Local Binary Patterns Based on Neighbor-Center Difference Image for Color Texture Classification with Machine Learning Techniques
This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing environments. Information about an object’s appearance and information regarding the object’s motion are both used as crucial signals in the process of i...
Saved in:
| Published in | Wireless communications and mobile computing Vol. 2022; no. 1 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Hindawi
2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-8669 1530-8677 1530-8677 |
| DOI | 10.1155/2022/1191492 |
Cover
| Abstract | This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing environments. Information about an object’s appearance and information regarding the object’s motion are both used as crucial signals in the process of identifying and recognising any given item. This information is used to characterise and recognise the item. The identification of objects based solely on their outward appearance has been the subject of a substantial amount of research. However, motion information in the recognition task has received only a marginal amount of attention, despite the fact that motion plays an essential role in the process of recognition. In order to analyze a moving picture in a way that is both fast and accurate, it is required to make use of motion information in conjunction with surface appearance in a strategy that has been designed. Dynamic texture is a kind of visual phenomenon that may be characterised as a type of visual phenomenon that shows spatially repeated features as well as some stationary properties during the course of time by using methodologies that are associated with machine learning. The design of modern VLSI systems takes into consideration a larger chip density, which results in a processor architecture with several cores that are capable of performing a wide range of functions (multicore processor architecture). It is becoming more challenging to run such complicated systems without the use of electric power. In order to increase the effectiveness of power optimization strategies while maintaining system performance for text data extraction, it has been developed and put into practice power optimization strategies that are based on scheduling algorithms. Over the last twenty years, texture analysis has been an increasingly busy and profitable field of study. Today, texture interpretation plays a vital role in various activities ranging from remote sensing to medical picture analysis. The absence of tools to newline analyze the many properties of texture pictures was the primary challenge faced by the texture analysis approach. Texture analysis may be roughly categorised as texture classification, texture segmentation, texture synthesis, and texture synthesis. Texture categorization is useful in numerous applications, such as the retrieval of picture databases, industrial agriculture applications, and biomedical applications. Texture categorization relies on three distinct methods, namely, statistical, spectral, and structural methods. Statistical methods are based on the statistical characteristics of the image’s grey level. Features are collected using second order statistical order, autocorrelation function, and grey level co-occurrence matrix function. |
|---|---|
| AbstractList | This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing environments. Information about an object’s appearance and information regarding the object’s motion are both used as crucial signals in the process of identifying and recognising any given item. This information is used to characterise and recognise the item. The identification of objects based solely on their outward appearance has been the subject of a substantial amount of research. However, motion information in the recognition task has received only a marginal amount of attention, despite the fact that motion plays an essential role in the process of recognition. In order to analyze a moving picture in a way that is both fast and accurate, it is required to make use of motion information in conjunction with surface appearance in a strategy that has been designed. Dynamic texture is a kind of visual phenomenon that may be characterised as a type of visual phenomenon that shows spatially repeated features as well as some stationary properties during the course of time by using methodologies that are associated with machine learning. The design of modern VLSI systems takes into consideration a larger chip density, which results in a processor architecture with several cores that are capable of performing a wide range of functions (multicore processor architecture). It is becoming more challenging to run such complicated systems without the use of electric power. In order to increase the effectiveness of power optimization strategies while maintaining system performance for text data extraction, it has been developed and put into practice power optimization strategies that are based on scheduling algorithms. Over the last twenty years, texture analysis has been an increasingly busy and profitable field of study. Today, texture interpretation plays a vital role in various activities ranging from remote sensing to medical picture analysis. The absence of tools to newline analyze the many properties of texture pictures was the primary challenge faced by the texture analysis approach. Texture analysis may be roughly categorised as texture classification, texture segmentation, texture synthesis, and texture synthesis. Texture categorization is useful in numerous applications, such as the retrieval of picture databases, industrial agriculture applications, and biomedical applications. Texture categorization relies on three distinct methods, namely, statistical, spectral, and structural methods. Statistical methods are based on the statistical characteristics of the image’s grey level. Features are collected using second order statistical order, autocorrelation function, and grey level co‐occurrence matrix function. |
| Author | Verma, Himangi Vidyarthi, Aditya Hinga, Simon Karanja Wanjale, Kirti H. Chitre, Abhijit V. Anusha, M. Majrashi, Ali |
| Author_xml | – sequence: 1 givenname: Himangi surname: Verma fullname: Verma, Himangi organization: Department of Computer Science and EngineeringGuru Jambheswar University of Science and TechnologyHisarHaryanaIndia – sequence: 2 givenname: Aditya surname: Vidyarthi fullname: Vidyarthi, Aditya organization: Department of Information TechnologyITM GwaliorMadhya PradeshIndia – sequence: 3 givenname: Abhijit V. surname: Chitre fullname: Chitre, Abhijit V. organization: Department of Electronics and Telecommunication EngineeringVishwakarma Institute of Information TechnologyPuneMaharashtraIndia – sequence: 4 givenname: Kirti H. surname: Wanjale fullname: Wanjale, Kirti H. organization: Department of Computer EngineeringVishwakarma Institute of Information TechnologyPuneMaharashtraIndia – sequence: 5 givenname: M. surname: Anusha fullname: Anusha, M. organization: Associate ProfessorDepartment of Computer Science & EngineeringKoneru LakshmaiahEducation FoundationGreen FieldsVaddeswaramAndhra PradeshIndia – sequence: 6 givenname: Ali surname: Majrashi fullname: Majrashi, Ali organization: Department of BiologyCollege of ScienceTaif UniversityP.O. Box 11099Taif 21944Saudi Arabiatu.edu.sa – sequence: 7 givenname: Simon Karanja orcidid: 0000-0002-5827-3525 surname: Hinga fullname: Hinga, Simon Karanja organization: Department of Electrical and Electronic EngineeringTechnical University of MombasaMombasaKenyatum.ac.ke |
| BookMark | eNqFkE1PAyEQhonRxM-bP4DEo67C0l12j7p-JvXj0Ptmyg4tZoUKNLVH_7nUGg8m6oUh4ZmXmWeXbFpnkZBDzk45L4qznOX5Gec1H9T5BtnhhWBZVUq5-X0v622yG8IzY0ywnO-Q96FT0NMLY8Ev6RPEiN4GegEBO-osfUAzmY6dzxq06YleGq3Ro1VI715gglQ7TxvXp3OEb3HukTY9hGC0URBNSliYOKX3oKbGIh0ieGvsJMFqas3rHMM-2dLQBzz4qntkdH01am6z4ePNXXM-zJQQMmYlSsEqRKGgLnMsC-SdqMYMoZRCocZu0NVajyVnkmupdMVYUYKqUDFVj8UeydaxczuD5QL6vp1585K2bjlrV_ralb72S1_ij9b8zLvVmLF9dnNv04RtLtlAFlVR1ok6WVPKuxA86v9C8x-4MvFTU_Rg-t-ajtdNyWAHC_P3Fx_T351U |
| CitedBy_id | crossref_primary_10_3390_rs15102556 crossref_primary_10_1016_j_mex_2023_102295 |
| Cites_doi | 10.1109/TVLSI.2013.2265499 10.1109/TVLSI.2012.2199142 10.1109/TVLSI.2017.2736552 10.1109/TVLSI.2013.2280772 10.1109/TVLSI.2016.2555954 10.1016/j.eij.2012.04.001 10.1007/s11042-017-4834-3 10.1109/TVLSI.2013.2237930 10.1109/TVLSI.2012.2233505 10.1007/s11042-020-10116-z 10.1109/TVLSI.2013.2280139 10.1109/TVLSI.2013.2257900 10.1109/TVLSI.2013.2238645 10.1108/SR-07-2016-0120 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Himangi Verma et al. Copyright © 2022 Himangi Verma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2022 Himangi Verma et al. – notice: Copyright © 2022 Himangi Verma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1155/2022/1191492 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-8677 |
| Editor | Hashmi, Mohammad Farukh |
| Editor_xml | – sequence: 1 givenname: Mohammad Farukh surname: Hashmi fullname: Hashmi, Mohammad Farukh |
| ExternalDocumentID | 10.1155/2022/1191492 10_1155_2022_1191492 |
| GrantInformation_xml | – fundername: Taif University grantid: TURSP-2020/110 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 123 1L6 24P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACCMX ACGFO ADBBV ADIZJ AENEX AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA H.T H.X H13 HCIFZ HZ~ ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 MK4 MY~ N04 N05 NF~ O9- OIG OK1 P2P P2X P4D PHGZT PIMPY Q.N QB0 QRW R.K RHU RHW RHX RX1 RYL SUPJJ UB1 W8V W99 WBKPD XPP XV2 ~IA ~WT .Y3 31~ 5VS AAEVG AAMMB AANHP AAYXX AAZKR ACBWZ ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AEUCX AFZJQ AGQPQ AGXDD AIDQK AIDYY AZFZN BDRZF BFHJK CITATION EJD FEDTE HF~ HVGLF LH4 LW6 PHGZM PQGLB PUEGO ROL WYUIH 7SC 7SP 7XB 8FD 8FE 8FG ABUWG JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c337t-6e7308ee3ca962e65e1d38b0ea673cefed4d9ffb71071f7cf80056ac8ec0c9b3 |
| IEDL.DBID | RHX |
| ISSN | 1530-8669 1530-8677 |
| IngestDate | Wed Oct 01 15:28:00 EDT 2025 Fri Jul 25 09:30:22 EDT 2025 Wed Oct 01 05:18:37 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Apr 16 06:26:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-6e7308ee3ca962e65e1d38b0ea673cefed4d9ffb71071f7cf80056ac8ec0c9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5827-3525 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/1191492 |
| PQID | 2704758569 |
| PQPubID | 2034344 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_1191492 proquest_journals_2704758569 crossref_primary_10_1155_2022_1191492 crossref_citationtrail_10_1155_2022_1191492 hindawi_primary_10_1155_2022_1191492 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Wireless communications and mobile computing |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_9_12_2 e_1_2_9_11_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 Feng X. (e_1_2_9_7_2) 2013; 12 e_1_2_9_2_2 e_1_2_9_1_2 Jasmin M. (e_1_2_9_13_2) 2014; 15 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_16_2 e_1_2_9_15_2 Baruch Z. (e_1_2_9_14_2) 2015; 20 e_1_2_9_18_2 Verma Y. (e_1_2_9_10_2) 2014; 15 e_1_2_9_17_2 El-Maleh A. (e_1_2_9_19_2) 2013; 10 |
| References_xml | – volume: 10 year: 2013 ident: e_1_2_9_19_2 article-title: Finite state machine state assignment for area and power minimization publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – ident: e_1_2_9_6_2 doi: 10.1109/TVLSI.2013.2265499 – ident: e_1_2_9_16_2 doi: 10.1109/TVLSI.2012.2199142 – ident: e_1_2_9_15_2 doi: 10.1109/TVLSI.2017.2736552 – volume: 20 year: 2015 ident: e_1_2_9_14_2 article-title: Scheduling algorithms for high-level synthesis publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – volume: 15 year: 2014 ident: e_1_2_9_10_2 article-title: Low power approach of clock gating in synchronous system like FIFO: a novel clock gating approach and comparative analysis publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – ident: e_1_2_9_11_2 doi: 10.1109/TVLSI.2013.2280772 – ident: e_1_2_9_5_2 doi: 10.1109/TVLSI.2016.2555954 – ident: e_1_2_9_12_2 doi: 10.1016/j.eij.2012.04.001 – ident: e_1_2_9_9_2 doi: 10.1007/s11042-017-4834-3 – volume: 15 year: 2014 ident: e_1_2_9_13_2 article-title: Optimization techniques for low power VLSI circuits publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – ident: e_1_2_9_1_2 doi: 10.1109/TVLSI.2013.2237930 – ident: e_1_2_9_3_2 doi: 10.1109/TVLSI.2012.2233505 – volume: 12 year: 2013 ident: e_1_2_9_7_2 article-title: Design of an area-effcient million-bit integer multiplier using double modulus NTT publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – ident: e_1_2_9_17_2 doi: 10.1007/s11042-020-10116-z – ident: e_1_2_9_18_2 doi: 10.1109/TVLSI.2013.2280139 – ident: e_1_2_9_4_2 doi: 10.1109/TVLSI.2013.2257900 – ident: e_1_2_9_2_2 doi: 10.1109/TVLSI.2013.2238645 – ident: e_1_2_9_8_2 doi: 10.1108/SR-07-2016-0120 |
| SSID | ssj0003021 |
| Score | 2.3454776 |
| Snippet | This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing... |
| SourceID | unpaywall proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Autocorrelation functions Biomedical materials Classification Color texture Computer vision Decomposition Image classification Image segmentation Integrated circuits Machine learning Microprocessors Object recognition Optimization Personal computers Remote sensing Signal processing Statistical methods Synthesis Texture recognition Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB2VrRBwqPgUCwXNoXBBVpPYSZxDhbr9UIvoqkKL1FuU2BNAWrLLfqjiyD-vx-ss7aHtfeRDnj3zPBm_B7Bj6khaV4mFNSoRKlZW6EY1wjrqnBqVa1Xw4-SzYXbyXX25SC82YNi9heGxyi4n-kRtJ4Z75LtJHinmtlnxefpHsGsU_13tLDSqYK1g97zE2APYTFgZqwebg6Ph-bd1bpZREhRUI6GzrOhG4dOUuwDJrpc7K5IbRerhT74dX_66wUEfLdtp9feyGo-vlaPjp7AVeCTur4B_BhvUPocn19QFX8C_r1yncOBf3OK5F9Js5zhwdcvipMUhd0XdFhDc4aUZHgavFEN4-tulGXR8Fg9ccpzhyKXw5YzQW2jycJHHE7mJi2d-HJMwKLX-wFEnCzt_CaPjo9HBiQiOC8JImS9ERu7AayJpqiJLKEsptlLXEVVZLg01ZJUtmqZ2tCSPm9w0mqVEK6PJRKao5SvotZOWXgPqnKwmx6aUtSpuYm2o0tZIWziKWMXUh0_dFy5NUCNnU4xx6W8laVoyHmXAow8f1tHTlQrHLXE7Aax7wrY7JMtwZOfl_w3Wh49rdO9c583d67yFxxy9athsQ28xW9I7R2EW9fuwL68AwUXtaA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRVXh0NIHYlta-UB7qbIkGyd2JC5AiwDBisMi0UMVJeNxW7Fk0T60oick_gC_sb-ktuMgtlIf6i2RRk4ynsx8Mxp_A7CBZRgrE4kDhbwb8IirQGquA2Wgc4JcSJ7Zw8nHvXT_lB-eJWcLsNWchVGWIn5YqHHnq81JZ9-ct_Z6HW_O8AJtvt7ddMRkmckKlX4Ai2likHgLFk97J9ufaorUMJCpm2jnr4Vo-t6TZG6JuYj00D92DnA-mlaXxdWsGAzuxZ69J_C5eeu65eS8M52UHfz-C6Hj_37WCjz2oJRt11b0FBaoegbL96gKn8PNkQ16bMcd32UnjpWzGrMdEwQVG1asZ0usxp5-XN_agjGN2Ac_egWJHVwYr8UMPGa7xteOWN9EhOmImJvIaXuVnHkwWxNmx667k5gnfv3C-g3L7PgF9Pc-9nf3Az_AIcA4FpMgJeM_JFGMRZZ2KU0oUrEsQypSESNpUlxlWpcG5YhIC9TSMpMWKAlDzMp4FVrVsKI1YFKQkmTAGVeKRzqSSIVUGKvMIM4ioja8b_YwR09ubmdsDHKX5CRJbrWbe-224e2d9GVN6vEbuQ2_XX8RW29sJW-2NO-KkNtcLM3a8O7Ofv64zst_FXwFS_a2rgStQ2symtJrg40m5Rv_C_wEhN4LSA priority: 102 providerName: Unpaywall |
| Title | Local Binary Patterns Based on Neighbor-Center Difference Image for Color Texture Classification with Machine Learning Techniques |
| URI | https://dx.doi.org/10.1155/2022/1191492 https://www.proquest.com/docview/2704758569 https://downloads.hindawi.com/journals/wcmc/2022/1191492.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1530-8677 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0003021 issn: 1530-8677 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: [Open Access] Wiley Online Library OA Collection customDbUrl: eissn: 1530-8677 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003021 issn: 1530-8677 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1530-8677 databaseCode: DR2 dateStart: 20010101 customDbUrl: isFulltext: true eissn: 1530-8677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003021 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELY2pmnjYRpjiG5Q3QPby2SRxI7jPLaFriCoqqpI3VOU2BdAKgH1hxCP-893Tt0Khvbj0ZGTSPnsu-8u5-8YOzBFICx5Ym6NjLgMpeW6lCW3RJ1jIxMtU3c4-byvehfydByPvUjS7PkvfPJ2LjyPDmsdspRs7UutXOXWsDdeG1wRRF4WNeBaqXRV3_7bvU88z-srF_LeXz8hlm8W1V3-cJ9PJo98TPc9e-fJIbSWaG6xF1h9YJuPJAO32c8z53ygXR-jhUGtjlnNoE3OyMJtBX2X6iRcuUvb4hSOfAMUg3ByQ7YDiKRChyzeFEZklxdThLovpqsYqkECl5mF87rGEsHLr17CaKX1OvvIRt3jUafHfRsFboRI5lwh7WKNKEyeqghVjKEVuggwV4kwWKKVNi3LgrhGEpaJKbXTB82NRhOYtBA7bKO6rXCXgU7QaiSKJK2VYRlqg7m2RtiUeF8eYoN9W33hzHiJcdfpYpLVoUYcZw6PzOPRYF_Ws--W0hp_mHfgwfrHtL0Vkpnfh7MsSgLpIiKVNtjXNbp_fc6n_3vdZ_bWDZfZmD22MZ8ucJ_4ybxo0hrtfm-yV-3j_mBIo6Nh1KxXLF276A9aP34BZE_hnQ |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUEV7qPpCXQqtD9BLZZHETmIfEOry0G7ZXaEqlbhFiT1pK22zyz604tgf1v-G7XUWOJSeuDs-ZCbzfTOZ-QZgT5UB0waJqVY8ojzkmoqKV1Qb6hwrngou7XByf5B0vvOvl_HlGvxtZmFsW2UTE12g1iNla-QHURpwy20TeTS-onZrlP272qzQKPxqBX3oJMb8YMc5Xi9MCjc97J4Ye-9H0dlpdtyhfssAVYylM5qgcXKByFQhkwiTGEPNRBlgkaRMYYWaa1lVpYHiNKxSVQkrn1kogSpQsmTm2iewwRmXJvfbaJ8OLr6toIAFkRdsDahIEtl03sexLTpEB05dTUb3MPHpT5uML37do7yb83pcXC-K4fAO-p29hBeetpIvSz97BWtYv4bnd8QM38CfnoVF0nYDvuTC6XbWU9I2MKnJqCYDW4Q1HkdtQRkn5MSvZlFIur9NVCOGPpNjE4snJDOIMZ8gcRs7bS-Tcx9ia8ak77o_kXhh2B8ka1Rop28he4xXvwXr9ajGd0BEilqgIW9cax5WoVBYCK2YloaRFiG24HPzhnPlxc_tDo5h7pKgOM6tPXJvjxbsr06Pl6If_zi35431n2M7jSVzHyGm-a0_t-DTyroP3rP98D0fYbOT9Xt5rzs4fw_P7JPLWtEOrM8mc9w17GlWfvA-SiB_5K_iBi-7K8U |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4ikWCsyh5YKsTWIncQ4I0S5Ll7arHhaptyixx4C0ZJd9aNUjP4t_h8frLO2Bcurd8cEznu_zZOYbxnZ1HQnjkJgbLRMuY2m4stJy46hzqmWuZEHNySfD7PCL_HyWnm2x320vDJVVtjHRB2oz0ZQj7yZ5JInbZkXXhrKI017__fQnpwlS9Ke1HaexdpEjPF-559v83aDnbL2XJP2Po4NDHiYMcC1EvuAZOgdXiEJXRZZglmJshKojrLJcaLRopCmsrR0M57HNtVUknVlphTrSRS3ctjfYzZxE3KlJvf9pAwIiSoJUa8RVlhVtzX2aUroh6XpdtSK5hIa3vtEzfPX9Etm9s2ym1fmqGo8v4F7_AbsfCCt8WHvYQ7aFzSN274KM4WP265gAEfZ9ay-cesXOZg77DiANTBoYUvrV-RqnVDLOoBeGsmiEwQ8Xz8ARZzhwUXgGI3fgyxmCn9VJVUzecYCyxXDi6z4RgiTsVxi1-rPzJ2x0HQf_lG03kwafMVA5GoWOtkljZGxjpbFSRgtTOC5axdhhb9sTLnWQPafpG-PSP3_StCR7lMEeHba3WT1dy338Y91uMNZ_lu20lixDbJiXfz25w95srHvlPs-v3uc1u-3uQnk8GB69YHfpw3WSaIdtL2ZLfOlo06J-5R0UWHnNF-IP_VUpXw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRVXh0NIHYlta-UB7qbIkGyd2JC5AiwDBisMi0UMVJeNxW7Fk0T60oick_gC_sb-ktuMgtlIf6i2RRk4ynsx8Mxp_A7CBZRgrE4kDhbwb8IirQGquA2Wgc4JcSJ7Zw8nHvXT_lB-eJWcLsNWchVGWIn5YqHHnq81JZ9-ct_Z6HW_O8AJtvt7ddMRkmckKlX4Ai2likHgLFk97J9ufaorUMJCpm2jnr4Vo-t6TZG6JuYj00D92DnA-mlaXxdWsGAzuxZ69J_C5eeu65eS8M52UHfz-C6Hj_37WCjz2oJRt11b0FBaoegbL96gKn8PNkQ16bMcd32UnjpWzGrMdEwQVG1asZ0usxp5-XN_agjGN2Ac_egWJHVwYr8UMPGa7xteOWN9EhOmImJvIaXuVnHkwWxNmx667k5gnfv3C-g3L7PgF9Pc-9nf3Az_AIcA4FpMgJeM_JFGMRZZ2KU0oUrEsQypSESNpUlxlWpcG5YhIC9TSMpMWKAlDzMp4FVrVsKI1YFKQkmTAGVeKRzqSSIVUGKvMIM4ioja8b_YwR09ubmdsDHKX5CRJbrWbe-224e2d9GVN6vEbuQ2_XX8RW29sJW-2NO-KkNtcLM3a8O7Ofv64zst_FXwFS_a2rgStQ2symtJrg40m5Rv_C_wEhN4LSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Binary+Patterns+Based+on+Neighbor-Center+Difference+Image+for+Color+Texture+Classification+with+Machine+Learning+Techniques&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Verma%2C+Himangi&rft.au=Vidyarthi%2C+Aditya&rft.au=Chitre%2C+Abhijit+V.&rft.au=Wanjale%2C+Kirti+H.&rft.date=2022&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1191492&rft.externalDocID=10_1155_2022_1191492 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |