvFK2T5en5pXsDudO0fBsMlJJv9_1P_AF0kSRJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQqK9DRV_qlkd9gF6qaBPbsZMDqng0ZUuX9lAkbiGxnYK0myywsOLAH-PXMeN1tnAoPXGKFI0txTP5ZsYef0PImpbYldCaQGBXE8EgZ0WetKC0URGy0hTcHbT39-Xugfh-GB_OkZv2LgyWVbaY6IDaNBr3yLtMReBLGEQE3cqXRfzayb6MTgPsIIUnrW07jamJ7NmrCaRv5xu9HdD1OmPZ19_bu4HvMBBoztU4SDWvoig1ElI1k3DDLPKfFwopbXSkElPxmIeFCC0XyqZFKaRUymgNH6hkiJuhAP8LClnc8ZZ69m3mBXjIPFdrGCSwIG3RfRzjfgPrJhIS01Tcc4dPjjEPn5zci3afXdSj4mpSDAZ3HF-2SF76iJVuTk3sFZmz9Wvy4g6P4Rty3dbv0aam_RkRLIzquwbVtDcE2KKuASeWJjlroE1Ft5v60ts-CCNRiHu4ynS6BQ7W4IwZwLJ7szn4A2oYHw_pT0C6ob9C-pYcPMqqvyPzdVPb94RC_KdUJCrM0oRQSVGGlUrDCqApkkbqDvncLm-uPek59t4Y5C75ieMclZF7ZXTI-kx6NCX7-IfcmtfUf8SWWzXmHhnO87923CGfZqp9cJ4PD8_zkTyFPyH_0dvfWyLPceB0i2iZzI_PLuwKBE3jctVZJyVHj_073AJaYyHj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgh44HOIwob8MHhB6ZLYsROJl25aNZA6EKLSEJoix3bYRJtUW0oF_wH_9c6OU61IfIinfOh0SXyX8_2S8-8AdhW3XQmNDpjtasJixKyWJy0oTCTDuNCSuh_t42N-NGFvT5KTDXjdrYXRliK-lvpycGYx6fLcRWs_rpd7SzVTFq_HeylHYJexwVyXN2CTJ5iJ92Bzcvx--KmlSA2DlLuOdn5fiK7uPUnWVKzNSDf9ZdcSzluLai6_L-V0em3uGd2D0-6u25KTr4NFUwzUj18IHf_3se7DXZ-UkmHrRQ9gw1QP4c41qsJH8PPzB9M4amd9SrpyPVJXZLzifUUNY9ePmryZYZQirt-mrURyxid1SQ7q6pt3dRS2vCBu4wrRyT7Op9pqHGEUdmeG0y_1xXlzNiPvMLDN_IrRLZiMDj8eHAW-jUOgKBVNkClaRlGmOeJhnVIdG0syL4XlDVKRSHVJ0UKShYYyYTJZMI7G0kqhFwkeUvoYelVdmSdAMN0TImKlBWWMiVQWYSmysMRIFHHNVR9edabMlec4t602prnDOkmS20HO_SD34cVKet5ye_xGbtdb7S9i253L5J1l81hEmALFmMj24eXKjf6o5-m_Cj6D2_aw_SC0Db3mYmF2MEVqiuf-TbgCkhwKdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Mathematical+Method+Image+Classification+of+Convolutional+Neural+Network+Based+on+Firework+Algorithm+Optimization&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Cui%2C+Liping&rft.au=Yang%2C+Xin&rft.au=Liu%2C+Yan&rft.date=2022&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F8646994&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon