Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity
Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for explorin...
Saved in:
Published in | AIMS mathematics Vol. 10; no. 6; pp. 13343 - 13364 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2025599 |
Cover
Abstract | Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for exploring combinatorial properties in their line graphs. Motivated by the need to better understand domination, chromaticity, and Hamiltonian properties in line graphs, this study examined the line graphs of pan and lollipop graphs. These investigations were inspired by their potential applications in connectivity analysis and optimization in networks. We derived analytical formulas for the domination and chromatic numbers of these line graphs, established relationships between these parameters and their corresponding original graphs, and proved that the line graph of a pan graph is Hamiltonian while that of a lollipop graph is traceable. The methodology combines established theoretical results and inequalities, including domination bounds and chromaticity relations, with rigorous combinatorial analysis. Our results not only contribute to the theoretical understanding of line graphs but also have implications for practical problems in network optimization and graph algorithm design, opening avenues for further research into hybrid graph structures. |
---|---|
AbstractList | Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for exploring combinatorial properties in their line graphs. Motivated by the need to better understand domination, chromaticity, and Hamiltonian properties in line graphs, this study examined the line graphs of pan and lollipop graphs. These investigations were inspired by their potential applications in connectivity analysis and optimization in networks. We derived analytical formulas for the domination and chromatic numbers of these line graphs, established relationships between these parameters and their corresponding original graphs, and proved that the line graph of a pan graph is Hamiltonian while that of a lollipop graph is traceable. The methodology combines established theoretical results and inequalities, including domination bounds and chromaticity relations, with rigorous combinatorial analysis. Our results not only contribute to the theoretical understanding of line graphs but also have implications for practical problems in network optimization and graph algorithm design, opening avenues for further research into hybrid graph structures. |
Author | Napolitano, Vito Khan, Suliman Alenazi, Mohammed J. F. Zhong, Yubin Hayat, Sakander |
Author_xml | – sequence: 1 givenname: Yubin surname: Zhong fullname: Zhong, Yubin – sequence: 2 givenname: Sakander surname: Hayat fullname: Hayat, Sakander – sequence: 3 givenname: Suliman surname: Khan fullname: Khan, Suliman – sequence: 4 givenname: Vito surname: Napolitano fullname: Napolitano, Vito – sequence: 5 givenname: Mohammed J. F. surname: Alenazi fullname: Alenazi, Mohammed J. F. |
BookMark | eNp9kMtOwzAQRS1UJErpjg_IBzTFryQ2O1QBrVSJTVlHEz9aV4ld2UGof09CEWLFakZXd87M3Fs08cEbhO4JXjLJ-EMH_WFJMS0KKa_QlPKK5aUUYvKnv0HzlI4YY0oopxWfot0qdI3z0IfooM3AQ3tOLmXBZq3zJttHOB3SY6ZDN7pc8ItMHWIYtjnl-vNiGNHZGjrX9sE78KN4h64ttMnMf-oMvb8871brfPv2ulk9bXPFWNXngivgTBW0YE0jjAZeqpIAFNwq2RgrMCsrUQCUEjNrjS4548QKQktSKSHYDG0uXB3gWJ-i6yCe6wCu_hZC3NcQhztbU2NQDJvh5Qok57oBRgimVlCptba0Glj5hfXhT3D-hLb9BRJcjwnXY8L1T8KDf3HxqxhSisb-b_8CVeCAHw |
Cites_doi | 10.1155/2021/6684784 10.2991/ammsa-17.2017.71 10.1007/s40840-017-0463-2 10.1007/s11432-021-3328-y 10.1002/jgt.3190090409 10.7151/dmgt.2339 10.1002/jgt.3190080210 10.1142/S0218348X21502601 10.1142/S0218348X22501365 10.1007/s12190-021-01565-2 10.1016/j.dam.2015.07.009 10.1002/jgt.10027 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F 10.4153/cmb-1965-051-3 10.1109/jsac.2020.3041388 10.3934/math.2021235 10.1016/j.jpdc.2016.10.015 10.1016/0095-8956(78)90006-0 10.1016/0012-365x(93)90555-8 10.1002/jgt.3190050312 10.1109/tcomm.2024.3429170 10.1002/(SICI)1097-0118(199607)22:3<213::AID-JGT2>3.0.CO;2-P 10.1109/jstsp.2022.3140660 10.1090/coll/038 |
ContentType | Journal Article |
CorporateAuthor | Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11451, Saudi Arabia School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, Caserta, I-81100, Italy |
CorporateAuthor_xml | – name: Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11451, Saudi Arabia – name: Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, Caserta, I-81100, Italy – name: Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam – name: School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China |
DBID | AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.3934/math.2025599 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 13364 |
ExternalDocumentID | oai_doaj_org_article_0ac30e2747a944dba31102f829dddf27 10.3934/math.2025599 10_3934_math_2025599 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
ID | FETCH-LOGICAL-c337t-84ca43c5253bb8eda46c61aa54fc9bef8036785aa6903ffed64341f812617c883 |
IEDL.DBID | UNPAY |
ISSN | 2473-6988 |
IngestDate | Mon Sep 01 19:40:26 EDT 2025 Mon Sep 15 08:17:36 EDT 2025 Wed Oct 01 05:51:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-84ca43c5253bb8eda46c61aa54fc9bef8036785aa6903ffed64341f812617c883 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2025599 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ac30e2747a944dba31102f829dddf27 unpaywall_primary_10_3934_math_2025599 crossref_primary_10_3934_math_2025599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2025 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2025599-3 key-10.3934/math.2025599-2 key-10.3934/math.2025599-1 key-10.3934/math.2025599-7 key-10.3934/math.2025599-6 key-10.3934/math.2025599-5 key-10.3934/math.2025599-4 key-10.3934/math.2025599-31 key-10.3934/math.2025599-10 key-10.3934/math.2025599-32 key-10.3934/math.2025599-30 key-10.3934/math.2025599-17 key-10.3934/math.2025599-18 key-10.3934/math.2025599-15 key-10.3934/math.2025599-16 key-10.3934/math.2025599-13 key-10.3934/math.2025599-14 key-10.3934/math.2025599-11 key-10.3934/math.2025599-33 key-10.3934/math.2025599-12 key-10.3934/math.2025599-19 key-10.3934/math.2025599-20 key-10.3934/math.2025599-21 key-10.3934/math.2025599-9 key-10.3934/math.2025599-8 key-10.3934/math.2025599-28 key-10.3934/math.2025599-29 key-10.3934/math.2025599-26 key-10.3934/math.2025599-27 key-10.3934/math.2025599-24 key-10.3934/math.2025599-25 key-10.3934/math.2025599-22 key-10.3934/math.2025599-23 |
References_xml | – ident: key-10.3934/math.2025599-14 doi: 10.1155/2021/6684784 – ident: key-10.3934/math.2025599-16 doi: 10.2991/ammsa-17.2017.71 – ident: key-10.3934/math.2025599-2 – ident: key-10.3934/math.2025599-21 doi: 10.1007/s40840-017-0463-2 – ident: key-10.3934/math.2025599-12 – ident: key-10.3934/math.2025599-7 doi: 10.1007/s11432-021-3328-y – ident: key-10.3934/math.2025599-9 doi: 10.1002/jgt.3190090409 – ident: key-10.3934/math.2025599-31 – ident: key-10.3934/math.2025599-3 doi: 10.7151/dmgt.2339 – ident: key-10.3934/math.2025599-6 doi: 10.1002/jgt.3190080210 – ident: key-10.3934/math.2025599-20 doi: 10.1142/S0218348X21502601 – ident: key-10.3934/math.2025599-19 doi: 10.1142/S0218348X22501365 – ident: key-10.3934/math.2025599-27 – ident: key-10.3934/math.2025599-25 – ident: key-10.3934/math.2025599-30 – ident: key-10.3934/math.2025599-8 – ident: key-10.3934/math.2025599-32 doi: 10.1007/s12190-021-01565-2 – ident: key-10.3934/math.2025599-17 doi: 10.1016/j.dam.2015.07.009 – ident: key-10.3934/math.2025599-10 doi: 10.1002/jgt.10027 – ident: key-10.3934/math.2025599-1 – ident: key-10.3934/math.2025599-13 doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F – ident: key-10.3934/math.2025599-15 doi: 10.4153/cmb-1965-051-3 – ident: key-10.3934/math.2025599-33 doi: 10.1109/jsac.2020.3041388 – ident: key-10.3934/math.2025599-18 doi: 10.3934/math.2021235 – ident: key-10.3934/math.2025599-26 doi: 10.1016/j.jpdc.2016.10.015 – ident: key-10.3934/math.2025599-5 – ident: key-10.3934/math.2025599-24 doi: 10.1016/0095-8956(78)90006-0 – ident: key-10.3934/math.2025599-29 doi: 10.1016/0012-365x(93)90555-8 – ident: key-10.3934/math.2025599-4 doi: 10.1002/jgt.3190050312 – ident: key-10.3934/math.2025599-28 doi: 10.1109/tcomm.2024.3429170 – ident: key-10.3934/math.2025599-22 doi: 10.1002/(SICI)1097-0118(199607)22:3<213::AID-JGT2>3.0.CO;2-P – ident: key-10.3934/math.2025599-11 doi: 10.1109/jstsp.2022.3140660 – ident: key-10.3934/math.2025599-23 doi: 10.1090/coll/038 |
SSID | ssj0002124274 |
Score | 2.2823138 |
Snippet | Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design,... |
SourceID | doaj unpaywall crossref |
SourceType | Open Website Open Access Repository Index Database |
StartPage | 13343 |
SubjectTerms | chromatic number domination number hamiltoniancity line graph lollipop graph pan graph traceability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF-iA-BTlSx6AqVHT-JzYbICoKqQytVK3yPGHGKq0oq0Q_567JFRlgYXViu3oneN7z7GfGbsBZYM2XkZI5kUEGiBSymcoVYDYiAaX0Hnn0Ws6nMDLVE63rvqiPWG1PXANXC82VsSetJPBhlxhBCasJKhEO-dCUp0jxzS2JaZoDsYJGbBOvdNdaAE95H_076Fy2PqRgyqr_jbbXZcL8_lhZrOt_DI4YPsNMeQP9Qsdsh1fHrH2aOOqujxmY_x4UciSTMZRw03jJ8LngRNZ5JX59PKeuzntbyHEu9y-vc-r-si2u1jF8SEtaSDjo9UMLDxhk8Hz-GkYNbciRFaIbBUpsAaElYkURaG8M5DatG-MhGB14YPCnJQpaQzqXhGCd8g5oB8wkSNZsUqJU9Yq56U_Y7yQ2qI8BuHJk8fJQsdBJ6nObBDexqbDbr9xyhe1-UWOooHwzAnPvMGzwx4JxM0zZFldFWAg8yaQ-V-B7LC7TQh-7e38P3q7YHvUXL2Ycslaq_e1v0J6sSquq5H0BVv_za0 priority: 102 providerName: Directory of Open Access Journals |
Title | Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity |
URI | https://doi.org/10.3934/math.2025599 https://doaj.org/article/0ac30e2747a944dba31102f829dddf27 |
UnpaywallVersion | publishedVersion |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HrQH32J9lByqJ1fXTXY38abSUgTFgwU9Ldk8ECytaIvor3dmd1uqgnpbQsKGmQnzfZPkC0BLSOOVdnGAYJ4HQgkRSOlSpCqC0IgSNqL7ztc3Sbcnru7j-zloTe7CzOzfc8XFCcI22jIohLHmYSGhbaQaLPRubs8f6N04kfIgUVKWZ9p_DPmSbQpR_josjgfP-v1N9_szmaSzAu3JHMoDJE_H41F-bD6-yTP-NclVWK6gJDsvfb8Gc26wDvXrqQ7r6wbc4XJH6kvEGuOM6UqBhA09I3jJCrnq1zNmh3Qihnx0xMzjy7AYj_j8CIdY1qUiCGJEqn9g4yb0Ou27y25QvaMQGM7TUSCF0YKbOIp5nktntUhMcqp1LLxRufMSs1gqY62RKXPvnUWUIk49pn6EN0ZKvgW1wXDgtoHlsTJIqAV3pOJj41yFXkWJSo3nzoS6AQcTe2fPpVxGhjSDrJSRlbLKSg24IGdM-5DIddGAZs2qNZOF2vDQEW3WGEM21xyxSuRlpKy1PkobcDh15a9_2_lvx11Yoq-yxLIHtdHL2O0j6BjlzYKsN6vI-wSXPtTv |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSDb7G-yKF6cnXdZHcTb1WUIrR4aEFPSzYPBEsr2iL6653Z3ZaqoN6WkLBhZsJ83yT5AtAQ0nilXRwgmOeBUEIEUroUqYogNKKEjei-c7uTtHri9j6-n4PG5C7MzP49V1ycIWyjLYNCGGseFhLaRqrBQq9z13ygd-NEyoNESVmeaf8x5Eu2KUT5l2FxPHjW72-635_JJDercD2ZQ3mA5Ol0PMpPzcc3eca_JrkGKxWUZM3S9-sw5wYbsNye6rC-bkIXlztSXyLWGGdMVwokbOgZwUtWyFW_XjA7pBMx5KMTZh5fhsV4xOcnOMSyFhVBECNS_QMbt6B3c929agXVOwqB4TwdBVIYLbiJo5jnuXRWi8Qk51rHwhuVOy8xi6Uy1hqZMvfeWUQp4txj6kd4Y6Tk21AbDAduB1geK4OEWnBHKj42zlXoVZSo1HjuTKjrcDSxd_ZcymVkSDPIShlZKausVIdLcsa0D4lcFw1o1qxaM1moDQ8d0WaNMWRzzRGrRF5Gylrro7QOx1NX_vq33f923IMl-ipLLPtQG72M3QGCjlF-WMXcJ58k0_o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+analysis+of+line+graphs%3A+domination%2C+chromaticity%2C+and+Hamiltoniancity&rft.jtitle=AIMS+mathematics&rft.au=Zhong%2C+Yubin&rft.au=Hayat%2C+Sakander&rft.au=Khan%2C+Suliman&rft.au=Napolitano%2C+Vito&rft.date=2025-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=6&rft.spage=13343&rft.epage=13364&rft_id=info:doi/10.3934%2Fmath.2025599&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |