Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity

Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for explorin...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 6; pp. 13343 - 13364
Main Authors Zhong, Yubin, Hayat, Sakander, Khan, Suliman, Napolitano, Vito, Alenazi, Mohammed J. F.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025599

Cover

Abstract Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for exploring combinatorial properties in their line graphs. Motivated by the need to better understand domination, chromaticity, and Hamiltonian properties in line graphs, this study examined the line graphs of pan and lollipop graphs. These investigations were inspired by their potential applications in connectivity analysis and optimization in networks. We derived analytical formulas for the domination and chromatic numbers of these line graphs, established relationships between these parameters and their corresponding original graphs, and proved that the line graph of a pan graph is Hamiltonian while that of a lollipop graph is traceable. The methodology combines established theoretical results and inequalities, including domination bounds and chromaticity relations, with rigorous combinatorial analysis. Our results not only contribute to the theoretical understanding of line graphs but also have implications for practical problems in network optimization and graph algorithm design, opening avenues for further research into hybrid graph structures.
AbstractList Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for exploring combinatorial properties in their line graphs. Motivated by the need to better understand domination, chromaticity, and Hamiltonian properties in line graphs, this study examined the line graphs of pan and lollipop graphs. These investigations were inspired by their potential applications in connectivity analysis and optimization in networks. We derived analytical formulas for the domination and chromatic numbers of these line graphs, established relationships between these parameters and their corresponding original graphs, and proved that the line graph of a pan graph is Hamiltonian while that of a lollipop graph is traceable. The methodology combines established theoretical results and inequalities, including domination bounds and chromaticity relations, with rigorous combinatorial analysis. Our results not only contribute to the theoretical understanding of line graphs but also have implications for practical problems in network optimization and graph algorithm design, opening avenues for further research into hybrid graph structures.
Author Napolitano, Vito
Khan, Suliman
Alenazi, Mohammed J. F.
Zhong, Yubin
Hayat, Sakander
Author_xml – sequence: 1
  givenname: Yubin
  surname: Zhong
  fullname: Zhong, Yubin
– sequence: 2
  givenname: Sakander
  surname: Hayat
  fullname: Hayat, Sakander
– sequence: 3
  givenname: Suliman
  surname: Khan
  fullname: Khan, Suliman
– sequence: 4
  givenname: Vito
  surname: Napolitano
  fullname: Napolitano, Vito
– sequence: 5
  givenname: Mohammed J. F.
  surname: Alenazi
  fullname: Alenazi, Mohammed J. F.
BookMark eNp9kMtOwzAQRS1UJErpjg_IBzTFryQ2O1QBrVSJTVlHEz9aV4ld2UGof09CEWLFakZXd87M3Fs08cEbhO4JXjLJ-EMH_WFJMS0KKa_QlPKK5aUUYvKnv0HzlI4YY0oopxWfot0qdI3z0IfooM3AQ3tOLmXBZq3zJttHOB3SY6ZDN7pc8ItMHWIYtjnl-vNiGNHZGjrX9sE78KN4h64ttMnMf-oMvb8871brfPv2ulk9bXPFWNXngivgTBW0YE0jjAZeqpIAFNwq2RgrMCsrUQCUEjNrjS4548QKQktSKSHYDG0uXB3gWJ-i6yCe6wCu_hZC3NcQhztbU2NQDJvh5Qok57oBRgimVlCptba0Glj5hfXhT3D-hLb9BRJcjwnXY8L1T8KDf3HxqxhSisb-b_8CVeCAHw
Cites_doi 10.1155/2021/6684784
10.2991/ammsa-17.2017.71
10.1007/s40840-017-0463-2
10.1007/s11432-021-3328-y
10.1002/jgt.3190090409
10.7151/dmgt.2339
10.1002/jgt.3190080210
10.1142/S0218348X21502601
10.1142/S0218348X22501365
10.1007/s12190-021-01565-2
10.1016/j.dam.2015.07.009
10.1002/jgt.10027
10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
10.4153/cmb-1965-051-3
10.1109/jsac.2020.3041388
10.3934/math.2021235
10.1016/j.jpdc.2016.10.015
10.1016/0095-8956(78)90006-0
10.1016/0012-365x(93)90555-8
10.1002/jgt.3190050312
10.1109/tcomm.2024.3429170
10.1002/(SICI)1097-0118(199607)22:3<213::AID-JGT2>3.0.CO;2-P
10.1109/jstsp.2022.3140660
10.1090/coll/038
ContentType Journal Article
CorporateAuthor Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11451, Saudi Arabia
School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, Caserta, I-81100, Italy
CorporateAuthor_xml – name: Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11451, Saudi Arabia
– name: Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, Caserta, I-81100, Italy
– name: Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
– name: School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2025599
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 13364
ExternalDocumentID oai_doaj_org_article_0ac30e2747a944dba31102f829dddf27
10.3934/math.2025599
10_3934_math_2025599
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-c337t-84ca43c5253bb8eda46c61aa54fc9bef8036785aa6903ffed64341f812617c883
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Mon Sep 01 19:40:26 EDT 2025
Mon Sep 15 08:17:36 EDT 2025
Wed Oct 01 05:51:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-84ca43c5253bb8eda46c61aa54fc9bef8036785aa6903ffed64341f812617c883
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2025599
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_0ac30e2747a944dba31102f829dddf27
unpaywall_primary_10_3934_math_2025599
crossref_primary_10_3934_math_2025599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025599-3
key-10.3934/math.2025599-2
key-10.3934/math.2025599-1
key-10.3934/math.2025599-7
key-10.3934/math.2025599-6
key-10.3934/math.2025599-5
key-10.3934/math.2025599-4
key-10.3934/math.2025599-31
key-10.3934/math.2025599-10
key-10.3934/math.2025599-32
key-10.3934/math.2025599-30
key-10.3934/math.2025599-17
key-10.3934/math.2025599-18
key-10.3934/math.2025599-15
key-10.3934/math.2025599-16
key-10.3934/math.2025599-13
key-10.3934/math.2025599-14
key-10.3934/math.2025599-11
key-10.3934/math.2025599-33
key-10.3934/math.2025599-12
key-10.3934/math.2025599-19
key-10.3934/math.2025599-20
key-10.3934/math.2025599-21
key-10.3934/math.2025599-9
key-10.3934/math.2025599-8
key-10.3934/math.2025599-28
key-10.3934/math.2025599-29
key-10.3934/math.2025599-26
key-10.3934/math.2025599-27
key-10.3934/math.2025599-24
key-10.3934/math.2025599-25
key-10.3934/math.2025599-22
key-10.3934/math.2025599-23
References_xml – ident: key-10.3934/math.2025599-14
  doi: 10.1155/2021/6684784
– ident: key-10.3934/math.2025599-16
  doi: 10.2991/ammsa-17.2017.71
– ident: key-10.3934/math.2025599-2
– ident: key-10.3934/math.2025599-21
  doi: 10.1007/s40840-017-0463-2
– ident: key-10.3934/math.2025599-12
– ident: key-10.3934/math.2025599-7
  doi: 10.1007/s11432-021-3328-y
– ident: key-10.3934/math.2025599-9
  doi: 10.1002/jgt.3190090409
– ident: key-10.3934/math.2025599-31
– ident: key-10.3934/math.2025599-3
  doi: 10.7151/dmgt.2339
– ident: key-10.3934/math.2025599-6
  doi: 10.1002/jgt.3190080210
– ident: key-10.3934/math.2025599-20
  doi: 10.1142/S0218348X21502601
– ident: key-10.3934/math.2025599-19
  doi: 10.1142/S0218348X22501365
– ident: key-10.3934/math.2025599-27
– ident: key-10.3934/math.2025599-25
– ident: key-10.3934/math.2025599-30
– ident: key-10.3934/math.2025599-8
– ident: key-10.3934/math.2025599-32
  doi: 10.1007/s12190-021-01565-2
– ident: key-10.3934/math.2025599-17
  doi: 10.1016/j.dam.2015.07.009
– ident: key-10.3934/math.2025599-10
  doi: 10.1002/jgt.10027
– ident: key-10.3934/math.2025599-1
– ident: key-10.3934/math.2025599-13
  doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
– ident: key-10.3934/math.2025599-15
  doi: 10.4153/cmb-1965-051-3
– ident: key-10.3934/math.2025599-33
  doi: 10.1109/jsac.2020.3041388
– ident: key-10.3934/math.2025599-18
  doi: 10.3934/math.2021235
– ident: key-10.3934/math.2025599-26
  doi: 10.1016/j.jpdc.2016.10.015
– ident: key-10.3934/math.2025599-5
– ident: key-10.3934/math.2025599-24
  doi: 10.1016/0095-8956(78)90006-0
– ident: key-10.3934/math.2025599-29
  doi: 10.1016/0012-365x(93)90555-8
– ident: key-10.3934/math.2025599-4
  doi: 10.1002/jgt.3190050312
– ident: key-10.3934/math.2025599-28
  doi: 10.1109/tcomm.2024.3429170
– ident: key-10.3934/math.2025599-22
  doi: 10.1002/(SICI)1097-0118(199607)22:3<213::AID-JGT2>3.0.CO;2-P
– ident: key-10.3934/math.2025599-11
  doi: 10.1109/jstsp.2022.3140660
– ident: key-10.3934/math.2025599-23
  doi: 10.1090/coll/038
SSID ssj0002124274
Score 2.2823138
Snippet Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design,...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 13343
SubjectTerms chromatic number
domination number
hamiltoniancity
line graph
lollipop graph
pan graph
traceability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF-iA-BTlSx6AqVHT-JzYbICoKqQytVK3yPGHGKq0oq0Q_567JFRlgYXViu3oneN7z7GfGbsBZYM2XkZI5kUEGiBSymcoVYDYiAaX0Hnn0Ws6nMDLVE63rvqiPWG1PXANXC82VsSetJPBhlxhBCasJKhEO-dCUp0jxzS2JaZoDsYJGbBOvdNdaAE95H_076Fy2PqRgyqr_jbbXZcL8_lhZrOt_DI4YPsNMeQP9Qsdsh1fHrH2aOOqujxmY_x4UciSTMZRw03jJ8LngRNZ5JX59PKeuzntbyHEu9y-vc-r-si2u1jF8SEtaSDjo9UMLDxhk8Hz-GkYNbciRFaIbBUpsAaElYkURaG8M5DatG-MhGB14YPCnJQpaQzqXhGCd8g5oB8wkSNZsUqJU9Yq56U_Y7yQ2qI8BuHJk8fJQsdBJ6nObBDexqbDbr9xyhe1-UWOooHwzAnPvMGzwx4JxM0zZFldFWAg8yaQ-V-B7LC7TQh-7e38P3q7YHvUXL2Ycslaq_e1v0J6sSquq5H0BVv_za0
  priority: 102
  providerName: Directory of Open Access Journals
Title Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity
URI https://doi.org/10.3934/math.2025599
https://doaj.org/article/0ac30e2747a944dba31102f829dddf27
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HrQH32J9lByqJ1fXTXY38abSUgTFgwU9Ldk8ECytaIvor3dmd1uqgnpbQsKGmQnzfZPkC0BLSOOVdnGAYJ4HQgkRSOlSpCqC0IgSNqL7ztc3Sbcnru7j-zloTe7CzOzfc8XFCcI22jIohLHmYSGhbaQaLPRubs8f6N04kfIgUVKWZ9p_DPmSbQpR_josjgfP-v1N9_szmaSzAu3JHMoDJE_H41F-bD6-yTP-NclVWK6gJDsvfb8Gc26wDvXrqQ7r6wbc4XJH6kvEGuOM6UqBhA09I3jJCrnq1zNmh3Qihnx0xMzjy7AYj_j8CIdY1qUiCGJEqn9g4yb0Ou27y25QvaMQGM7TUSCF0YKbOIp5nktntUhMcqp1LLxRufMSs1gqY62RKXPvnUWUIk49pn6EN0ZKvgW1wXDgtoHlsTJIqAV3pOJj41yFXkWJSo3nzoS6AQcTe2fPpVxGhjSDrJSRlbLKSg24IGdM-5DIddGAZs2qNZOF2vDQEW3WGEM21xyxSuRlpKy1PkobcDh15a9_2_lvx11Yoq-yxLIHtdHL2O0j6BjlzYKsN6vI-wSXPtTv
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSDb7G-yKF6cnXdZHcTb1WUIrR4aEFPSzYPBEsr2iL6653Z3ZaqoN6WkLBhZsJ83yT5AtAQ0nilXRwgmOeBUEIEUroUqYogNKKEjei-c7uTtHri9j6-n4PG5C7MzP49V1ycIWyjLYNCGGseFhLaRqrBQq9z13ygd-NEyoNESVmeaf8x5Eu2KUT5l2FxPHjW72-635_JJDercD2ZQ3mA5Ol0PMpPzcc3eca_JrkGKxWUZM3S9-sw5wYbsNye6rC-bkIXlztSXyLWGGdMVwokbOgZwUtWyFW_XjA7pBMx5KMTZh5fhsV4xOcnOMSyFhVBECNS_QMbt6B3c929agXVOwqB4TwdBVIYLbiJo5jnuXRWi8Qk51rHwhuVOy8xi6Uy1hqZMvfeWUQp4txj6kd4Y6Tk21AbDAduB1geK4OEWnBHKj42zlXoVZSo1HjuTKjrcDSxd_ZcymVkSDPIShlZKausVIdLcsa0D4lcFw1o1qxaM1moDQ8d0WaNMWRzzRGrRF5Gylrro7QOx1NX_vq33f923IMl-ipLLPtQG72M3QGCjlF-WMXcJ58k0_o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+analysis+of+line+graphs%3A+domination%2C+chromaticity%2C+and+Hamiltoniancity&rft.jtitle=AIMS+mathematics&rft.au=Zhong%2C+Yubin&rft.au=Hayat%2C+Sakander&rft.au=Khan%2C+Suliman&rft.au=Napolitano%2C+Vito&rft.date=2025-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=6&rft.spage=13343&rft.epage=13364&rft_id=info:doi/10.3934%2Fmath.2025599&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon