Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms

Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nit...

Full description

Saved in:
Bibliographic Details
Published inNanoscale horizons Vol. 4; no. 2; pp. 415 - 425
Main Authors Wang, Chunmei, Dai, Chen, Hu, Zhongqian, Li, Hongqiang, Yu, Luodan, Lin, Han, Bai, Jianwen, Chen, Yu
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.03.2019
Subjects
Online AccessGet full text
ISSN2055-6756
2055-6764
2055-6764
DOI10.1039/c8nh00299a

Cover

Abstract Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro . Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo , but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation. Titanium nitride nanoparticles with high photothermal-conversion efficiency and desirable biocompatibility have been constructed as an alternative theranostic agent for NIR-II laser-excited photoacoustic imaging-guided photothermal tumor hyperthermia.
AbstractList Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro . Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo , but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation. Titanium nitride nanoparticles with high photothermal-conversion efficiency and desirable biocompatibility have been constructed as an alternative theranostic agent for NIR-II laser-excited photoacoustic imaging-guided photothermal tumor hyperthermia.
Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.
Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.
Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000–1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN–PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro . Furthermore, these TiN–PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN–PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo , but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.
Author Wang, Chunmei
Yu, Luodan
Hu, Zhongqian
Bai, Jianwen
Lin, Han
Li, Hongqiang
Dai, Chen
Chen, Yu
AuthorAffiliation State Laboratory of High Performance Ceramics and Superfine Microstructure
Chinese Academy of Sciences
Tong Ji University
Southeast University
Shanghai East Hospital
Department of Ultrasound
Zhongda Hospital
Shanghai Institute of Ceramics
School of Medicine
Department of Emergency Medicine and Critical Care
AuthorAffiliation_xml – sequence: 0
  name: Department of Emergency Medicine and Critical Care
– sequence: 0
  name: Southeast University
– sequence: 0
  name: Shanghai Institute of Ceramics
– sequence: 0
  name: Shanghai East Hospital
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Department of Ultrasound
– sequence: 0
  name: State Laboratory of High Performance Ceramics and Superfine Microstructure
– sequence: 0
  name: Zhongda Hospital
– sequence: 0
  name: School of Medicine
– sequence: 0
  name: Tong Ji University
Author_xml – sequence: 1
  givenname: Chunmei
  surname: Wang
  fullname: Wang, Chunmei
– sequence: 2
  givenname: Chen
  surname: Dai
  fullname: Dai, Chen
– sequence: 3
  givenname: Zhongqian
  surname: Hu
  fullname: Hu, Zhongqian
– sequence: 4
  givenname: Hongqiang
  surname: Li
  fullname: Li, Hongqiang
– sequence: 5
  givenname: Luodan
  surname: Yu
  fullname: Yu, Luodan
– sequence: 6
  givenname: Han
  surname: Lin
  fullname: Lin, Han
– sequence: 7
  givenname: Jianwen
  surname: Bai
  fullname: Bai, Jianwen
– sequence: 8
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32254094$$D View this record in MEDLINE/PubMed
BookMark eNptkstr3DAQxkVJaNI0l95bBL2Ugls9LMs6hiWPhZD2kLsZy3JXwR5tJZmw_32VbB4Qepph-M3H8H3zgRxgQEfIJ85-cCbNT9vihjFhDLwjx4IpVTW6qQ9eetUckdOU7hhjvOXatPI9OZJCqJqZ-pjsfm9CDugttYDWRYqAYXaDtx4dXZLHPzRvHEUHkXocI0Q3VOs17X249ziEe-oQ-skNtN89DG2Yt5B9mdDsM6BfZoo-Rz-4R-3tBHkMcU4fyeEIU3KnT_WE3F6c366uqutfl-vV2XVlpdS50k0PrdWiV6PSIwcrpFS1gNpCz6zgXBnV2tpwDUw3YAbOoR6kMrVqmOjlCfm2l93G8HdxKXezT9ZNE6ALS-qEbLVQprhV0K9v0LuwRCzHdYK3SjFjlCzUlydq6YtR3Tb6GeKue_a0AGwP2BhSim7sbDEi-4A5gp86zrqH5LpVe3P1mNxZWfn-ZuVZ9b_w5z0ck33hXt9A_gPxt6KL
CitedBy_id crossref_primary_10_52775_1810_200X_2022_94_2_85_95
crossref_primary_10_1002_cmdc_202400329
crossref_primary_10_1016_j_dyepig_2021_109450
crossref_primary_10_3390_pharmaceutics13111917
crossref_primary_10_1016_j_bbrc_2023_09_003
crossref_primary_10_1016_j_biomaterials_2023_122206
crossref_primary_10_3390_ma15207289
crossref_primary_10_1016_j_msec_2020_111717
crossref_primary_10_1039_C9MH00660E
crossref_primary_10_1039_D0NR09137E
crossref_primary_10_1039_D1NJ00244A
crossref_primary_10_1002_anie_202106750
crossref_primary_10_1021_acsami_4c20139
crossref_primary_10_1016_j_biomaterials_2022_121917
crossref_primary_10_1007_s12264_024_01179_1
crossref_primary_10_1016_j_physrep_2022_02_004
crossref_primary_10_1039_C8NH00440D
crossref_primary_10_1080_24701556_2022_2068596
crossref_primary_10_1039_C9NR04005F
crossref_primary_10_1016_j_cclet_2021_06_032
crossref_primary_10_1364_BOE_504746
crossref_primary_10_1002_jbm_a_37242
crossref_primary_10_1016_j_cej_2022_134780
crossref_primary_10_1021_acsaenm_2c00065
crossref_primary_10_3390_nano12101672
crossref_primary_10_1016_j_nano_2024_102738
crossref_primary_10_1021_acsami_3c13479
crossref_primary_10_1016_j_jcis_2024_01_130
crossref_primary_10_1021_acsabm_0c00794
crossref_primary_10_1002_smll_202300539
crossref_primary_10_1080_17425247_2022_2139369
crossref_primary_10_1016_j_nano_2022_102618
crossref_primary_10_1002_advs_202301764
crossref_primary_10_1364_OME_382160
crossref_primary_10_1021_acs_bioconjchem_1c00520
crossref_primary_10_1021_acsapm_0c00679
crossref_primary_10_1002_adom_202201290
crossref_primary_10_1016_j_ccr_2020_213662
crossref_primary_10_1039_D2NR01378A
crossref_primary_10_1002_smll_202206253
crossref_primary_10_1016_j_apsadv_2025_100713
crossref_primary_10_1364_OL_404304
crossref_primary_10_1039_D1TB01284C
crossref_primary_10_1007_s40843_019_1272_0
crossref_primary_10_1021_acsanm_3c04235
crossref_primary_10_1002_ange_202106750
crossref_primary_10_3103_S1068335621070058
crossref_primary_10_1021_acsnano_4c07904
crossref_primary_10_1002_adfm_202007991
crossref_primary_10_1088_1742_6596_2058_1_012004
crossref_primary_10_1007_s12274_020_3277_8
crossref_primary_10_3103_S1068335624600530
crossref_primary_10_1016_j_biomaterials_2019_119656
crossref_primary_10_1016_j_nantod_2021_101170
Cites_doi 10.1002/anie.201209229
10.1002/adma.201801216
10.1039/C7BM00414A
10.1016/j.biomaterials.2011.11.064
10.1021/acsnano.7b07241
10.1039/C4NR02453B
10.1021/acsnano.7b05215
10.2310/7290.2010.00034
10.1063/1.2195024
10.1002/adma.201601902
10.1038/ncomms10437
10.1016/j.biomaterials.2012.11.009
10.1021/acs.nanolett.6b04339
10.1021/acsami.7b05824
10.1002/wnan.1418
10.1002/anie.201210359
10.1039/C6CS00271D
10.1007/s12274-010-0045-1
10.1016/j.biomaterials.2016.03.022
10.1038/nnano.2015.28
10.1039/C6NR09028A
10.1002/adma.201404013
10.1021/acsnano.7b05966
10.1063/1.2777127
10.1098/rsfs.2011.0028
10.1002/anie.201712550
10.7150/thno.16715
10.1038/ncomms13193
10.1021/acs.chemrev.5b00100
10.1002/adma.201404308
10.1002/adma.201304497
10.1039/c2jm16128a
10.1038/nbt.2468
10.1038/nm.2995
10.1021/ja300140c
10.1002/adma.201104964
10.1002/adma.201703284
10.1038/am.2016.63
10.1002/advs.201800518
10.1148/radiol.10091772
10.1016/j.tibtech.2016.02.001
10.1016/j.biomaterials.2017.04.007
10.1002/anie.201800511
10.1021/jacs.7b07818
10.1002/ange.200602471
10.1021/nl100996u
10.1039/C5NR00893J
10.1038/nmat4707
10.1002/adfm.201702834
10.1007/s11434-015-0952-3
10.1080/2162402X.2015.1057674
10.1038/s41467-018-05113-8
10.1002/anie.201000659
10.1126/science.1216210
10.1021/acsnano.6b05427
10.1038/nnano.2008.231
10.1021/ja2010175
10.1021/acsnano.7b05214
10.1016/j.nano.2013.07.001
10.1002/adma.201103343
10.1038/ncomms10432
10.1117/1.2192804
10.1002/adma.201301890
10.1016/j.drudis.2010.08.006
10.1038/nmat2564
10.1002/adma.201100140
10.1038/nrc1566
10.1021/nl201400z
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
DOI 10.1039/c8nh00299a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-6764
EndPage 425
ExternalDocumentID 32254094
10_1039_C8NH00299A
c8nh00299a
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAXHV
ABASK
ABDVN
ABJNI
ABPDG
ABRYZ
ACGFS
ACIWK
ADMRA
AEFDR
AENGV
AETIL
AFOGI
AGEGJ
AGRSR
AGSTE
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
BLAPV
C6K
EBS
ECGLT
EJD
GGIMP
H13
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
NPM
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-76ba8c72b5f57f1ac233542a4cab0c2115958c4917a076a9d11a4d35945602b3
ISSN 2055-6756
2055-6764
IngestDate Sat Sep 27 22:10:34 EDT 2025
Sun Jun 29 13:16:10 EDT 2025
Wed Feb 19 02:31:12 EST 2025
Thu Apr 24 23:12:17 EDT 2025
Wed Oct 01 02:28:41 EDT 2025
Tue Dec 17 21:00:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-76ba8c72b5f57f1ac233542a4cab0c2115958c4917a076a9d11a4d35945602b3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c8nh00299a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1663-5468
0000-0002-8206-3325
PMID 32254094
PQID 2185509953
PQPubID 2047513
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_C8NH00299A
crossref_primary_10_1039_C8NH00299A
rsc_primary_c8nh00299a
proquest_journals_2185509953
proquest_miscellaneous_2387259205
pubmed_primary_32254094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale horizons
PublicationTitleAlternate Nanoscale Horiz
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhou (C8NH00299A-(cit6)/*[position()=1]) 2016; 45
Ai (C8NH00299A-(cit5)/*[position()=1]) 2016; 7
Ferrari (C8NH00299A-(cit2)/*[position()=1]) 2005; 5
Ye (C8NH00299A-(cit16)/*[position()=1]) 2018
Zeng (C8NH00299A-(cit67)/*[position()=1]) 2013; 52
Chen (C8NH00299A-(cit13)/*[position()=1]) 2015; 27
Li (C8NH00299A-(cit35)/*[position()=1]) 2018; 57
Wang (C8NH00299A-(cit55)/*[position()=1]) 2016; 6
Cheng (C8NH00299A-(cit56)/*[position()=1]) 2017; 11
Lin (C8NH00299A-(cit27)/*[position()=1]) 2018
Chen (C8NH00299A-(cit9)/*[position()=1]) 2014; 26
Lin (C8NH00299A-(cit28)/*[position()=1]) 2018; 30
Robinson (C8NH00299A-(cit30)/*[position()=1]) 2011; 133
Clements (C8NH00299A-(cit63)/*[position()=1]) 2016; 5
Wang (C8NH00299A-(cit31)/*[position()=1]) 2012; 134
Nazir (C8NH00299A-(cit3)/*[position()=1]) 2014; 10
Choi (C8NH00299A-(cit47)/*[position()=1]) 2013; 31
He (C8NH00299A-(cit65)/*[position()=1]) 2017; 132
Liu (C8NH00299A-(cit41)/*[position()=1]) 2013; 34
Huang (C8NH00299A-(cit42)/*[position()=1]) 2017; 9
Gioux (C8NH00299A-(cit48)/*[position()=1]) 2010; 9
Barreto (C8NH00299A-(cit1)/*[position()=1]) 2011; 23
Conde (C8NH00299A-(cit39)/*[position()=1]) 2016; 15
Sun (C8NH00299A-(cit24)/*[position()=1]) 2016; 91
Yavuz (C8NH00299A-(cit19)/*[position()=1]) 2009; 8
Zhen (C8NH00299A-(cit36)/*[position()=1]) 2018; 57
Lin (C8NH00299A-(cit40)/*[position()=1]) 2015; 10
Liu (C8NH00299A-(cit53)/*[position()=1]) 2016; 34
Chou (C8NH00299A-(cit22)/*[position()=1]) 2013; 52
Luo (C8NH00299A-(cit15)/*[position()=1]) 2017; 27
Wang (C8NH00299A-(cit52)/*[position()=1]) 2006; 11
Liu (C8NH00299A-(cit17)/*[position()=1]) 2012; 24
Li (C8NH00299A-(cit43)/*[position()=1]) 2016; 10
Dai (C8NH00299A-(cit46)/*[position()=1]) 2017; 11
Li (C8NH00299A-(cit62)/*[position()=1]) 2010; 49
Misra (C8NH00299A-(cit4)/*[position()=1]) 2010; 15
Chen (C8NH00299A-(cit8)/*[position()=1]) 2016; 28
Yong (C8NH00299A-(cit32)/*[position()=1]) 2016; 8
Beard (C8NH00299A-(cit54)/*[position()=1]) 2011; 1
De La Zerda (C8NH00299A-(cit59)/*[position()=1]) 2008; 3
Yue (C8NH00299A-(cit64)/*[position()=1]) 2012; 22
Dai (C8NH00299A-(cit45)/*[position()=1]) 2017; 11
Yang (C8NH00299A-(cit34)/*[position()=1]) 2012; 24
Zhu (C8NH00299A-(cit38)/*[position()=1]) 2016; 7
Hessel (C8NH00299A-(cit68)/*[position()=1]) 2011; 11
Wang (C8NH00299A-(cit50)/*[position()=1]) 2018; 9
Wang (C8NH00299A-(cit58)/*[position()=1]) 2012; 335
Erpelding (C8NH00299A-(cit61)/*[position()=1]) 2010; 256
Robinson (C8NH00299A-(cit66)/*[position()=1]) 2010; 3
Chen (C8NH00299A-(cit12)/*[position()=1]) 2016; 7
Qian (C8NH00299A-(cit21)/*[position()=1]) 2015; 7
Lin (C8NH00299A-(cit10)/*[position()=1]) 2017; 17
Zhang (C8NH00299A-(cit11)/*[position()=1]) 2013; 25
Lin (C8NH00299A-(cit37)/*[position()=1]) 2017; 139
Yong (C8NH00299A-(cit23)/*[position()=1]) 2014; 6
Yang (C8NH00299A-(cit29)/*[position()=1]) 2010; 10
Wang (C8NH00299A-(cit14)/*[position()=1]) 2017; 11
Yang (C8NH00299A-(cit33)/*[position()=1]) 2012; 33
Li (C8NH00299A-(cit26)/*[position()=1]) 2017; 9
Xu (C8NH00299A-(cit51)/*[position()=1]) 2006; 77
Zhang (C8NH00299A-(cit44)/*[position()=1]) 2015; 60
Agarwal (C8NH00299A-(cit60)/*[position()=1]) 2007; 102
Zhou (C8NH00299A-(cit7)/*[position()=1]) 2015; 115
Cheng (C8NH00299A-(cit20)/*[position()=1]) 2014; 26
Yang (C8NH00299A-(cit25)/*[position()=1]) 2017; 5
Hong (C8NH00299A-(cit49)/*[position()=1]) 2012; 18
Cui (C8NH00299A-(cit57)/*[position()=1]) 2017; 9
Kim (C8NH00299A-(cit18)/*[position()=1]) 2006; 118
References_xml – volume: 52
  start-page: 4160
  year: 2013
  ident: C8NH00299A-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209229
– start-page: e1801216
  year: 2018
  ident: C8NH00299A-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801216
– volume: 5
  start-page: 2048
  year: 2017
  ident: C8NH00299A-(cit25)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1039/C7BM00414A
– volume: 33
  start-page: 2206
  year: 2012
  ident: C8NH00299A-(cit33)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.064
– volume: 11
  start-page: 12696
  year: 2017
  ident: C8NH00299A-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07241
– volume: 6
  start-page: 10394
  year: 2014
  ident: C8NH00299A-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR02453B
– volume: 11
  start-page: 9467
  year: 2017
  ident: C8NH00299A-(cit45)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05215
– volume: 9
  start-page: 237
  year: 2010
  ident: C8NH00299A-(cit48)/*[position()=1]
  publication-title: Mol. Imaging
  doi: 10.2310/7290.2010.00034
– volume: 77
  start-page: 041101
  year: 2006
  ident: C8NH00299A-(cit51)/*[position()=1]
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2195024
– volume: 28
  start-page: 7129
  year: 2016
  ident: C8NH00299A-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601902
– volume: 7
  start-page: 10437
  year: 2016
  ident: C8NH00299A-(cit38)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10437
– volume: 34
  start-page: 1712
  year: 2013
  ident: C8NH00299A-(cit41)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.009
– volume: 17
  start-page: 384
  year: 2017
  ident: C8NH00299A-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04339
– volume: 9
  start-page: 25098
  year: 2017
  ident: C8NH00299A-(cit26)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05824
– volume: 9
  start-page: e1418
  year: 2017
  ident: C8NH00299A-(cit57)/*[position()=1]
  publication-title: Wires. Nanomed. Nanobi.
  doi: 10.1002/wnan.1418
– volume: 52
  start-page: 4169
  year: 2013
  ident: C8NH00299A-(cit67)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201210359
– volume: 45
  start-page: 6597
  year: 2016
  ident: C8NH00299A-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00271D
– volume: 3
  start-page: 779
  year: 2010
  ident: C8NH00299A-(cit66)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0045-1
– volume: 91
  start-page: 81
  year: 2016
  ident: C8NH00299A-(cit24)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.03.022
– volume: 10
  start-page: 465
  year: 2015
  ident: C8NH00299A-(cit40)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.28
– volume: 9
  start-page: 2626
  year: 2017
  ident: C8NH00299A-(cit42)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09028A
– volume: 26
  start-page: 8210
  year: 2014
  ident: C8NH00299A-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404013
– volume: 11
  start-page: 12276
  year: 2017
  ident: C8NH00299A-(cit56)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05966
– volume: 102
  start-page: 064701
  year: 2007
  ident: C8NH00299A-(cit60)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2777127
– volume: 1
  start-page: 602
  year: 2011
  ident: C8NH00299A-(cit54)/*[position()=1]
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2011.0028
– volume: 57
  start-page: 3938
  year: 2018
  ident: C8NH00299A-(cit36)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712550
– volume: 6
  start-page: 2394
  year: 2016
  ident: C8NH00299A-(cit55)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.16715
– volume: 7
  start-page: 13193
  year: 2016
  ident: C8NH00299A-(cit12)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13193
– volume: 115
  start-page: 10575
  year: 2015
  ident: C8NH00299A-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00100
– volume: 27
  start-page: 903
  year: 2015
  ident: C8NH00299A-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404308
– volume: 26
  start-page: 1886
  year: 2014
  ident: C8NH00299A-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304497
– volume: 22
  start-page: 4938
  year: 2012
  ident: C8NH00299A-(cit64)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16128a
– volume: 31
  start-page: 148
  year: 2013
  ident: C8NH00299A-(cit47)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2468
– volume: 18
  start-page: 1841
  year: 2012
  ident: C8NH00299A-(cit49)/*[position()=1]
  publication-title: Nat. Med.
  doi: 10.1038/nm.2995
– volume: 134
  start-page: 7414
  year: 2012
  ident: C8NH00299A-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300140c
– volume: 24
  start-page: 1868
  year: 2012
  ident: C8NH00299A-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104964
– volume: 30
  start-page: 1703284
  year: 2018
  ident: C8NH00299A-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703284
– volume: 8
  start-page: e273
  year: 2016
  ident: C8NH00299A-(cit32)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.63
– start-page: 1800518
  year: 2018
  ident: C8NH00299A-(cit27)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800518
– volume: 256
  start-page: 102
  year: 2010
  ident: C8NH00299A-(cit61)/*[position()=1]
  publication-title: Radiology
  doi: 10.1148/radiol.10091772
– volume: 34
  start-page: 420
  year: 2016
  ident: C8NH00299A-(cit53)/*[position()=1]
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.02.001
– volume: 132
  start-page: 37
  year: 2017
  ident: C8NH00299A-(cit65)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.04.007
– volume: 57
  start-page: 3995
  year: 2018
  ident: C8NH00299A-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800511
– volume: 139
  start-page: 16235
  year: 2017
  ident: C8NH00299A-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07818
– volume: 118
  start-page: 7918
  year: 2006
  ident: C8NH00299A-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200602471
– volume: 10
  start-page: 3318
  year: 2010
  ident: C8NH00299A-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl100996u
– volume: 7
  start-page: 6380
  year: 2015
  ident: C8NH00299A-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00893J
– volume: 15
  start-page: 1128
  year: 2016
  ident: C8NH00299A-(cit39)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4707
– volume: 27
  start-page: 1702834
  year: 2017
  ident: C8NH00299A-(cit15)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702834
– volume: 60
  start-page: 1973
  year: 2015
  ident: C8NH00299A-(cit44)/*[position()=1]
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-015-0952-3
– volume: 5
  start-page: e1057674
  issue: 1
  year: 2016
  ident: C8NH00299A-(cit63)/*[position()=1]
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2015.1057674
– volume: 9
  start-page: 2898
  year: 2018
  ident: C8NH00299A-(cit50)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05113-8
– volume: 49
  start-page: 3653
  year: 2010
  ident: C8NH00299A-(cit62)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000659
– volume: 335
  start-page: 1458
  year: 2012
  ident: C8NH00299A-(cit58)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1216210
– volume: 10
  start-page: 9646
  year: 2016
  ident: C8NH00299A-(cit43)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05427
– volume: 3
  start-page: 557
  year: 2008
  ident: C8NH00299A-(cit59)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.231
– volume: 133
  start-page: 6825
  year: 2011
  ident: C8NH00299A-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2010175
– volume: 11
  start-page: 12134
  year: 2017
  ident: C8NH00299A-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05214
– volume: 10
  start-page: 19
  year: 2014
  ident: C8NH00299A-(cit3)/*[position()=1]
  publication-title: Nanomed. Nanotechnol.
  doi: 10.1016/j.nano.2013.07.001
– volume: 24
  start-page: 755
  year: 2012
  ident: C8NH00299A-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103343
– volume: 7
  start-page: 10432
  year: 2016
  ident: C8NH00299A-(cit5)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10432
– volume: 11
  start-page: 024015
  year: 2006
  ident: C8NH00299A-(cit52)/*[position()=1]
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2192804
– volume: 25
  start-page: 3869
  year: 2013
  ident: C8NH00299A-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301890
– volume: 15
  start-page: 842
  year: 2010
  ident: C8NH00299A-(cit4)/*[position()=1]
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2010.08.006
– volume: 8
  start-page: 935
  year: 2009
  ident: C8NH00299A-(cit19)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2564
– volume: 23
  start-page: H18
  year: 2011
  ident: C8NH00299A-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100140
– volume: 5
  start-page: 161
  year: 2005
  ident: C8NH00299A-(cit2)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1566
– volume: 11
  start-page: 2560
  year: 2011
  ident: C8NH00299A-(cit68)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl201400z
SSID ssj0001817983
Score 2.3447716
SecondaryResourceType review_article
Snippet Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise...
Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000–1350 nm) hold great promise...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms Ablation
Biocompatibility
Cancer
Contrast agents
Diagnostic systems
Hyperthermia
Medical imaging
Nanoparticles
Penetration depth
Photonics
Photothermal conversion
Surgical implants
Titanium nitride
Tumors
Viability
Title Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms
URI https://www.ncbi.nlm.nih.gov/pubmed/32254094
https://www.proquest.com/docview/2185509953
https://www.proquest.com/docview/2387259205
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 2055-6764
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001817983
  issn: 2055-6756
  databaseCode: AETIL
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rI9jN26ZeuGxsZgGLeJ5Iv0GEJKMrJsDy7kzdiK3RhaO3VsSvuH9jd3JMuX0DC2vYigCMv4fDo694PQZycSDnFjYpJoKEBBcR2TyQAbwmO4H4QdxlwmOH9fOrML69vKXvV6vzpRS2URnor7g3kl_0NVmAO6yizZf6Bs81CYgN9AXxiBwjD-FY1_brJCdbARkna5kQZpVjvLjXJXZ0KlslgP7JfLYHNzPjfCJLsFXTy7NSKVOqWEUJhUAelFIpOpZO5ZmpTXBhz5PFlH6tnbq6CQQu6uK9ICf852QOnI2GR5cl-b_5SRvmIkk02ZXkdJG0mgWV2QtKBSTpJNll7edPC6qFpq69nLroVCJkXRroWisoPUQagqyES3smt5HRnaMgeiKmh-Gh2Y08za6mCSdBivVSWF6jvcqpKpH1wPQyqrqwqWbqQ3kncuwdrxv_zhn18sFr43XXlftjembE8m3fi6V8sjdERcxyF9dDSeevNFa85jsvKbjGdoXrsuhkv5WbvjvvjzQKcBCSevO88oCcd7hp5q1QSPK5w9R70ofYGedApWvkR3NeJwhTjcRRxWiMOAOCwRhzuIww3isEYcDu_wHuJwjTisEYf3EPcKeedTbzIzdfMOU1DqFqbrhAETLgnt2HbjUSAIpbZFAksE4VAQUES4zYTFR24ADCLg69EosNbU5iDRD0lIj1E_zdLoDcKuFQ_DkAuQ9WUlJsZgFA5jFqgeIaPuAH2tP6kvdGF72V_lylcBFpT7E7acqc8_HqBPzdptVc7l4KqTmjK-Pu47H2Rh0OY5t-kAfWz-BiBLD1uQRlkJayhzic0BAgP0uqJos428OaUxZYCOgcTNdAuNt3_e9R163B6uE9Qv8jJ6DwJxEX7QYPwNTfO8KQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+cancer+nanomedicine+using+the+near+infrared-II+biowindow+enabled+by+biocompatible+titanium+nitride+nanoplatforms&rft.jtitle=Nanoscale+horizons&rft.au=Wang%2C+Chunmei&rft.au=Chen%2C+Dai&rft.au=Hu%2C+Zhongqian&rft.au=Li%2C+Hongqiang&rft.date=2019-03-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2055-6764&rft.eissn=2055-6764&rft.volume=4&rft.issue=2&rft.spage=415&rft.epage=425&rft_id=info:doi/10.1039%2Fc8nh00299a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon