Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms
Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nit...
Saved in:
Published in | Nanoscale horizons Vol. 4; no. 2; pp. 415 - 425 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2055-6756 2055-6764 2055-6764 |
DOI | 10.1039/c8nh00299a |
Cover
Abstract | Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells
in vitro
. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both
in vitro
and
in vivo
for the first time and realized efficient photothermal ablation of the tumor
in vivo
within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both
in vitro
and
in vivo
, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.
Titanium nitride nanoparticles with high photothermal-conversion efficiency and desirable biocompatibility have been constructed as an alternative theranostic agent for NIR-II laser-excited photoacoustic imaging-guided photothermal tumor hyperthermia. |
---|---|
AbstractList | Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells
in vitro
. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both
in vitro
and
in vivo
for the first time and realized efficient photothermal ablation of the tumor
in vivo
within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both
in vitro
and
in vivo
, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.
Titanium nitride nanoparticles with high photothermal-conversion efficiency and desirable biocompatibility have been constructed as an alternative theranostic agent for NIR-II laser-excited photoacoustic imaging-guided photothermal tumor hyperthermia. Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation.Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation. Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN-PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro. Furthermore, these TiN-PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN-PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo, but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation. Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000–1350 nm) hold great promise for efficient tumor detection and diagnostic imaging-guided photonic nanomedicine. In this work, we report on the construction of titanium nitride (TiN) nanoparticles, with a high photothermal-conversion efficiency and desirable biocompatibility, as an alternative theranostic agent for NIR-II laser-excited photoacoustic (PA) imaging-guided photothermal tumor hyperthermia. Working within the NIR-II biowindow provides a larger maximum permissible exposure (MPE) and desirable penetration depth of the light, which then allows detection of the tumor to the full extent using PA imaging and complete tumor ablation using photothermal ablation, especially in deeper regions. After further surface polyvinyl-pyrrolidone (PVP) modification, the TiN–PVP photothermal nanoagents exhibited a high photothermal conversion efficiency of 22.8% in the NIR-II biowindow, and we further verified their high penetration depth using the NIR-II biowindow and their corresponding therapeutic effect on the viability of tumor cells in vitro . Furthermore, these TiN–PVP nanoparticles were developed as a contrast agent for NIR-II-activated PA imaging both in vitro and in vivo for the first time and realized efficient photothermal ablation of the tumor in vivo within both the NIR-I and NIR-II biowindows. This work not only provides a paradigm for TiN–PVP photothermal nanoagents working in the NIR-II biowindow both in vitro and in vivo , but also proves the feasibility of PAI and PTT cancer theranostics using NIR-II laser excitation. |
Author | Wang, Chunmei Yu, Luodan Hu, Zhongqian Bai, Jianwen Lin, Han Li, Hongqiang Dai, Chen Chen, Yu |
AuthorAffiliation | State Laboratory of High Performance Ceramics and Superfine Microstructure Chinese Academy of Sciences Tong Ji University Southeast University Shanghai East Hospital Department of Ultrasound Zhongda Hospital Shanghai Institute of Ceramics School of Medicine Department of Emergency Medicine and Critical Care |
AuthorAffiliation_xml | – sequence: 0 name: Department of Emergency Medicine and Critical Care – sequence: 0 name: Southeast University – sequence: 0 name: Shanghai Institute of Ceramics – sequence: 0 name: Shanghai East Hospital – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Department of Ultrasound – sequence: 0 name: State Laboratory of High Performance Ceramics and Superfine Microstructure – sequence: 0 name: Zhongda Hospital – sequence: 0 name: School of Medicine – sequence: 0 name: Tong Ji University |
Author_xml | – sequence: 1 givenname: Chunmei surname: Wang fullname: Wang, Chunmei – sequence: 2 givenname: Chen surname: Dai fullname: Dai, Chen – sequence: 3 givenname: Zhongqian surname: Hu fullname: Hu, Zhongqian – sequence: 4 givenname: Hongqiang surname: Li fullname: Li, Hongqiang – sequence: 5 givenname: Luodan surname: Yu fullname: Yu, Luodan – sequence: 6 givenname: Han surname: Lin fullname: Lin, Han – sequence: 7 givenname: Jianwen surname: Bai fullname: Bai, Jianwen – sequence: 8 givenname: Yu surname: Chen fullname: Chen, Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32254094$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstr3DAQxkVJaNI0l95bBL2Ugls9LMs6hiWPhZD2kLsZy3JXwR5tJZmw_32VbB4Qepph-M3H8H3zgRxgQEfIJ85-cCbNT9vihjFhDLwjx4IpVTW6qQ9eetUckdOU7hhjvOXatPI9OZJCqJqZ-pjsfm9CDugttYDWRYqAYXaDtx4dXZLHPzRvHEUHkXocI0Q3VOs17X249ziEe-oQ-skNtN89DG2Yt5B9mdDsM6BfZoo-Rz-4R-3tBHkMcU4fyeEIU3KnT_WE3F6c366uqutfl-vV2XVlpdS50k0PrdWiV6PSIwcrpFS1gNpCz6zgXBnV2tpwDUw3YAbOoR6kMrVqmOjlCfm2l93G8HdxKXezT9ZNE6ALS-qEbLVQprhV0K9v0LuwRCzHdYK3SjFjlCzUlydq6YtR3Tb6GeKue_a0AGwP2BhSim7sbDEi-4A5gp86zrqH5LpVe3P1mNxZWfn-ZuVZ9b_w5z0ck33hXt9A_gPxt6KL |
CitedBy_id | crossref_primary_10_52775_1810_200X_2022_94_2_85_95 crossref_primary_10_1002_cmdc_202400329 crossref_primary_10_1016_j_dyepig_2021_109450 crossref_primary_10_3390_pharmaceutics13111917 crossref_primary_10_1016_j_bbrc_2023_09_003 crossref_primary_10_1016_j_biomaterials_2023_122206 crossref_primary_10_3390_ma15207289 crossref_primary_10_1016_j_msec_2020_111717 crossref_primary_10_1039_C9MH00660E crossref_primary_10_1039_D0NR09137E crossref_primary_10_1039_D1NJ00244A crossref_primary_10_1002_anie_202106750 crossref_primary_10_1021_acsami_4c20139 crossref_primary_10_1016_j_biomaterials_2022_121917 crossref_primary_10_1007_s12264_024_01179_1 crossref_primary_10_1016_j_physrep_2022_02_004 crossref_primary_10_1039_C8NH00440D crossref_primary_10_1080_24701556_2022_2068596 crossref_primary_10_1039_C9NR04005F crossref_primary_10_1016_j_cclet_2021_06_032 crossref_primary_10_1364_BOE_504746 crossref_primary_10_1002_jbm_a_37242 crossref_primary_10_1016_j_cej_2022_134780 crossref_primary_10_1021_acsaenm_2c00065 crossref_primary_10_3390_nano12101672 crossref_primary_10_1016_j_nano_2024_102738 crossref_primary_10_1021_acsami_3c13479 crossref_primary_10_1016_j_jcis_2024_01_130 crossref_primary_10_1021_acsabm_0c00794 crossref_primary_10_1002_smll_202300539 crossref_primary_10_1080_17425247_2022_2139369 crossref_primary_10_1016_j_nano_2022_102618 crossref_primary_10_1002_advs_202301764 crossref_primary_10_1364_OME_382160 crossref_primary_10_1021_acs_bioconjchem_1c00520 crossref_primary_10_1021_acsapm_0c00679 crossref_primary_10_1002_adom_202201290 crossref_primary_10_1016_j_ccr_2020_213662 crossref_primary_10_1039_D2NR01378A crossref_primary_10_1002_smll_202206253 crossref_primary_10_1016_j_apsadv_2025_100713 crossref_primary_10_1364_OL_404304 crossref_primary_10_1039_D1TB01284C crossref_primary_10_1007_s40843_019_1272_0 crossref_primary_10_1021_acsanm_3c04235 crossref_primary_10_1002_ange_202106750 crossref_primary_10_3103_S1068335621070058 crossref_primary_10_1021_acsnano_4c07904 crossref_primary_10_1002_adfm_202007991 crossref_primary_10_1088_1742_6596_2058_1_012004 crossref_primary_10_1007_s12274_020_3277_8 crossref_primary_10_3103_S1068335624600530 crossref_primary_10_1016_j_biomaterials_2019_119656 crossref_primary_10_1016_j_nantod_2021_101170 |
Cites_doi | 10.1002/anie.201209229 10.1002/adma.201801216 10.1039/C7BM00414A 10.1016/j.biomaterials.2011.11.064 10.1021/acsnano.7b07241 10.1039/C4NR02453B 10.1021/acsnano.7b05215 10.2310/7290.2010.00034 10.1063/1.2195024 10.1002/adma.201601902 10.1038/ncomms10437 10.1016/j.biomaterials.2012.11.009 10.1021/acs.nanolett.6b04339 10.1021/acsami.7b05824 10.1002/wnan.1418 10.1002/anie.201210359 10.1039/C6CS00271D 10.1007/s12274-010-0045-1 10.1016/j.biomaterials.2016.03.022 10.1038/nnano.2015.28 10.1039/C6NR09028A 10.1002/adma.201404013 10.1021/acsnano.7b05966 10.1063/1.2777127 10.1098/rsfs.2011.0028 10.1002/anie.201712550 10.7150/thno.16715 10.1038/ncomms13193 10.1021/acs.chemrev.5b00100 10.1002/adma.201404308 10.1002/adma.201304497 10.1039/c2jm16128a 10.1038/nbt.2468 10.1038/nm.2995 10.1021/ja300140c 10.1002/adma.201104964 10.1002/adma.201703284 10.1038/am.2016.63 10.1002/advs.201800518 10.1148/radiol.10091772 10.1016/j.tibtech.2016.02.001 10.1016/j.biomaterials.2017.04.007 10.1002/anie.201800511 10.1021/jacs.7b07818 10.1002/ange.200602471 10.1021/nl100996u 10.1039/C5NR00893J 10.1038/nmat4707 10.1002/adfm.201702834 10.1007/s11434-015-0952-3 10.1080/2162402X.2015.1057674 10.1038/s41467-018-05113-8 10.1002/anie.201000659 10.1126/science.1216210 10.1021/acsnano.6b05427 10.1038/nnano.2008.231 10.1021/ja2010175 10.1021/acsnano.7b05214 10.1016/j.nano.2013.07.001 10.1002/adma.201103343 10.1038/ncomms10432 10.1117/1.2192804 10.1002/adma.201301890 10.1016/j.drudis.2010.08.006 10.1038/nmat2564 10.1002/adma.201100140 10.1038/nrc1566 10.1021/nl201400z |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 |
DOI | 10.1039/c8nh00299a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-6764 |
EndPage | 425 |
ExternalDocumentID | 32254094 10_1039_C8NH00299A c8nh00299a |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ AARTK AAXHV ABASK ABDVN ABJNI ABPDG ABRYZ ACGFS ACIWK ADMRA AEFDR AENGV AETIL AFOGI AGEGJ AGRSR AGSTE AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT BLAPV C6K EBS ECGLT EJD GGIMP H13 O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION NPM 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-76ba8c72b5f57f1ac233542a4cab0c2115958c4917a076a9d11a4d35945602b3 |
ISSN | 2055-6756 2055-6764 |
IngestDate | Sat Sep 27 22:10:34 EDT 2025 Sun Jun 29 13:16:10 EDT 2025 Wed Feb 19 02:31:12 EST 2025 Thu Apr 24 23:12:17 EDT 2025 Wed Oct 01 02:28:41 EDT 2025 Tue Dec 17 21:00:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-76ba8c72b5f57f1ac233542a4cab0c2115958c4917a076a9d11a4d35945602b3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c8nh00299a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1663-5468 0000-0002-8206-3325 |
PMID | 32254094 |
PQID | 2185509953 |
PQPubID | 2047513 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_C8NH00299A crossref_primary_10_1039_C8NH00299A rsc_primary_c8nh00299a proquest_journals_2185509953 proquest_miscellaneous_2387259205 pubmed_primary_32254094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale horizons |
PublicationTitleAlternate | Nanoscale Horiz |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhou (C8NH00299A-(cit6)/*[position()=1]) 2016; 45 Ai (C8NH00299A-(cit5)/*[position()=1]) 2016; 7 Ferrari (C8NH00299A-(cit2)/*[position()=1]) 2005; 5 Ye (C8NH00299A-(cit16)/*[position()=1]) 2018 Zeng (C8NH00299A-(cit67)/*[position()=1]) 2013; 52 Chen (C8NH00299A-(cit13)/*[position()=1]) 2015; 27 Li (C8NH00299A-(cit35)/*[position()=1]) 2018; 57 Wang (C8NH00299A-(cit55)/*[position()=1]) 2016; 6 Cheng (C8NH00299A-(cit56)/*[position()=1]) 2017; 11 Lin (C8NH00299A-(cit27)/*[position()=1]) 2018 Chen (C8NH00299A-(cit9)/*[position()=1]) 2014; 26 Lin (C8NH00299A-(cit28)/*[position()=1]) 2018; 30 Robinson (C8NH00299A-(cit30)/*[position()=1]) 2011; 133 Clements (C8NH00299A-(cit63)/*[position()=1]) 2016; 5 Wang (C8NH00299A-(cit31)/*[position()=1]) 2012; 134 Nazir (C8NH00299A-(cit3)/*[position()=1]) 2014; 10 Choi (C8NH00299A-(cit47)/*[position()=1]) 2013; 31 He (C8NH00299A-(cit65)/*[position()=1]) 2017; 132 Liu (C8NH00299A-(cit41)/*[position()=1]) 2013; 34 Huang (C8NH00299A-(cit42)/*[position()=1]) 2017; 9 Gioux (C8NH00299A-(cit48)/*[position()=1]) 2010; 9 Barreto (C8NH00299A-(cit1)/*[position()=1]) 2011; 23 Conde (C8NH00299A-(cit39)/*[position()=1]) 2016; 15 Sun (C8NH00299A-(cit24)/*[position()=1]) 2016; 91 Yavuz (C8NH00299A-(cit19)/*[position()=1]) 2009; 8 Zhen (C8NH00299A-(cit36)/*[position()=1]) 2018; 57 Lin (C8NH00299A-(cit40)/*[position()=1]) 2015; 10 Liu (C8NH00299A-(cit53)/*[position()=1]) 2016; 34 Chou (C8NH00299A-(cit22)/*[position()=1]) 2013; 52 Luo (C8NH00299A-(cit15)/*[position()=1]) 2017; 27 Wang (C8NH00299A-(cit52)/*[position()=1]) 2006; 11 Liu (C8NH00299A-(cit17)/*[position()=1]) 2012; 24 Li (C8NH00299A-(cit43)/*[position()=1]) 2016; 10 Dai (C8NH00299A-(cit46)/*[position()=1]) 2017; 11 Li (C8NH00299A-(cit62)/*[position()=1]) 2010; 49 Misra (C8NH00299A-(cit4)/*[position()=1]) 2010; 15 Chen (C8NH00299A-(cit8)/*[position()=1]) 2016; 28 Yong (C8NH00299A-(cit32)/*[position()=1]) 2016; 8 Beard (C8NH00299A-(cit54)/*[position()=1]) 2011; 1 De La Zerda (C8NH00299A-(cit59)/*[position()=1]) 2008; 3 Yue (C8NH00299A-(cit64)/*[position()=1]) 2012; 22 Dai (C8NH00299A-(cit45)/*[position()=1]) 2017; 11 Yang (C8NH00299A-(cit34)/*[position()=1]) 2012; 24 Zhu (C8NH00299A-(cit38)/*[position()=1]) 2016; 7 Hessel (C8NH00299A-(cit68)/*[position()=1]) 2011; 11 Wang (C8NH00299A-(cit50)/*[position()=1]) 2018; 9 Wang (C8NH00299A-(cit58)/*[position()=1]) 2012; 335 Erpelding (C8NH00299A-(cit61)/*[position()=1]) 2010; 256 Robinson (C8NH00299A-(cit66)/*[position()=1]) 2010; 3 Chen (C8NH00299A-(cit12)/*[position()=1]) 2016; 7 Qian (C8NH00299A-(cit21)/*[position()=1]) 2015; 7 Lin (C8NH00299A-(cit10)/*[position()=1]) 2017; 17 Zhang (C8NH00299A-(cit11)/*[position()=1]) 2013; 25 Lin (C8NH00299A-(cit37)/*[position()=1]) 2017; 139 Yong (C8NH00299A-(cit23)/*[position()=1]) 2014; 6 Yang (C8NH00299A-(cit29)/*[position()=1]) 2010; 10 Wang (C8NH00299A-(cit14)/*[position()=1]) 2017; 11 Yang (C8NH00299A-(cit33)/*[position()=1]) 2012; 33 Li (C8NH00299A-(cit26)/*[position()=1]) 2017; 9 Xu (C8NH00299A-(cit51)/*[position()=1]) 2006; 77 Zhang (C8NH00299A-(cit44)/*[position()=1]) 2015; 60 Agarwal (C8NH00299A-(cit60)/*[position()=1]) 2007; 102 Zhou (C8NH00299A-(cit7)/*[position()=1]) 2015; 115 Cheng (C8NH00299A-(cit20)/*[position()=1]) 2014; 26 Yang (C8NH00299A-(cit25)/*[position()=1]) 2017; 5 Hong (C8NH00299A-(cit49)/*[position()=1]) 2012; 18 Cui (C8NH00299A-(cit57)/*[position()=1]) 2017; 9 Kim (C8NH00299A-(cit18)/*[position()=1]) 2006; 118 |
References_xml | – volume: 52 start-page: 4160 year: 2013 ident: C8NH00299A-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209229 – start-page: e1801216 year: 2018 ident: C8NH00299A-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801216 – volume: 5 start-page: 2048 year: 2017 ident: C8NH00299A-(cit25)/*[position()=1] publication-title: Biomaterials doi: 10.1039/C7BM00414A – volume: 33 start-page: 2206 year: 2012 ident: C8NH00299A-(cit33)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.064 – volume: 11 start-page: 12696 year: 2017 ident: C8NH00299A-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07241 – volume: 6 start-page: 10394 year: 2014 ident: C8NH00299A-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR02453B – volume: 11 start-page: 9467 year: 2017 ident: C8NH00299A-(cit45)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05215 – volume: 9 start-page: 237 year: 2010 ident: C8NH00299A-(cit48)/*[position()=1] publication-title: Mol. Imaging doi: 10.2310/7290.2010.00034 – volume: 77 start-page: 041101 year: 2006 ident: C8NH00299A-(cit51)/*[position()=1] publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2195024 – volume: 28 start-page: 7129 year: 2016 ident: C8NH00299A-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601902 – volume: 7 start-page: 10437 year: 2016 ident: C8NH00299A-(cit38)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10437 – volume: 34 start-page: 1712 year: 2013 ident: C8NH00299A-(cit41)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.009 – volume: 17 start-page: 384 year: 2017 ident: C8NH00299A-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 9 start-page: 25098 year: 2017 ident: C8NH00299A-(cit26)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05824 – volume: 9 start-page: e1418 year: 2017 ident: C8NH00299A-(cit57)/*[position()=1] publication-title: Wires. Nanomed. Nanobi. doi: 10.1002/wnan.1418 – volume: 52 start-page: 4169 year: 2013 ident: C8NH00299A-(cit67)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201210359 – volume: 45 start-page: 6597 year: 2016 ident: C8NH00299A-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00271D – volume: 3 start-page: 779 year: 2010 ident: C8NH00299A-(cit66)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-010-0045-1 – volume: 91 start-page: 81 year: 2016 ident: C8NH00299A-(cit24)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.03.022 – volume: 10 start-page: 465 year: 2015 ident: C8NH00299A-(cit40)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.28 – volume: 9 start-page: 2626 year: 2017 ident: C8NH00299A-(cit42)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09028A – volume: 26 start-page: 8210 year: 2014 ident: C8NH00299A-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404013 – volume: 11 start-page: 12276 year: 2017 ident: C8NH00299A-(cit56)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05966 – volume: 102 start-page: 064701 year: 2007 ident: C8NH00299A-(cit60)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2777127 – volume: 1 start-page: 602 year: 2011 ident: C8NH00299A-(cit54)/*[position()=1] publication-title: Interface Focus doi: 10.1098/rsfs.2011.0028 – volume: 57 start-page: 3938 year: 2018 ident: C8NH00299A-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712550 – volume: 6 start-page: 2394 year: 2016 ident: C8NH00299A-(cit55)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.16715 – volume: 7 start-page: 13193 year: 2016 ident: C8NH00299A-(cit12)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13193 – volume: 115 start-page: 10575 year: 2015 ident: C8NH00299A-(cit7)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00100 – volume: 27 start-page: 903 year: 2015 ident: C8NH00299A-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404308 – volume: 26 start-page: 1886 year: 2014 ident: C8NH00299A-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304497 – volume: 22 start-page: 4938 year: 2012 ident: C8NH00299A-(cit64)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm16128a – volume: 31 start-page: 148 year: 2013 ident: C8NH00299A-(cit47)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2468 – volume: 18 start-page: 1841 year: 2012 ident: C8NH00299A-(cit49)/*[position()=1] publication-title: Nat. Med. doi: 10.1038/nm.2995 – volume: 134 start-page: 7414 year: 2012 ident: C8NH00299A-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300140c – volume: 24 start-page: 1868 year: 2012 ident: C8NH00299A-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104964 – volume: 30 start-page: 1703284 year: 2018 ident: C8NH00299A-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703284 – volume: 8 start-page: e273 year: 2016 ident: C8NH00299A-(cit32)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2016.63 – start-page: 1800518 year: 2018 ident: C8NH00299A-(cit27)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800518 – volume: 256 start-page: 102 year: 2010 ident: C8NH00299A-(cit61)/*[position()=1] publication-title: Radiology doi: 10.1148/radiol.10091772 – volume: 34 start-page: 420 year: 2016 ident: C8NH00299A-(cit53)/*[position()=1] publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.02.001 – volume: 132 start-page: 37 year: 2017 ident: C8NH00299A-(cit65)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.04.007 – volume: 57 start-page: 3995 year: 2018 ident: C8NH00299A-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800511 – volume: 139 start-page: 16235 year: 2017 ident: C8NH00299A-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07818 – volume: 118 start-page: 7918 year: 2006 ident: C8NH00299A-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200602471 – volume: 10 start-page: 3318 year: 2010 ident: C8NH00299A-(cit29)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl100996u – volume: 7 start-page: 6380 year: 2015 ident: C8NH00299A-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR00893J – volume: 15 start-page: 1128 year: 2016 ident: C8NH00299A-(cit39)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4707 – volume: 27 start-page: 1702834 year: 2017 ident: C8NH00299A-(cit15)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702834 – volume: 60 start-page: 1973 year: 2015 ident: C8NH00299A-(cit44)/*[position()=1] publication-title: Sci. Bull. doi: 10.1007/s11434-015-0952-3 – volume: 5 start-page: e1057674 issue: 1 year: 2016 ident: C8NH00299A-(cit63)/*[position()=1] publication-title: OncoImmunology doi: 10.1080/2162402X.2015.1057674 – volume: 9 start-page: 2898 year: 2018 ident: C8NH00299A-(cit50)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05113-8 – volume: 49 start-page: 3653 year: 2010 ident: C8NH00299A-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000659 – volume: 335 start-page: 1458 year: 2012 ident: C8NH00299A-(cit58)/*[position()=1] publication-title: Science doi: 10.1126/science.1216210 – volume: 10 start-page: 9646 year: 2016 ident: C8NH00299A-(cit43)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b05427 – volume: 3 start-page: 557 year: 2008 ident: C8NH00299A-(cit59)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.231 – volume: 133 start-page: 6825 year: 2011 ident: C8NH00299A-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2010175 – volume: 11 start-page: 12134 year: 2017 ident: C8NH00299A-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05214 – volume: 10 start-page: 19 year: 2014 ident: C8NH00299A-(cit3)/*[position()=1] publication-title: Nanomed. Nanotechnol. doi: 10.1016/j.nano.2013.07.001 – volume: 24 start-page: 755 year: 2012 ident: C8NH00299A-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201103343 – volume: 7 start-page: 10432 year: 2016 ident: C8NH00299A-(cit5)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10432 – volume: 11 start-page: 024015 year: 2006 ident: C8NH00299A-(cit52)/*[position()=1] publication-title: J. Biomed. Opt. doi: 10.1117/1.2192804 – volume: 25 start-page: 3869 year: 2013 ident: C8NH00299A-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201301890 – volume: 15 start-page: 842 year: 2010 ident: C8NH00299A-(cit4)/*[position()=1] publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2010.08.006 – volume: 8 start-page: 935 year: 2009 ident: C8NH00299A-(cit19)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2564 – volume: 23 start-page: H18 year: 2011 ident: C8NH00299A-(cit1)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201100140 – volume: 5 start-page: 161 year: 2005 ident: C8NH00299A-(cit2)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1566 – volume: 11 start-page: 2560 year: 2011 ident: C8NH00299A-(cit68)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl201400z |
SSID | ssj0001817983 |
Score | 2.3447716 |
SecondaryResourceType | review_article |
Snippet | Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000-1350 nm) hold great promise... Light-activated photoacoustic imaging (PAI) and photothermal therapy (PTT) using the second near-infrared biowindow (NIR-II, 1000–1350 nm) hold great promise... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 415 |
SubjectTerms | Ablation Biocompatibility Cancer Contrast agents Diagnostic systems Hyperthermia Medical imaging Nanoparticles Penetration depth Photonics Photothermal conversion Surgical implants Titanium nitride Tumors Viability |
Title | Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32254094 https://www.proquest.com/docview/2185509953 https://www.proquest.com/docview/2387259205 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 2055-6764 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001817983 issn: 2055-6756 databaseCode: AETIL dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rI9jN26ZeuGxsZgGLeJ5Iv0GEJKMrJsDy7kzdiK3RhaO3VsSvuH9jd3JMuX0DC2vYigCMv4fDo694PQZycSDnFjYpJoKEBBcR2TyQAbwmO4H4QdxlwmOH9fOrML69vKXvV6vzpRS2URnor7g3kl_0NVmAO6yizZf6Bs81CYgN9AXxiBwjD-FY1_brJCdbARkna5kQZpVjvLjXJXZ0KlslgP7JfLYHNzPjfCJLsFXTy7NSKVOqWEUJhUAelFIpOpZO5ZmpTXBhz5PFlH6tnbq6CQQu6uK9ICf852QOnI2GR5cl-b_5SRvmIkk02ZXkdJG0mgWV2QtKBSTpJNll7edPC6qFpq69nLroVCJkXRroWisoPUQagqyES3smt5HRnaMgeiKmh-Gh2Y08za6mCSdBivVSWF6jvcqpKpH1wPQyqrqwqWbqQ3kncuwdrxv_zhn18sFr43XXlftjembE8m3fi6V8sjdERcxyF9dDSeevNFa85jsvKbjGdoXrsuhkv5WbvjvvjzQKcBCSevO88oCcd7hp5q1QSPK5w9R70ofYGedApWvkR3NeJwhTjcRRxWiMOAOCwRhzuIww3isEYcDu_wHuJwjTisEYf3EPcKeedTbzIzdfMOU1DqFqbrhAETLgnt2HbjUSAIpbZFAksE4VAQUES4zYTFR24ADCLg69EosNbU5iDRD0lIj1E_zdLoDcKuFQ_DkAuQ9WUlJsZgFA5jFqgeIaPuAH2tP6kvdGF72V_lylcBFpT7E7acqc8_HqBPzdptVc7l4KqTmjK-Pu47H2Rh0OY5t-kAfWz-BiBLD1uQRlkJayhzic0BAgP0uqJos428OaUxZYCOgcTNdAuNt3_e9R163B6uE9Qv8jJ6DwJxEX7QYPwNTfO8KQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+cancer+nanomedicine+using+the+near+infrared-II+biowindow+enabled+by+biocompatible+titanium+nitride+nanoplatforms&rft.jtitle=Nanoscale+horizons&rft.au=Wang%2C+Chunmei&rft.au=Chen%2C+Dai&rft.au=Hu%2C+Zhongqian&rft.au=Li%2C+Hongqiang&rft.date=2019-03-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2055-6764&rft.eissn=2055-6764&rft.volume=4&rft.issue=2&rft.spage=415&rft.epage=425&rft_id=info:doi/10.1039%2Fc8nh00299a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon |