Research on Mathematical Method Image Classification of Convolutional Neural Network Based on Firework Algorithm Optimization
The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this exploration. AlexNet, GoogLeNet, and ResNet50 are the most well-known convolutional neural networks for object discovery and item classification arrange...
Saved in:
| Published in | Wireless communications and mobile computing Vol. 2022; no. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Hindawi
2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-8669 1530-8677 1530-8677 |
| DOI | 10.1155/2022/8646994 |
Cover
| Abstract | The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this exploration. AlexNet, GoogLeNet, and ResNet50 are the most well-known convolutional neural networks for object discovery and item classification arrangement from pictures. To survey the exhibition of various kinds, a variety of photo informative indexes are provided by CNNs. Standard benchmark datasets for estimating a convolutional neural organization’s exhibition include ImageNet, CIFAR10, CIFAR100, and MNIST picture informational indexes. The performance of the three well-known channels, Alexandra cash flow, search engine net, and recurrent neural networks, is investigated in this research. Because analyzing a cable network efficiency on a single dataset does not demonstrate all of its possibilities and limits, we mentioned two of the most prominent large datasets for research: significantly improve performance, FARCICAL, and CIFAR110. Clips are exploited as testing statistics rather than teaching statistics; it should have been mentioned. GoogLeNet and ResNet50, in comparison to AlexNet, are better at recognizing objects with greater precision. Furthermore, the performance of trained CNNs varies significantly across different object categories, and we will analyze the possible causes for this. The characterization rate is the goal work assessed by PSO in the main methodology; in the subsequent methodology, the fireworks produce various boundaries per layer, and the goal work is made out of the recognition rate related to the Akaike data model, which assists with finding the best organization per layer. As per the discoveries, the proposed strategy delivered positive results with a recognition pace of more prominent than close to 100%, exhibiting serious outcomes when contrasted with other cutting edge draws near. |
|---|---|
| AbstractList | The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this exploration. AlexNet, GoogLeNet, and ResNet50 are the most well-known convolutional neural networks for object discovery and item classification arrangement from pictures. To survey the exhibition of various kinds, a variety of photo informative indexes are provided by CNNs. Standard benchmark datasets for estimating a convolutional neural organization’s exhibition include ImageNet, CIFAR10, CIFAR100, and MNIST picture informational indexes. The performance of the three well-known channels, Alexandra cash flow, search engine net, and recurrent neural networks, is investigated in this research. Because analyzing a cable network efficiency on a single dataset does not demonstrate all of its possibilities and limits, we mentioned two of the most prominent large datasets for research: significantly improve performance, FARCICAL, and CIFAR110. Clips are exploited as testing statistics rather than teaching statistics; it should have been mentioned. GoogLeNet and ResNet50, in comparison to AlexNet, are better at recognizing objects with greater precision. Furthermore, the performance of trained CNNs varies significantly across different object categories, and we will analyze the possible causes for this. The characterization rate is the goal work assessed by PSO in the main methodology; in the subsequent methodology, the fireworks produce various boundaries per layer, and the goal work is made out of the recognition rate related to the Akaike data model, which assists with finding the best organization per layer. As per the discoveries, the proposed strategy delivered positive results with a recognition pace of more prominent than close to 100%, exhibiting serious outcomes when contrasted with other cutting edge draws near. |
| Author | Liu, Yan Yang, Xin Cui, Liping |
| Author_xml | – sequence: 1 givenname: Liping surname: Cui fullname: Cui, Liping organization: School of Medical EngineeringXinxiang Medical UniversityXinxiang 453003Chinaxxmu.edu.cn – sequence: 2 givenname: Xin surname: Yang fullname: Yang, Xin organization: School of Medical EngineeringXinxiang Medical UniversityXinxiang 453003Chinaxxmu.edu.cn – sequence: 3 givenname: Yan orcidid: 0000-0002-0489-3905 surname: Liu fullname: Liu, Yan organization: School of Medical EngineeringXinxiang Medical UniversityXinxiang 453003Chinaxxmu.edu.cn |
| BookMark | eNqFkF9PwjAUxRuDiYC--QGW-KiT_hnt-ohElAQkMfq81K5jxW3FtpNg4nd3A-KDifp0721_99yc0wOdylQKgHMErxEaDgcYYjyIaUQ5j45AFw0JDGPKWOe7p_wE9JxbQQgJxKgLPh-VU8LKPDBVMBc-V6XwWooimCufmzSYlmKpgnEhnNNZ8-F1A5osGJvq3RR1Ozbwg6rtrviNsa_BjXAqbRUn2qrdy6hYGqt9XgaLtdel_tgJnYLjTBROnR1qHzxPbp_G9-FscTcdj2ahJIT5kEuSIcRTyhBJY5JiFWPMBeMMI4lYnGaksSciqEjEFBcvEW1cp1JSHjMKCemDcK9bV2ux3YiiSNZWl8JuEwSTNrukzS45ZNfwF3t-bc1brZxPVqa2jVGXYIYwpRjyYUNd7SlpjXNWZf-J4h-41H4Xg7dCF78tXe6Xcl2lYqP_PvEFB7ibOw |
| CitedBy_id | crossref_primary_10_1155_2023_5983284 crossref_primary_10_1155_2023_9784187 |
| Cites_doi | 10.1609/aaai.v30i1.10171 10.1155/2021/3773688 10.1109/TIP.2016.2535342 10.1145/2185520.2185540 10.1109/CVAUI.2014.10 10.1109/JSEN.2016.2517823 10.1109/TLA.2017.7854627 10.1145/1290082.1290111 10.1155/2021/5078799 10.1109/NEUREL.2016.7800104 10.1109/TPAMI.2004.97 10.1109/MSP.2013.2279894 10.1007/978-981-19-1122-4_47 10.1142/S0219467808003209 10.1109/TIP.2013.2264676 10.1155/2021/1155116 10.1126/science.1127647 10.1007/978-3-030-72711-6_4 10.1109/ACSAT.2012.40 10.1109/34.982883 10.3389/frobt.2015.00036 10.1109/5.726791 10.1109/SPAC.2014.6982701 10.3390/iot1020029 10.1109/TGRS.2016.2584107 10.1109/CVPR.2012.6248110 10.1006/cviu.2001.0921 10.1109/CVPR.2005.177 10.1109/72.554195 10.1109/TCSVT.2007.894035 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Liping Cui et al. Copyright © 2022 Liping Cui et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2022 Liping Cui et al. – notice: Copyright © 2022 Liping Cui et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1155/2022/8646994 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Rosales, Hamurabi Gamboa |
| Editor_xml | – sequence: 1 givenname: Hamurabi Gamboa surname: Rosales fullname: Rosales, Hamurabi Gamboa |
| ExternalDocumentID | 10.1155/2022/8646994 10_1155_2022_8646994 |
| GroupedDBID | .3N .4S .DC .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACGFO ADBBV ADIZJ AENEX AEUQT AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ARCSS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS EDO F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.T H.X HCIFZ HZ~ I-F IAO ITC ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 M0N MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL XPP XV2 ~IA ~WT .Y3 24P 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFZJQ AGQPQ AGXDD AIDQK AIDYY AZFZN BDRZF BFHJK CITATION EJD FEDTE H13 HF~ HVGLF LH4 LW6 PHGZM PHGZT PQGLB PUEGO ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c337t-9c3f119d6713d83d2e8229a79721c178df3530a40e347e9ab46677dcc69876033 |
| IEDL.DBID | BENPR |
| ISSN | 1530-8669 1530-8677 |
| IngestDate | Wed Oct 01 16:30:42 EDT 2025 Fri Jul 25 09:32:22 EDT 2025 Wed Oct 01 05:25:13 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Sun Jun 02 19:21:12 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-9c3f119d6713d83d2e8229a79721c178df3530a40e347e9ab46677dcc69876033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0489-3905 |
| OpenAccessLink | https://www.proquest.com/docview/2712662095?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2712662095 |
| PQPubID | 2034344 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_8646994 proquest_journals_2712662095 crossref_primary_10_1155_2022_8646994 crossref_citationtrail_10_1155_2022_8646994 hindawi_primary_10_1155_2022_8646994 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_11_30_2 e_1_2_11_13_2 Srivastava N. (e_1_2_11_34_2) 2014; 15 e_1_2_11_35_2 e_1_2_11_11_2 e_1_2_11_10_2 e_1_2_11_32_2 e_1_2_11_6_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_2_2 LeCun Y. (e_1_2_11_33_2) 1995; 261 e_1_2_11_1_2 e_1_2_11_29_2 Krizhevsky A. (e_1_2_11_31_2) 2009 e_1_2_11_20_2 Yang S. (e_1_2_11_8_2) 2012; 25 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_17_2 e_1_2_11_16_2 Chen Y. (e_1_2_11_12_2) 2005; 21 e_1_2_11_15_2 e_1_2_11_14_2 e_1_2_11_36_2 e_1_2_11_37_2 e_1_2_11_19_2 e_1_2_11_38_2 e_1_2_11_18_2 Wang Y. (e_1_2_11_23_2) 2014 |
| References_xml | – ident: e_1_2_11_6_2 – volume-title: Scene Classification with Deep Convolutional Neural Networks year: 2014 ident: e_1_2_11_23_2 – ident: e_1_2_11_36_2 doi: 10.1609/aaai.v30i1.10171 – ident: e_1_2_11_18_2 doi: 10.1155/2021/3773688 – ident: e_1_2_11_2_2 doi: 10.1109/TIP.2016.2535342 – ident: e_1_2_11_35_2 doi: 10.1145/2185520.2185540 – ident: e_1_2_11_3_2 doi: 10.1109/CVAUI.2014.10 – ident: e_1_2_11_4_2 doi: 10.1109/JSEN.2016.2517823 – ident: e_1_2_11_5_2 doi: 10.1109/TLA.2017.7854627 – ident: e_1_2_11_25_2 doi: 10.1145/1290082.1290111 – ident: e_1_2_11_9_2 doi: 10.1155/2021/5078799 – ident: e_1_2_11_30_2 doi: 10.1109/NEUREL.2016.7800104 – ident: e_1_2_11_14_2 doi: 10.1109/TPAMI.2004.97 – ident: e_1_2_11_7_2 doi: 10.1109/MSP.2013.2279894 – ident: e_1_2_11_21_2 doi: 10.1007/978-981-19-1122-4_47 – ident: e_1_2_11_22_2 – ident: e_1_2_11_13_2 doi: 10.1142/S0219467808003209 – ident: e_1_2_11_10_2 doi: 10.1109/TIP.2013.2264676 – ident: e_1_2_11_16_2 doi: 10.1155/2021/1155116 – volume: 21 year: 2005 ident: e_1_2_11_12_2 article-title: Fingerprint deformation for spoof detection publication-title: Biometric Symposium – ident: e_1_2_11_19_2 doi: 10.1126/science.1127647 – ident: e_1_2_11_27_2 doi: 10.1007/978-3-030-72711-6_4 – ident: e_1_2_11_28_2 doi: 10.1109/ACSAT.2012.40 – ident: e_1_2_11_15_2 doi: 10.1109/34.982883 – ident: e_1_2_11_20_2 doi: 10.3389/frobt.2015.00036 – ident: e_1_2_11_32_2 doi: 10.1109/5.726791 – ident: e_1_2_11_26_2 doi: 10.1109/SPAC.2014.6982701 – ident: e_1_2_11_38_2 doi: 10.3390/iot1020029 – volume: 261 year: 1995 ident: e_1_2_11_33_2 article-title: Learning algorithms for classification: a comparison on handwritten digit recognition publication-title: Neural networks: the statistical mechanics perspective – volume: 15 start-page: 1929 year: 2014 ident: e_1_2_11_34_2 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of machine learning research – ident: e_1_2_11_1_2 doi: 10.1109/TGRS.2016.2584107 – ident: e_1_2_11_37_2 doi: 10.1109/CVPR.2012.6248110 – ident: e_1_2_11_17_2 doi: 10.1006/cviu.2001.0921 – ident: e_1_2_11_24_2 doi: 10.1109/CVPR.2005.177 – ident: e_1_2_11_29_2 doi: 10.1109/72.554195 – volume: 25 start-page: 3122 year: 2012 ident: e_1_2_11_8_2 article-title: Unsupervised template learning for finegrained object recognition publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_11_11_2 doi: 10.1109/TCSVT.2007.894035 – volume-title: Learning multiple layers of features from tiny images year: 2009 ident: e_1_2_11_31_2 |
| SSID | ssj0003021 |
| Score | 2.2897708 |
| Snippet | The exhibition of famous convolutional brain organizations (CNNs) for distinguishing objects progressively video takes care of is inspected in this... |
| SourceID | unpaywall proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial neural networks Brain research Classification Datasets Fireworks Image classification Neural networks Object recognition Optimization Performance enhancement Performance indices Recurrent neural networks Search engines |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uIOqD-InTKXmYvkixbbKkfZzDMYUpiIO9lbZp3aBrx9Y5fPB_95KlZVP8eCotlwTu0rv7NdffIdQImexKGAmDyq4m1AbMKnnSjCCyfNMOhE_UQXvvkXX79GHQHGiSpNn3I3yIdhKe2zcOAxzn0gqqOExWbj13B6XDJaataVFNw4G1i_r2L2PXIs_mUELexWgtsdyapxP_feEnyUqM6eyhXZ0c4tbSmvtoI0oP0M4KZeAh-ihK5XCW4l7JuQqjeqoXNL4fg4fAqtelrAJSisdZjNtZ-qa3GQhLTg51UUXg-BZimZAzdsADqiet5DWbjvLhGD-BUxnrvzWPUL9z99LuGrqFghESwnPDDUlsWa5ggEWFQ4QdSYJ3n0vOntDijogJaM2nZkQoj1w_oIxxLsIQLMiZScgxqqZZGp0gDKkW5xaNJSCilDt-YMbcNWPwAhYTLKyh60K9Xqj5xWWbi8RTOKPZ9KQxPG2MGrospSdLXo0f5BraUn-I1QszevolnHk2tyD9sCGJrKGr0rS_znP6v-XO0La8XX6KqaNqPp1H55Cc5MGF2pqfrwXY4g priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgh44HOIwob8MHhB6ZLYsROJl25aNZA6EKLSEJoix3bYRJtUW0oF_wH_9c6OU61IfIinfOh0SXyX8_2S8-8AdhW3XQmNDpjtasJixKyWJy0oTCTDuNCSuh_t42N-NGFvT5KTDXjdrYXRliK-lvpycGYx6fLcRWs_rpd7SzVTFq_HeylHYJexwVyXN2CTJ5iJ92Bzcvx--KmlSA2DlLuOdn5fiK7uPUnWVKzNSDf9ZdcSzluLai6_L-V0em3uGd2D0-6u25KTr4NFUwzUj18IHf_3se7DXZ-UkmHrRQ9gw1QP4c41qsJH8PPzB9M4amd9SrpyPVJXZLzifUUNY9ePmryZYZQirt-mrURyxid1SQ7q6pt3dRS2vCBu4wrRyT7Op9pqHGEUdmeG0y_1xXlzNiPvMLDN_IrRLZiMDj8eHAW-jUOgKBVNkClaRlGmOeJhnVIdG0syL4XlDVKRSHVJ0UKShYYyYTJZMI7G0kqhFwkeUvoYelVdmSdAMN0TImKlBWWMiVQWYSmysMRIFHHNVR9edabMlec4t602prnDOkmS20HO_SD34cVKet5ye_xGbtdb7S9i253L5J1l81hEmALFmMj24eXKjf6o5-m_Cj6D2_aw_SC0Db3mYmF2MEVqiuf-TbgCkhwKdA priority: 102 providerName: Unpaywall |
| Title | Research on Mathematical Method Image Classification of Convolutional Neural Network Based on Firework Algorithm Optimization |
| URI | https://dx.doi.org/10.1155/2022/8646994 https://www.proquest.com/docview/2712662095 https://downloads.hindawi.com/journals/wcmc/2022/8646994.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1530-8677 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0003021 issn: 1530-8677 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1530-8677 databaseCode: DR2 dateStart: 20010101 customDbUrl: isFulltext: true eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003021 issn: 1530-8677 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9MwFH_aOiHggPia6BiTD4MLipbEjp0c0NR9lILUMlVUKqfIsROG1CaFdUwc-N_3nut024FxSRTrxYr8nPdhP_9-APtGEithaQNBrCYixpyVcNKCoox0GBdWc7fRPhzJwUR8nibTDRi1Z2GorLK1ic5Q28bQGvlBrCL0JTFGBIeLnwGxRtHuakuhoT21gv3gIMY2YSsmZKwObB2djs7Ga9vMw9gjqIZBip_ZlsInCa0CxAepxHQxE3ec1INzyo6vftyJQR9e1gv950rPZrfcUf8pPPFxJOutFP8MNsr6OTy-hS74Av62VXWsqdlwDc-Kbw0dbTT7NEdjwhwtJhUMOR2xpmLHTf3bz0gUJvgOd3P14uwI3Z6lHvtoLF1Lb_YdB2p5Pmdf0P7M_cHOlzDpn349HgSebSEwnKtlkBleRVFmJaatNuU2LgkLXiuC9zGRSm3FcdS0CEsuVJnpQkiplDUGla1kyPk2dOqmLl8Bw6hMqUhUlDsJoVJdhJXKwgoNRiStNF143w5vbjwUOTFizHKXkiRJTsrIvTK68HYtvVhBcPxDbt9r6j9iu60ac_-_XuQ3s6sL79aqvbefnfv7eQ2PSHq1WrMLneWvy_INxi_LYg820_7HPT818elkHON1PJhi22R01vt2DcxU7hg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQqKI9VH2qW2jrA_RSRSS2YycHhICy2i3stqpA4pY6tlMq7SZbWLriwF_rb-uM19nCofTEKVI0thTPZB72-PsI2TASWQmdjQSymggGNSvipEWlS3TMSqu5P2gfDGXvRHw6TU-XyO_2Lgy2VbY-0Ttq2xjcI99iKoFYwiAj2Jn8jJA1Ck9XWwoNHagV7LaHGAsXOw7d1QxKuIvt_kfQ9yZj3YPj_V4UWAYiw7maRrnhVZLkVkK5ZjNumUMMdK0Q1sYkKrMVT3msRey4UC7XpZBSKWsMfKSSMW6IQghYEVzkUPyt7B0Mv3xdxAIes4DYGkcZLEvbep-muOvAtjIJ5WkubgXFB2dYjc9-3Mp5Vy_rib6a6dHoRvjrPiGPQ95Kd-eG9pQsufoZeXQDzfA5uW67-GhT08ECDhZGDTxNNe2PwXlRT8OJDUreJmhT0f2m_hX-ABBGuBD_8P3pdA_CrMUZu-Cc_Zvd0XdQzPRsTD-DvxuHi6QvyMm9rPtLslw3tXtFKGSBSiWiwlpNCJXpMq5UHlfgoBJppemQD-3yFiZAnyMDx6jwJVCaFqiMIiijQzYX0pM55Mc_5DaCpv4jtt6qsQj-4aL4a80d8n6h2jvneX33PO_Iau94cFQc9YeHa-QhjpzvFK2T5en5pXsDudO0fBsMlJJv9_1P_AF0kSRJ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQqK9DRV_qlkd9gF6qaBPbsZMDqng0ZUuX9lAkbiGxnYK0myywsOLAH-PXMeN1tnAoPXGKFI0txTP5ZsYef0PImpbYldCaQGBXE8EgZ0WetKC0URGy0hTcHbT39-Xugfh-GB_OkZv2LgyWVbaY6IDaNBr3yLtMReBLGEQE3cqXRfzayb6MTgPsIIUnrW07jamJ7NmrCaRv5xu9HdD1OmPZ19_bu4HvMBBoztU4SDWvoig1ElI1k3DDLPKfFwopbXSkElPxmIeFCC0XyqZFKaRUymgNH6hkiJuhAP8LClnc8ZZ69m3mBXjIPFdrGCSwIG3RfRzjfgPrJhIS01Tcc4dPjjEPn5zci3afXdSj4mpSDAZ3HF-2SF76iJVuTk3sFZmz9Wvy4g6P4Rty3dbv0aam_RkRLIzquwbVtDcE2KKuASeWJjlroE1Ft5v60ts-CCNRiHu4ynS6BQ7W4IwZwLJ7szn4A2oYHw_pT0C6ob9C-pYcPMqqvyPzdVPb94RC_KdUJCrM0oRQSVGGlUrDCqApkkbqDvncLm-uPek59t4Y5C75ieMclZF7ZXTI-kx6NCX7-IfcmtfUf8SWWzXmHhnO87923CGfZqp9cJ4PD8_zkTyFPyH_0dvfWyLPceB0i2iZzI_PLuwKBE3jctVZJyVHj_073AJaYyHj |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTgh44HOIwob8MHhB6ZLYsROJl25aNZA6EKLSEJoix3bYRJtUW0oF_wH_9c6OU61IfIinfOh0SXyX8_2S8-8AdhW3XQmNDpjtasJixKyWJy0oTCTDuNCSuh_t42N-NGFvT5KTDXjdrYXRliK-lvpycGYx6fLcRWs_rpd7SzVTFq_HeylHYJexwVyXN2CTJ5iJ92Bzcvx--KmlSA2DlLuOdn5fiK7uPUnWVKzNSDf9ZdcSzluLai6_L-V0em3uGd2D0-6u25KTr4NFUwzUj18IHf_3se7DXZ-UkmHrRQ9gw1QP4c41qsJH8PPzB9M4amd9SrpyPVJXZLzifUUNY9ePmryZYZQirt-mrURyxid1SQ7q6pt3dRS2vCBu4wrRyT7Op9pqHGEUdmeG0y_1xXlzNiPvMLDN_IrRLZiMDj8eHAW-jUOgKBVNkClaRlGmOeJhnVIdG0syL4XlDVKRSHVJ0UKShYYyYTJZMI7G0kqhFwkeUvoYelVdmSdAMN0TImKlBWWMiVQWYSmysMRIFHHNVR9edabMlec4t602prnDOkmS20HO_SD34cVKet5ye_xGbtdb7S9i253L5J1l81hEmALFmMj24eXKjf6o5-m_Cj6D2_aw_SC0Db3mYmF2MEVqiuf-TbgCkhwKdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Mathematical+Method+Image+Classification+of+Convolutional+Neural+Network+Based+on+Firework+Algorithm+Optimization&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Cui%2C+Liping&rft.au=Yang%2C+Xin&rft.au=Liu%2C+Yan&rft.date=2022&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F8646994&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |