LogKernel: A Threat Hunting Approach Based on Behaviour Provenance Graph and Graph Kernel Clustering
Cyber threat hunting is a proactive search process for hidden threats in an organization’s information system. It is a crucial component of active defense against advanced persistent threats (APTs). However, most of the current threat hunting methods rely on Cyber Threat Intelligence (CTI), which ca...
Saved in:
Published in | Security and communication networks Vol. 2022; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Hindawi
27.09.2022
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1939-0114 1939-0122 |
DOI | 10.1155/2022/4577141 |
Cover
Abstract | Cyber threat hunting is a proactive search process for hidden threats in an organization’s information system. It is a crucial component of active defense against advanced persistent threats (APTs). However, most of the current threat hunting methods rely on Cyber Threat Intelligence (CTI), which can find known attacks but cannot find unknown attacks that have not been disclosed by CTI. In this paper, we propose LogKernel, a threat hunting method based on graph kernel clustering which can effectively separate attack behaviour from benign activities. LogKernel first abstracts system audit logs into behaviour provenance graphs (BPGs) and then clusters graphs by embedding them into a continuous space using a graph kernel. In particular, we designed a new graph kernel clustering method based on the characteristics of BPGs, which can capture both structure information and rich label information of the BPGs. To reduce false positives, LogKernel further quantifies the threat of abnormal behaviour. We evaluate LogKernel on the malicious dataset, which includes seven simulated attack scenarios, and the DAPRA CADETS dataset, which includes four attack scenarios. The result shows that LogKernel can hunt all attack scenarios among them, and compared to the state-of-the-art methods, it can find unknown attacks. |
---|---|
AbstractList | Cyber threat hunting is a proactive search process for hidden threats in an organization’s information system. It is a crucial component of active defense against advanced persistent threats (APTs). However, most of the current threat hunting methods rely on Cyber Threat Intelligence (CTI), which can find known attacks but cannot find unknown attacks that have not been disclosed by CTI. In this paper, we propose LogKernel, a threat hunting method based on graph kernel clustering which can effectively separate attack behaviour from benign activities. LogKernel first abstracts system audit logs into behaviour provenance graphs (BPGs) and then clusters graphs by embedding them into a continuous space using a graph kernel. In particular, we designed a new graph kernel clustering method based on the characteristics of BPGs, which can capture both structure information and rich label information of the BPGs. To reduce false positives, LogKernel further quantifies the threat of abnormal behaviour. We evaluate LogKernel on the malicious dataset, which includes seven simulated attack scenarios, and the DAPRA CADETS dataset, which includes four attack scenarios. The result shows that LogKernel can hunt all attack scenarios among them, and compared to the state-of-the-art methods, it can find unknown attacks. |
Author | Liu, Gongshen Zhang, Ru Liu, Jianyi Li, Jiawei |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0003-2611-1852 surname: Li fullname: Li, Jiawei organization: Beijing University of Posts and TelecommunicationsBeijing 100876Chinabupt.edu.cn – sequence: 2 givenname: Ru orcidid: 0000-0001-6641-3236 surname: Zhang fullname: Zhang, Ru organization: Beijing University of Posts and TelecommunicationsBeijing 100876Chinabupt.edu.cn – sequence: 3 givenname: Jianyi orcidid: 0000-0003-3133-4452 surname: Liu fullname: Liu, Jianyi organization: Beijing University of Posts and TelecommunicationsBeijing 100876Chinabupt.edu.cn – sequence: 4 givenname: Gongshen orcidid: 0000-0001-5194-1570 surname: Liu fullname: Liu, Gongshen organization: Shanghai Jiao Tong UniversityShanghai 200240Chinasjtu.edu.cn |
BookMark | eNp9kD9PwzAUxC1UJNrCxgewxAih_pc4YWsraBGVYOgeOc5LkyrYwU6K-PakSsWABNO74Xd3TzdBI2MNIHRNyT2lYThjhLGZCKWkgp6hMU14EhDK2OhHU3GBJt7vCYmokGKM8o3dvYAzUD_gOd6WDlSL151pK7PD86ZxVukSL5SHHFuDF1CqQ2U7h9-cPYBRRgNeOdWUWJn8pIY8vKw734Lrgy7ReaFqD1enO0Xbp8ftch1sXlfPy_km0JzLNpBZHkWEAPAw5yCKhJGiEJRoqUmW0DBjEOo4hojqXAPXpGAZFywGoZMkivkU3Qyx_dcfHfg23fefmr4xZZKxRHLJeE_dDZR21nsHRdq46l25r5SS9DhjepwxPc3Y4-wXrqtWtZU1rVNV_ZfpdjCVlcnVZ_V_xTfga4ME |
CitedBy_id | crossref_primary_10_1016_j_jnca_2024_104004 crossref_primary_10_1109_COMST_2023_3299519 crossref_primary_10_3390_electronics13010100 |
Cites_doi | 10.1109/TDSC.2020.2971484 10.17671/gazibtd.512800 10.1109/tnnls.2018.2829867 10.14722/ndss.2021.24549 10.1109/tnnls.2019.2927224 10.21105/joss.00205 10.1007/978-3-540-45167-9_11 10.1109/tnnls.2018.2817538 10.1007/s41109-019-0195-3 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Jiawei Li et al. Copyright © 2022 Jiawei Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Jiawei Li et al. – notice: Copyright © 2022 Jiawei Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1155/2022/4577141 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-0122 |
Editor | Aswani Kumar, Ch |
Editor_xml | – sequence: 1 givenname: Ch surname: Aswani Kumar fullname: Aswani Kumar, Ch |
EndPage | 16 |
ExternalDocumentID | 10_1155_2022_4577141 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2021XD-A11-1 – fundername: National Natural Science Foundation of China grantid: U1936216; U21B2020 |
GroupedDBID | .4S .DC 05W 0R~ 123 1OC 3SF 4.4 52U 5DZ 66C 8-1 8UM AAESR AAFWJ AAJEY AAONW ACGFO ADBBV ADIZJ AENEX AFBPY AFKRA AJXKR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATUGU AZVAB BCNDV BENPR BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU CS3 DR2 DU5 EBS EIS F1Z G-S GROUPED_DOAJ HCIFZ HZ~ IAO ICD ITC IX1 K7- LITHE MY. MY~ NNB O9- OIG OK1 P2P PIMPY RHU RHW RHX TH9 TUS W99 WBKPD XV2 24P AAYXX ACCMX ADMLS CITATION H13 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c337t-7bd6600ee35d3e4f920ff410c7c0b915b2e5c88e61cdce3c0f2b3428e4c99683 |
IEDL.DBID | RHX |
ISSN | 1939-0114 |
IngestDate | Fri Jul 25 20:52:59 EDT 2025 Tue Jul 01 01:43:54 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Sun Jun 02 18:53:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-7bd6600ee35d3e4f920ff410c7c0b915b2e5c88e61cdce3c0f2b3428e4c99683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6641-3236 0000-0003-3133-4452 0000-0003-2611-1852 0000-0001-5194-1570 |
OpenAccessLink | https://dx.doi.org/10.1155/2022/4577141 |
PQID | 2722973723 |
PQPubID | 1046363 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2722973723 crossref_primary_10_1155_2022_4577141 crossref_citationtrail_10_1155_2022_4577141 hindawi_primary_10_1155_2022_4577141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-27 |
PublicationDateYYYYMMDD | 2022-09-27 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Security and communication networks |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | P. Gao (4) T. Gärtner (24) 2003 FreeBuf Service (38) 2018 45 (29) 2020 47 G. Nikolentzos (27) 2018 28 Team Red Raindrops (37) 2019 J. Li (48) 2022 S. M. Milajerdi (2) W. U. Hassan (14) S. V. N. Vishwanathan (23) 2010; 11 H. Yin (20) (42) 2020 W. Ul Hassan (6) T. Pasquier (41) N. Shervashidze (26) 2011; 12 F. Liu (46) J. Zeng (3) W. U. Hassan (9) K. H. Lee (17) 2013; 16 S. T. King (10) Y. Kwon (15) M. N. Hossain (7) X. Han (12) 2020 30 31 Yoroi Blog (39) 2020 11 M. N. Hossain (16) 36 (34) 2018 (43) 2020 S. M. Milajerdi (1) P. Gao (22) G. Siglidis (44) 2020; 21 N. M. Kriege (25) 2020; 5 W. U. Hassan (21) M. Leland (33) 2017; 2 B. Kahle (35) 1996 sbousseaden (40) M. N. Hossain (8) A. Alsaheel (13) 2021 R. Wei (5) S. Ma (19) L. McInnes (32) S. Ma (18) 2017 |
References_xml | – ident: 11 doi: 10.1109/TDSC.2020.2971484 – volume-title: Tencent Security year: 2018 ident: 38 article-title: The Magic Bear (APT28) organizes the latest attack – ident: 28 doi: 10.17671/gazibtd.512800 – ident: 19 article-title: Protracer: Towards Practical Provenance Tracing by Alternating between Logging and Tainting – year: 2020 ident: 12 article-title: Unicorn: Runtime Provenance-Based Detector for Advanced Persistent threats – ident: 6 article-title: Tactical provenance analysis for endpoint detection and response systems – year: 2018 ident: 34 article-title: Google Safe Browsing – start-page: 33 ident: 32 article-title: Accelerated hierarchical density based clustering – start-page: 405 ident: 41 article-title: Practical whole-system provenance capture – ident: 31 doi: 10.1109/tnnls.2018.2829867 – ident: 45 – ident: 3 article-title: Watson: Abstracting Behaviors from Audit Logs via Aggregation of Contextual semantics doi: 10.14722/ndss.2021.24549 – ident: 21 article-title: Towards Scalable Cluster Auditing through Grammatical Inference over Provenance graphs – start-page: 193 ident: 4 article-title: Enabling efficient cyber threat hunting with cyber threat intelligence – ident: 8 article-title: Combating dependence explosion in forensic analysis using alternative tag propagation semantics – start-page: 487 ident: 16 article-title: SLEUTH}: real-time attack scenario reconstruction from {COTS} audit data – volume: 12 issue: 9 year: 2011 ident: 26 article-title: Weisfeiler-Lehman graph kernels publication-title: Journal of Machine Learning Research – year: 2020 ident: 39 article-title: The North Korean Kimsuky APT keeps threatening South Korea evolving its TTPs – start-page: 3 ident: 5 article-title: DeepHunter: A Graph Neural Network Based Approach for Robust Cyber Threat Hunting – ident: 36 – ident: 9 article-title: Nodoze: Combatting threat alert fatigue with automated provenance triage – volume-title: Amazon year: 1996 ident: 35 article-title: Alexa Rank – start-page: 116 ident: 20 article-title: Panorama: capturing system-wide information flow for malware detection and analysis – ident: 47 doi: 10.1109/tnnls.2019.2927224 – ident: 15 article-title: MCI: Modeling-based causality inference in audit logging for attack investigation – volume: 2 start-page: 205 issue: 11 year: 2017 ident: 33 article-title: hdbscan: Hierarchical density based clustering publication-title: The Journal of Open Source Software doi: 10.21105/joss.00205 – year: 2020 ident: 42 article-title: Transparent computing engagement 3 data release – ident: 14 article-title: OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-Layer Log analysis – start-page: 129 volume-title: Learning theory And Kernel Machines year: 2003 ident: 24 article-title: On graph kernels: hardness results and efficient alternatives doi: 10.1007/978-3-540-45167-9_11 – year: 2020 ident: 43 article-title: DARPA Transparent Computing – start-page: 1111 year: 2017 ident: 18 article-title: {MPI}: multiple perspective attack investigation with semantic aware execution partitioning publication-title: 26th {USENIX} Security Symposium ({USENIX} Security 17) – ident: 30 doi: 10.1109/tnnls.2018.2817538 – volume: 21 start-page: 1 issue: 54 year: 2020 ident: 44 article-title: GraKeL: a graph kernel library in Python publication-title: Journal of Machine Learning Research – start-page: 223 ident: 10 article-title: Backtracking intrusions – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 25 article-title: A survey on graph kernels publication-title: Applied Network Science doi: 10.1007/s41109-019-0195-3 – start-page: 1137 ident: 2 article-title: Holmes: Real-Time Apt Detection through Correlation of Suspicious Information flows – volume-title: 30th {USENIX} Security Symposium ({USENIX} Security 21) year: 2021 ident: 13 article-title: {ATLAS}: A Sequence-Based Learning Approach for Attack Investigation – volume: 16 year: 2013 ident: 17 article-title: High accuracy attack provenance via binary-based execution partition publication-title: Network and Distributed System Security Symposium – volume: 11 start-page: 1201 year: 2010 ident: 23 article-title: Graph kernels publication-title: Journal of Machine Learning Research – year: 2022 ident: 48 article-title: LogKernel A Threat Hunting Approach Based on Behaviour Provenance Graph and Graph Kernel Clustering – ident: 7 article-title: Sleuth: real-time attack scenario reconstruction from cots audit data – ident: 46 article-title: Log2vec: a heterogeneous graph embedding based approach for detecting cyber threats within enterprise – year: 2020 ident: 29 article-title: Process Injection: Process Hollowing – start-page: 1795 ident: 1 article-title: Poirot: aligning attack behavior with kernel audit records for cyber threat hunting – volume-title: Qianxin year: 2019 ident: 37 article-title: Sea Lotus is using new techniques to attack an environmental group in Vietnam – ident: 40 article-title: Windows EVTX Samples [200 EVTX examples] – start-page: 113 ident: 22 article-title: {AIQL}: Enabling efficient attack investigation from system monitoring data – year: 2018 ident: 27 article-title: Message passing graph kernels |
SSID | ssj0061474 |
Score | 2.279686 |
Snippet | Cyber threat hunting is a proactive search process for hidden threats in an organization’s information system. It is a crucial component of active defense... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Audits Behavior Clustering Datasets Design Graphs Hunting Information systems Intelligence gathering Kernels Knowledge Methods Performance evaluation Search process Semantics Subject specialists Threat evaluation Threats |
Title | LogKernel: A Threat Hunting Approach Based on Behaviour Provenance Graph and Graph Kernel Clustering |
URI | https://dx.doi.org/10.1155/2022/4577141 https://www.proquest.com/docview/2722973723 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46EPRBvOJ0jjzMJym2uTSpb3M4izdkTNhbaZPUCaOVbsO_78maiTpE31o4yUPOSc73kZPvINRJtfRZLlOP5iL0mOSwpTKdQywLwyMgRYTax8kPj2H8zG5HfOREkqarV_iQ7Sw9JxeMCxHYB-rrMrTBO4hHywMXEoxwl8e29Cdgy_r2H2O_ZZ6NsaW8768rR_Air_R30LYDhLhbe3AXrZliD219kQncR_q-fLkzVWEml7iLh2OL83Bc93jAXScKjq8gH2lcFthJHs4r_FSVcJZZv-IbK0yN00K7r3o-3JvMrVICTHSAhv3rYS_2XHcET1EqZp7IdAhoxRjKNTUsj4if5yzwlVB-FgU8I4YrKU0YKK0MVX5OMgpkwzAFHEfSQ9QoysIcIRyIgACzoZQyznKTSg7bOgXkprnIIuU30fly4RLllMNtA4tJsmAQnCd2mRO3zE109mn9Vitm_GLXcT74w6y1dFDittc0IYLYnluC0OP_zXKCNu2vLfQgooUas2puTgFNzLI24OgBaS8i6gOkZr-f |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LogKernel%3A+A+Threat+Hunting+Approach+Based+on+Behaviour+Provenance+Graph+and+Graph+Kernel+Clustering&rft.jtitle=Security+and+communication+networks&rft.au=Li%2C+Jiawei&rft.au=Zhang%2C+Ru&rft.au=Liu%2C+Jianyi&rft.au=Liu%2C+Gongshen&rft.date=2022-09-27&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1939-0114&rft.eissn=1939-0122&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F4577141&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-0114&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-0114&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-0114&client=summon |