Memristive Monte Carlo DropConnect crossbar array enabled by device and algorithm co-design

Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing s...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 11; no. 17; pp. 494 - 413
Main Authors Kim, Do Hoon, Cheong, Woon Hyung, Song, Hanchan, Jeon, Jae Bum, Kim, Geunyoung, Kim, Kyung Min
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.08.2024
Subjects
Online AccessGet full text
ISSN2051-6347
2051-6355
2051-6355
DOI10.1039/d3mh02049e

Cover

Abstract Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance. A one-selector-one-memristor crossbar array was developed, capable of driving Monte Carlo DropConnect network. This could be achieved through a hardware and algorithm co-design approach, involving mutual improvement of them.
AbstractList Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance.Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance.
Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance.
Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance. A one-selector-one-memristor crossbar array was developed, capable of driving Monte Carlo DropConnect network. This could be achieved through a hardware and algorithm co-design approach, involving mutual improvement of them.
Author Song, Hanchan
Jeon, Jae Bum
Kim, Geunyoung
Kim, Kyung Min
Kim, Do Hoon
Cheong, Woon Hyung
AuthorAffiliation Department of Materials Science and Engineering
Applied Science Research Institute
Korea Advanced Institute of Science and Technology (KAIST)
AuthorAffiliation_xml – sequence: 0
  name: Applied Science Research Institute
– sequence: 0
  name: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 0
  name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Do Hoon
  surname: Kim
  fullname: Kim, Do Hoon
– sequence: 2
  givenname: Woon Hyung
  surname: Cheong
  fullname: Cheong, Woon Hyung
– sequence: 3
  givenname: Hanchan
  surname: Song
  fullname: Song, Hanchan
– sequence: 4
  givenname: Jae Bum
  surname: Jeon
  fullname: Jeon, Jae Bum
– sequence: 5
  givenname: Geunyoung
  surname: Kim
  fullname: Kim, Geunyoung
– sequence: 6
  givenname: Kyung Min
  surname: Kim
  fullname: Kim, Kyung Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38916265$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLxDAUBeAgIz5n414JuBGhmvQmabuU8TGCgxtduShpeqsZ2mRMOsL8e6vjA8RVsvjuJTlnl4ycd0jIAWdnnEFxXkP3wlImCtwgOymTPFEg5ejnLrJtMo5xzhjjICTL2RbZhrzgKlVyhzzNsAs29vYN6cy7HulEh9bTy-AXE-8cmp6a4GOsdKA6BL2i6HTVYk2rFa3xzRqk2tVUt88-2P6lo8YnNUb77PbJZqPbiOOvc488Xl89TKbJ3f3N7eTiLjEAWZ8UlQAlpQAuVWVqCaaupCgEQ6Exb5pcKSFQCZ4KCTyVUlaNUAqgYYabIoc9crLeuwj-dYmxLzsbDbatduiXsQSWpcPvM-ADPf5D534Z3PC6QRVZzmQms0Edfall1WFdLoLtdFiV37ENgK3BZzQBm9LYXvd2CDBo25aclR_llJcwm36WczWMnP4Z-d76Lz5c4xDNj_ttGt4ByXeWEA
CitedBy_id crossref_primary_10_1039_D4DT01946F
crossref_primary_10_1021_acs_chemrev_4c00454
Cites_doi 10.1038/s41467-023-43317-9
10.1038/s41563-019-0291-x
10.48550/arXiv.1811.06817
10.1038/s42256-023-00680-y
10.3389/fnano.2022.1021943
10.1038/s41467-022-30305-8
10.1038/s41467-022-33699-7
10.48550/arXiv.1605.04711
10.1109/LED.2022.3192262
10.1109/TED.2017.2747589
10.1109/LED.2017.2757493
10.1016/j.isci.2020.101809
10.1038/s41467-022-34025-x
10.1109/LED.2019.2936104
10.1039/D3NH00421J
10.1002/adma.201904599
10.1038/nature14441
10.1002/aisy.202200058
10.1002/aelm.202200202
10.1038/s43588-021-00184-y
10.1038/s41598-021-84854-x
10.1002/adma.201705914
10.1002/adma.201604457
10.1038/ncomms5232
10.1109/TNANO.2020.2982819
10.1109/JETCAS.2023.3242146
10.1002/aelm.202000410
10.1038/s41928-020-00523-3
10.1039/D3NH00180F
10.1109/ACCESS.2018.2836917
10.1002/aisy.202100174
10.1002/aisy.202000103
10.1038/s41578-019-0159-3
10.1039/D3NH00493G
10.1039/D0MH01759K
10.1002/adfm.202200337
10.1002/aelm.202200365
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d3mh02049e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 413
ExternalDocumentID 38916265
10_1039_D3MH02049E
d3mh02049e
Genre Journal Article
GroupedDBID 0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABPDG
ABRYZ
ABXOH
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AETIL
AFLYV
AFOGI
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-9b4365543156bcd53cdb54940e4ae8ff86644e641245312555bf46633f0c1c983
ISSN 2051-6347
2051-6355
IngestDate Sat Sep 27 21:05:03 EDT 2025
Mon Jun 30 16:49:00 EDT 2025
Mon Jul 21 06:02:20 EDT 2025
Wed Oct 01 02:19:43 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Tue Dec 17 20:58:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-9b4365543156bcd53cdb54940e4ae8ff86644e641245312555bf46633f0c1c983
Notes https://doi.org/10.1039/d3mh02049e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3120-9638
0000-0002-0190-4226
0000-0002-4738-3075
PMID 38916265
PQID 3097805757
PQPubID 2047518
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_D3MH02049E
proquest_journals_3097805757
crossref_primary_10_1039_D3MH02049E
rsc_primary_d3mh02049e
pubmed_primary_38916265
proquest_miscellaneous_3072001731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-28
PublicationDateYYYYMMDD 2024-08-28
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Materials horizons
PublicationTitleAlternate Mater Horiz
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 1059
1066
1622
Kim (D3MH02049E/cit40/1) 2021; 7
Song (D3MH02049E/cit41/1) 2017; 38
Wang (D3MH02049E/cit6/1) 2020; 5
Midya (D3MH02049E/cit36/1) 2017; 29
Cheong (D3MH02049E/cit8/1) 2022; 32
Choi (D3MH02049E/cit22/1) 2022; 43
Lu (D3MH02049E/cit34/1) 2022; 8
Sebastian (D3MH02049E/cit25/1) 2023; 13
Wan (D3MH02049E/cit26/1) 2013; 28
Kim (D3MH02049E/cit42/1) 2022; 4
Wang (D3MH02049E/cit1/1) 2020; 23
Dolezal (D3MH02049E/cit13/1) 2022; 13
Yoon (D3MH02049E/cit37/1) 2020; 32
Liu (D3MH02049E/cit24/1) 2022; 4
Song (D3MH02049E/cit35/1) 2017; 64
Dalgaty (D3MH02049E/cit17/1) 2021; 3
Schuman (D3MH02049E/cit2/1) 2022; 2
Li (D3MH02049E/cit7/1) 2023; 8
Grisafe (D3MH02049E/cit33/1) 2019; 40
Detorakis (D3MH02049E/cit28/1) 2019; 32
Kendall (D3MH02049E/cit16/1) 2017
Bonnet (D3MH02049E/cit23/1) 2023; 14
Blundell (D3MH02049E/cit15/1) 2015; 37
Ghenzi (D3MH02049E/cit11/1) 2024; 9
Dalgaty (D3MH02049E/cit20/1) 2021; 4
Hu (D3MH02049E/cit4/1) 2018; 30
Iliasov (D3MH02049E/cit10/1) 2024; 9
Mobiny (D3MH02049E/cit27/1) 2021; 11
Yang (D3MH02049E/cit39/1) 2014; 5
Michelmore (D3MH02049E/cit12/1) 2018
Lin (D3MH02049E/cit19/1) 2019
Li (D3MH02049E/cit43/1) 2016
Prezioso (D3MH02049E/cit3/1) 2015; 521
Xia (D3MH02049E/cit5/1) 2019; 18
Malhotra (D3MH02049E/cit18/1) 2020; 19
Gal (D3MH02049E/cit29/1) 2016; 48
Kim (D3MH02049E/cit9/1) 2022; 4
Kabir (D3MH02049E/cit14/1) 2018; 6
Dutta (D3MH02049E/cit31/1) 2022; 13
Kim (D3MH02049E/cit38/1) 2022; 8
Lin (D3MH02049E/cit21/1) 2023; 5
Ahmed (D3MH02049E/cit30/1) 2023; 13
Wang (D3MH02049E/cit32/1) 2021; 8
References_xml – issn: 2015
  issue: 37
  year: 1622
  end-page: 1613
  doi: Blundell Cornebise Kavukcuoglu Wierstra
– issn: 2016
  issue: 48
  year: 1059
  end-page: 1050
  doi: Gal Ghahramani
– issn: 2018
  doi: Michelmore Kwiatkowska Gal
– issn: 2016
  doi: Li Liu Wang Zhang Yan
– start-page: 3
  issn: 2013
  issue: 28
  year: 1066
  end-page: 1058
  doi: Wan Zeiler Zhang Le Cun Fergus
– volume: 14
  start-page: 7530
  year: 2023
  ident: D3MH02049E/cit23/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43317-9
– volume: 18
  start-page: 309
  year: 2019
  ident: D3MH02049E/cit5/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0291-x
– year: 2018
  ident: D3MH02049E/cit12/1
  doi: 10.48550/arXiv.1811.06817
– volume: 5
  start-page: 714
  year: 2023
  ident: D3MH02049E/cit21/1
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00680-y
– start-page: 5574
  year: 2017
  ident: D3MH02049E/cit16/1
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 1021943
  year: 2022
  ident: D3MH02049E/cit24/1
  publication-title: Front. Nanotechnol.
  doi: 10.3389/fnano.2022.1021943
– volume: 13
  start-page: 2571
  year: 2022
  ident: D3MH02049E/cit31/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30305-8
– volume: 13
  start-page: 6139
  year: 2023
  ident: D3MH02049E/cit25/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33699-7
– year: 2016
  ident: D3MH02049E/cit43/1
  doi: 10.48550/arXiv.1605.04711
– volume: 43
  start-page: 1571
  issue: 9
  year: 2022
  ident: D3MH02049E/cit22/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2022.3192262
– volume: 64
  start-page: 4763
  issue: 11
  year: 2017
  ident: D3MH02049E/cit35/1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2747589
– volume: 38
  start-page: 1532
  issue: 11
  year: 2017
  ident: D3MH02049E/cit41/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2757493
– volume: 28
  start-page: 1058
  issue: 3
  year: 2013
  ident: D3MH02049E/cit26/1
– volume: 23
  start-page: 101809
  issue: 12
  year: 2020
  ident: D3MH02049E/cit1/1
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101809
– volume: 13
  start-page: 6572
  year: 2022
  ident: D3MH02049E/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34025-x
– volume: 32
  start-page: 3286
  year: 2019
  ident: D3MH02049E/cit28/1
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 1602
  issue: 10
  year: 2019
  ident: D3MH02049E/cit33/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2019.2936104
– volume: 9
  start-page: 238
  year: 2024
  ident: D3MH02049E/cit10/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D3NH00421J
– start-page: 14.6.1
  year: 2019
  ident: D3MH02049E/cit19/1
  publication-title: IEEE Int. Electron Devices Meet.
– volume: 32
  start-page: 1904599
  issue: 9
  year: 2020
  ident: D3MH02049E/cit37/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904599
– volume: 48
  start-page: 1050
  year: 2016
  ident: D3MH02049E/cit29/1
– volume: 521
  start-page: 61
  year: 2015
  ident: D3MH02049E/cit3/1
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 4
  start-page: 2200058
  issue: 9
  year: 2022
  ident: D3MH02049E/cit9/1
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202200058
– volume: 8
  start-page: 2200202
  issue: 9
  year: 2022
  ident: D3MH02049E/cit34/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200202
– volume: 2
  start-page: 10
  year: 2022
  ident: D3MH02049E/cit2/1
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00184-y
– volume: 11
  start-page: 5458
  year: 2021
  ident: D3MH02049E/cit27/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84854-x
– volume: 30
  start-page: 1705914
  issue: 9
  year: 2018
  ident: D3MH02049E/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705914
– volume: 29
  start-page: 1604457
  issue: 12
  year: 2017
  ident: D3MH02049E/cit36/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604457
– volume: 5
  start-page: 4232
  year: 2014
  ident: D3MH02049E/cit39/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5232
– volume: 19
  start-page: 328
  year: 2020
  ident: D3MH02049E/cit18/1
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2020.2982819
– volume: 37
  start-page: 1613
  year: 2015
  ident: D3MH02049E/cit15/1
– volume: 13
  start-page: 150
  issue: 1
  year: 2023
  ident: D3MH02049E/cit30/1
  publication-title: IEEE J. Emerg. Sel. Topics Circuits Syst.
  doi: 10.1109/JETCAS.2023.3242146
– volume: 7
  start-page: 2000410
  issue: 1
  year: 2021
  ident: D3MH02049E/cit40/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000410
– volume: 4
  start-page: 151
  year: 2021
  ident: D3MH02049E/cit20/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00523-3
– volume: 8
  start-page: 1456
  year: 2023
  ident: D3MH02049E/cit7/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D3NH00180F
– volume: 6
  start-page: 36218
  year: 2018
  ident: D3MH02049E/cit14/1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2836917
– volume: 4
  start-page: 2100174
  issue: 4
  year: 2022
  ident: D3MH02049E/cit42/1
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202100174
– volume: 3
  start-page: 2000103
  issue: 8
  year: 2021
  ident: D3MH02049E/cit17/1
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202000103
– volume: 5
  start-page: 173
  year: 2020
  ident: D3MH02049E/cit6/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0159-3
– volume: 9
  start-page: 427
  year: 2024
  ident: D3MH02049E/cit11/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D3NH00493G
– volume: 8
  start-page: 619
  year: 2021
  ident: D3MH02049E/cit32/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH01759K
– volume: 32
  start-page: 2200337
  issue: 29
  year: 2022
  ident: D3MH02049E/cit8/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200337
– volume: 8
  start-page: 2200365
  issue: 10
  year: 2022
  ident: D3MH02049E/cit38/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200365
SSID ssj0001345080
Score 2.3625586
Snippet Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 494
SubjectTerms Algorithms
Arrays
Co-design
Complexity
Hardware
Memristors
Neural networks
Selectors
Switching (polarity)
Title Memristive Monte Carlo DropConnect crossbar array enabled by device and algorithm co-design
URI https://www.ncbi.nlm.nih.gov/pubmed/38916265
https://www.proquest.com/docview/3097805757
https://www.proquest.com/docview/3072001731
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection (IReL)
  customDbUrl: https://pubs.rsc.org
  eissn: 2051-6355
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001345080
  issn: 2051-6347
  databaseCode: AETIL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiK9Bx0BGICQUZWtjJ2keB-0Uqm68tKISD5HjOBSpbbqQInV_Bn8xd47zgTYh4CWKXKtWfD-f784_3xHyJhWJ78h0aEuQt82Vl9gBk8J2hBjEju8kYCoh2-LSC-d8snAXnc7PFmtpV8Qn8vrWeyX_I1VoA7niLdl_kGz9p9AA7yBfeIKE4flXMr5Qa71Gf-i1WSikb6wya5RnW01gkYWld8FY5JbIc7G3lL4qpY3ORKGSKJO1rr5m-bdiubZkZicNp6Oq9CSK8musJXS7rgJ8oq7FPMqsMGvO8z_DuxXud8goWKrM7I0YxjH83xCgtmxgOVHl0f9EKOu9SQ1hAhEOx8iqudhdMpgw3FFxTTWXxFSsa1SaAyrA9liZY_NEtdvKZL21Th60see3NCz6o63dmg90ioSbO0GfYSLVhK2XeP03UM1-V53xX36KzufTaTQbL2Zvt1c2ViLDE3tTluUOOXBgp-h3ycHZePZx2kTuGAerFoN39edUeW9ZcNqM-Lulc8N9AWMmr4rMaGNm9oDcN14IPSsh9ZB01OYRudfKTfmYfGnARTW4qAYXbYGLVuCiGlzUgIvGe1qCiwK4aA0uWoPrCZmfj2cfQttU4rAlY35hBzFnnotpE1wvlonLZBK7POB9xYUapunQA7NaeVjJHHQ6eKlunHKwZVnalwMZDNkh6W6yjXpGKLKWA8dlPriyXIImUE4ATkucBqlUw8TvkXfVrEXSpKnHaimrSNMlWBCN2EWoZ3jcI6_rvtsyOcutvY6ryY_M4v0esb6u5uG7MOCr-mfAK56XiY3KdtjHR8ahzwY98rQUWj0MHu97juf2yCFIsW5upH_051Gfk7vNGjom3SLfqRdg3hbxS4O3X90spz4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristive+Monte+Carlo+DropConnect+crossbar+array+enabled+by+device+and+algorithm+co-design&rft.jtitle=Materials+horizons&rft.au=Kim%2C+Do+Hoon&rft.au=Woon+Hyung+Cheong&rft.au=Song%2C+Hanchan&rft.au=Jeon%2C+Jae+Bum&rft.date=2024-08-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=11&rft.issue=17&rft.spage=4094&rft.epage=4103&rft_id=info:doi/10.1039%2Fd3mh02049e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon