Memristive Monte Carlo DropConnect crossbar array enabled by device and algorithm co-design
Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing s...
Saved in:
| Published in | Materials horizons Vol. 11; no. 17; pp. 494 - 413 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Royal Society of Chemistry
28.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2051-6347 2051-6355 2051-6355 |
| DOI | 10.1039/d3mh02049e |
Cover
| Abstract | Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance.
A one-selector-one-memristor crossbar array was developed, capable of driving Monte Carlo DropConnect network. This could be achieved through a hardware and algorithm co-design approach, involving mutual improvement of them. |
|---|---|
| AbstractList | Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance.Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance. Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance. Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the hardware's characteristics. Specifically, neuromorphic computing algorithms are constantly growing in complexity, necessitating an ongoing search for hardware implementations capable of handling these intricate algorithms. Here, we present a memristive Monte Carlo DropConnect (MC-DC) crossbar array developed through a hardware algorithm co-design approach. To implement the MC-DC neural network, stochastic switching and analog memory characteristics are required, and we achieved them using Ag-based diffusive selectors and Ru-based electrochemical metalization (ECM) memristors, respectively. The devices were integrated with a one-selector one-memristor (1S1M) structure, and their well-matched operating voltages and currents enabled stochastic readout and deterministic analog programming. With the integrated hardware, we successfully demonstrated the MC-DC operation. Additionally, the selector allowed for the control of switching polarity, and by understanding this hardware characteristic, we were able to modify the algorithm to fit it and further improve the network performance. A one-selector-one-memristor crossbar array was developed, capable of driving Monte Carlo DropConnect network. This could be achieved through a hardware and algorithm co-design approach, involving mutual improvement of them. |
| Author | Song, Hanchan Jeon, Jae Bum Kim, Geunyoung Kim, Kyung Min Kim, Do Hoon Cheong, Woon Hyung |
| AuthorAffiliation | Department of Materials Science and Engineering Applied Science Research Institute Korea Advanced Institute of Science and Technology (KAIST) |
| AuthorAffiliation_xml | – sequence: 0 name: Applied Science Research Institute – sequence: 0 name: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 0 name: Department of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Do Hoon surname: Kim fullname: Kim, Do Hoon – sequence: 2 givenname: Woon Hyung surname: Cheong fullname: Cheong, Woon Hyung – sequence: 3 givenname: Hanchan surname: Song fullname: Song, Hanchan – sequence: 4 givenname: Jae Bum surname: Jeon fullname: Jeon, Jae Bum – sequence: 5 givenname: Geunyoung surname: Kim fullname: Kim, Geunyoung – sequence: 6 givenname: Kyung Min surname: Kim fullname: Kim, Kyung Min |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38916265$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0UtLxDAUBeAgIz5n414JuBGhmvQmabuU8TGCgxtduShpeqsZ2mRMOsL8e6vjA8RVsvjuJTlnl4ycd0jIAWdnnEFxXkP3wlImCtwgOymTPFEg5ejnLrJtMo5xzhjjICTL2RbZhrzgKlVyhzzNsAs29vYN6cy7HulEh9bTy-AXE-8cmp6a4GOsdKA6BL2i6HTVYk2rFa3xzRqk2tVUt88-2P6lo8YnNUb77PbJZqPbiOOvc488Xl89TKbJ3f3N7eTiLjEAWZ8UlQAlpQAuVWVqCaaupCgEQ6Exb5pcKSFQCZ4KCTyVUlaNUAqgYYabIoc9crLeuwj-dYmxLzsbDbatduiXsQSWpcPvM-ADPf5D534Z3PC6QRVZzmQms0Edfall1WFdLoLtdFiV37ENgK3BZzQBm9LYXvd2CDBo25aclR_llJcwm36WczWMnP4Z-d76Lz5c4xDNj_ttGt4ByXeWEA |
| CitedBy_id | crossref_primary_10_1039_D4DT01946F crossref_primary_10_1021_acs_chemrev_4c00454 |
| Cites_doi | 10.1038/s41467-023-43317-9 10.1038/s41563-019-0291-x 10.48550/arXiv.1811.06817 10.1038/s42256-023-00680-y 10.3389/fnano.2022.1021943 10.1038/s41467-022-30305-8 10.1038/s41467-022-33699-7 10.48550/arXiv.1605.04711 10.1109/LED.2022.3192262 10.1109/TED.2017.2747589 10.1109/LED.2017.2757493 10.1016/j.isci.2020.101809 10.1038/s41467-022-34025-x 10.1109/LED.2019.2936104 10.1039/D3NH00421J 10.1002/adma.201904599 10.1038/nature14441 10.1002/aisy.202200058 10.1002/aelm.202200202 10.1038/s43588-021-00184-y 10.1038/s41598-021-84854-x 10.1002/adma.201705914 10.1002/adma.201604457 10.1038/ncomms5232 10.1109/TNANO.2020.2982819 10.1109/JETCAS.2023.3242146 10.1002/aelm.202000410 10.1038/s41928-020-00523-3 10.1039/D3NH00180F 10.1109/ACCESS.2018.2836917 10.1002/aisy.202100174 10.1002/aisy.202000103 10.1038/s41578-019-0159-3 10.1039/D3NH00493G 10.1039/D0MH01759K 10.1002/adfm.202200337 10.1002/aelm.202200365 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2024 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
| DBID | AAYXX CITATION NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
| DOI | 10.1039/d3mh02049e |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2051-6355 |
| EndPage | 413 |
| ExternalDocumentID | 38916265 10_1039_D3MH02049E d3mh02049e |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABPDG ABRYZ ABXOH ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AETIL AFLYV AFOGI AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c337t-9b4365543156bcd53cdb54940e4ae8ff86644e641245312555bf46633f0c1c983 |
| ISSN | 2051-6347 2051-6355 |
| IngestDate | Sat Sep 27 21:05:03 EDT 2025 Mon Jun 30 16:49:00 EDT 2025 Mon Jul 21 06:02:20 EDT 2025 Wed Oct 01 02:19:43 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Tue Dec 17 20:58:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c337t-9b4365543156bcd53cdb54940e4ae8ff86644e641245312555bf46633f0c1c983 |
| Notes | https://doi.org/10.1039/d3mh02049e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3120-9638 0000-0002-0190-4226 0000-0002-4738-3075 |
| PMID | 38916265 |
| PQID | 3097805757 |
| PQPubID | 2047518 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1039_D3MH02049E proquest_journals_3097805757 crossref_primary_10_1039_D3MH02049E rsc_primary_d3mh02049e pubmed_primary_38916265 proquest_miscellaneous_3072001731 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-28 |
| PublicationDateYYYYMMDD | 2024-08-28 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Materials horizons |
| PublicationTitleAlternate | Mater Horiz |
| PublicationYear | 2024 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | 1059 1066 1622 Kim (D3MH02049E/cit40/1) 2021; 7 Song (D3MH02049E/cit41/1) 2017; 38 Wang (D3MH02049E/cit6/1) 2020; 5 Midya (D3MH02049E/cit36/1) 2017; 29 Cheong (D3MH02049E/cit8/1) 2022; 32 Choi (D3MH02049E/cit22/1) 2022; 43 Lu (D3MH02049E/cit34/1) 2022; 8 Sebastian (D3MH02049E/cit25/1) 2023; 13 Wan (D3MH02049E/cit26/1) 2013; 28 Kim (D3MH02049E/cit42/1) 2022; 4 Wang (D3MH02049E/cit1/1) 2020; 23 Dolezal (D3MH02049E/cit13/1) 2022; 13 Yoon (D3MH02049E/cit37/1) 2020; 32 Liu (D3MH02049E/cit24/1) 2022; 4 Song (D3MH02049E/cit35/1) 2017; 64 Dalgaty (D3MH02049E/cit17/1) 2021; 3 Schuman (D3MH02049E/cit2/1) 2022; 2 Li (D3MH02049E/cit7/1) 2023; 8 Grisafe (D3MH02049E/cit33/1) 2019; 40 Detorakis (D3MH02049E/cit28/1) 2019; 32 Kendall (D3MH02049E/cit16/1) 2017 Bonnet (D3MH02049E/cit23/1) 2023; 14 Blundell (D3MH02049E/cit15/1) 2015; 37 Ghenzi (D3MH02049E/cit11/1) 2024; 9 Dalgaty (D3MH02049E/cit20/1) 2021; 4 Hu (D3MH02049E/cit4/1) 2018; 30 Iliasov (D3MH02049E/cit10/1) 2024; 9 Mobiny (D3MH02049E/cit27/1) 2021; 11 Yang (D3MH02049E/cit39/1) 2014; 5 Michelmore (D3MH02049E/cit12/1) 2018 Lin (D3MH02049E/cit19/1) 2019 Li (D3MH02049E/cit43/1) 2016 Prezioso (D3MH02049E/cit3/1) 2015; 521 Xia (D3MH02049E/cit5/1) 2019; 18 Malhotra (D3MH02049E/cit18/1) 2020; 19 Gal (D3MH02049E/cit29/1) 2016; 48 Kim (D3MH02049E/cit9/1) 2022; 4 Kabir (D3MH02049E/cit14/1) 2018; 6 Dutta (D3MH02049E/cit31/1) 2022; 13 Kim (D3MH02049E/cit38/1) 2022; 8 Lin (D3MH02049E/cit21/1) 2023; 5 Ahmed (D3MH02049E/cit30/1) 2023; 13 Wang (D3MH02049E/cit32/1) 2021; 8 |
| References_xml | – issn: 2015 issue: 37 year: 1622 end-page: 1613 doi: Blundell Cornebise Kavukcuoglu Wierstra – issn: 2016 issue: 48 year: 1059 end-page: 1050 doi: Gal Ghahramani – issn: 2018 doi: Michelmore Kwiatkowska Gal – issn: 2016 doi: Li Liu Wang Zhang Yan – start-page: 3 issn: 2013 issue: 28 year: 1066 end-page: 1058 doi: Wan Zeiler Zhang Le Cun Fergus – volume: 14 start-page: 7530 year: 2023 ident: D3MH02049E/cit23/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43317-9 – volume: 18 start-page: 309 year: 2019 ident: D3MH02049E/cit5/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0291-x – year: 2018 ident: D3MH02049E/cit12/1 doi: 10.48550/arXiv.1811.06817 – volume: 5 start-page: 714 year: 2023 ident: D3MH02049E/cit21/1 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00680-y – start-page: 5574 year: 2017 ident: D3MH02049E/cit16/1 publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 1021943 year: 2022 ident: D3MH02049E/cit24/1 publication-title: Front. Nanotechnol. doi: 10.3389/fnano.2022.1021943 – volume: 13 start-page: 2571 year: 2022 ident: D3MH02049E/cit31/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30305-8 – volume: 13 start-page: 6139 year: 2023 ident: D3MH02049E/cit25/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33699-7 – year: 2016 ident: D3MH02049E/cit43/1 doi: 10.48550/arXiv.1605.04711 – volume: 43 start-page: 1571 issue: 9 year: 2022 ident: D3MH02049E/cit22/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2022.3192262 – volume: 64 start-page: 4763 issue: 11 year: 2017 ident: D3MH02049E/cit35/1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2747589 – volume: 38 start-page: 1532 issue: 11 year: 2017 ident: D3MH02049E/cit41/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2757493 – volume: 28 start-page: 1058 issue: 3 year: 2013 ident: D3MH02049E/cit26/1 – volume: 23 start-page: 101809 issue: 12 year: 2020 ident: D3MH02049E/cit1/1 publication-title: iScience doi: 10.1016/j.isci.2020.101809 – volume: 13 start-page: 6572 year: 2022 ident: D3MH02049E/cit13/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34025-x – volume: 32 start-page: 3286 year: 2019 ident: D3MH02049E/cit28/1 publication-title: Adv. Neural Inf. Process. Syst. – volume: 40 start-page: 1602 issue: 10 year: 2019 ident: D3MH02049E/cit33/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2019.2936104 – volume: 9 start-page: 238 year: 2024 ident: D3MH02049E/cit10/1 publication-title: Nanoscale Horiz. doi: 10.1039/D3NH00421J – start-page: 14.6.1 year: 2019 ident: D3MH02049E/cit19/1 publication-title: IEEE Int. Electron Devices Meet. – volume: 32 start-page: 1904599 issue: 9 year: 2020 ident: D3MH02049E/cit37/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904599 – volume: 48 start-page: 1050 year: 2016 ident: D3MH02049E/cit29/1 – volume: 521 start-page: 61 year: 2015 ident: D3MH02049E/cit3/1 publication-title: Nature doi: 10.1038/nature14441 – volume: 4 start-page: 2200058 issue: 9 year: 2022 ident: D3MH02049E/cit9/1 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202200058 – volume: 8 start-page: 2200202 issue: 9 year: 2022 ident: D3MH02049E/cit34/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202200202 – volume: 2 start-page: 10 year: 2022 ident: D3MH02049E/cit2/1 publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-021-00184-y – volume: 11 start-page: 5458 year: 2021 ident: D3MH02049E/cit27/1 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84854-x – volume: 30 start-page: 1705914 issue: 9 year: 2018 ident: D3MH02049E/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705914 – volume: 29 start-page: 1604457 issue: 12 year: 2017 ident: D3MH02049E/cit36/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604457 – volume: 5 start-page: 4232 year: 2014 ident: D3MH02049E/cit39/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5232 – volume: 19 start-page: 328 year: 2020 ident: D3MH02049E/cit18/1 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2020.2982819 – volume: 37 start-page: 1613 year: 2015 ident: D3MH02049E/cit15/1 – volume: 13 start-page: 150 issue: 1 year: 2023 ident: D3MH02049E/cit30/1 publication-title: IEEE J. Emerg. Sel. Topics Circuits Syst. doi: 10.1109/JETCAS.2023.3242146 – volume: 7 start-page: 2000410 issue: 1 year: 2021 ident: D3MH02049E/cit40/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000410 – volume: 4 start-page: 151 year: 2021 ident: D3MH02049E/cit20/1 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00523-3 – volume: 8 start-page: 1456 year: 2023 ident: D3MH02049E/cit7/1 publication-title: Nanoscale Horiz. doi: 10.1039/D3NH00180F – volume: 6 start-page: 36218 year: 2018 ident: D3MH02049E/cit14/1 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2836917 – volume: 4 start-page: 2100174 issue: 4 year: 2022 ident: D3MH02049E/cit42/1 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202100174 – volume: 3 start-page: 2000103 issue: 8 year: 2021 ident: D3MH02049E/cit17/1 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000103 – volume: 5 start-page: 173 year: 2020 ident: D3MH02049E/cit6/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0159-3 – volume: 9 start-page: 427 year: 2024 ident: D3MH02049E/cit11/1 publication-title: Nanoscale Horiz. doi: 10.1039/D3NH00493G – volume: 8 start-page: 619 year: 2021 ident: D3MH02049E/cit32/1 publication-title: Mater. Horiz. doi: 10.1039/D0MH01759K – volume: 32 start-page: 2200337 issue: 29 year: 2022 ident: D3MH02049E/cit8/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200337 – volume: 8 start-page: 2200365 issue: 10 year: 2022 ident: D3MH02049E/cit38/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202200365 |
| SSID | ssj0001345080 |
| Score | 2.3625586 |
| Snippet | Device and algorithm co-design aims to develop energy-efficient hardware that directly implements complex algorithms and optimizes algorithms to match the... |
| SourceID | proquest pubmed crossref rsc |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 494 |
| SubjectTerms | Algorithms Arrays Co-design Complexity Hardware Memristors Neural networks Selectors Switching (polarity) |
| Title | Memristive Monte Carlo DropConnect crossbar array enabled by device and algorithm co-design |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38916265 https://www.proquest.com/docview/3097805757 https://www.proquest.com/docview/3072001731 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection (IReL) customDbUrl: https://pubs.rsc.org eissn: 2051-6355 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001345080 issn: 2051-6347 databaseCode: AETIL dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiK9Bx0BGICQUZWtjJ2keB-0Uqm68tKISD5HjOBSpbbqQInV_Bn8xd47zgTYh4CWKXKtWfD-f784_3xHyJhWJ78h0aEuQt82Vl9gBk8J2hBjEju8kYCoh2-LSC-d8snAXnc7PFmtpV8Qn8vrWeyX_I1VoA7niLdl_kGz9p9AA7yBfeIKE4flXMr5Qa71Gf-i1WSikb6wya5RnW01gkYWld8FY5JbIc7G3lL4qpY3ORKGSKJO1rr5m-bdiubZkZicNp6Oq9CSK8musJXS7rgJ8oq7FPMqsMGvO8z_DuxXud8goWKrM7I0YxjH83xCgtmxgOVHl0f9EKOu9SQ1hAhEOx8iqudhdMpgw3FFxTTWXxFSsa1SaAyrA9liZY_NEtdvKZL21Th60see3NCz6o63dmg90ioSbO0GfYSLVhK2XeP03UM1-V53xX36KzufTaTQbL2Zvt1c2ViLDE3tTluUOOXBgp-h3ycHZePZx2kTuGAerFoN39edUeW9ZcNqM-Lulc8N9AWMmr4rMaGNm9oDcN14IPSsh9ZB01OYRudfKTfmYfGnARTW4qAYXbYGLVuCiGlzUgIvGe1qCiwK4aA0uWoPrCZmfj2cfQttU4rAlY35hBzFnnotpE1wvlonLZBK7POB9xYUapunQA7NaeVjJHHQ6eKlunHKwZVnalwMZDNkh6W6yjXpGKLKWA8dlPriyXIImUE4ATkucBqlUw8TvkXfVrEXSpKnHaimrSNMlWBCN2EWoZ3jcI6_rvtsyOcutvY6ryY_M4v0esb6u5uG7MOCr-mfAK56XiY3KdtjHR8ahzwY98rQUWj0MHu97juf2yCFIsW5upH_051Gfk7vNGjom3SLfqRdg3hbxS4O3X90spz4 |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristive+Monte+Carlo+DropConnect+crossbar+array+enabled+by+device+and+algorithm+co-design&rft.jtitle=Materials+horizons&rft.au=Kim%2C+Do+Hoon&rft.au=Woon+Hyung+Cheong&rft.au=Song%2C+Hanchan&rft.au=Jeon%2C+Jae+Bum&rft.date=2024-08-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=11&rft.issue=17&rft.spage=4094&rft.epage=4103&rft_id=info:doi/10.1039%2Fd3mh02049e&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |