Local Binary Patterns Based on Neighbor-Center Difference Image for Color Texture Classification with Machine Learning Techniques

This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing environments. Information about an object’s appearance and information regarding the object’s motion are both used as crucial signals in the process of i...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 2022; no. 1
Main Authors Verma, Himangi, Vidyarthi, Aditya, Chitre, Abhijit V., Wanjale, Kirti H., Anusha, M., Majrashi, Ali, Hinga, Simon Karanja
Format Journal Article
LanguageEnglish
Published Oxford Hindawi 2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1530-8669
1530-8677
1530-8677
DOI10.1155/2022/1191492

Cover

Abstract This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing environments. Information about an object’s appearance and information regarding the object’s motion are both used as crucial signals in the process of identifying and recognising any given item. This information is used to characterise and recognise the item. The identification of objects based solely on their outward appearance has been the subject of a substantial amount of research. However, motion information in the recognition task has received only a marginal amount of attention, despite the fact that motion plays an essential role in the process of recognition. In order to analyze a moving picture in a way that is both fast and accurate, it is required to make use of motion information in conjunction with surface appearance in a strategy that has been designed. Dynamic texture is a kind of visual phenomenon that may be characterised as a type of visual phenomenon that shows spatially repeated features as well as some stationary properties during the course of time by using methodologies that are associated with machine learning. The design of modern VLSI systems takes into consideration a larger chip density, which results in a processor architecture with several cores that are capable of performing a wide range of functions (multicore processor architecture). It is becoming more challenging to run such complicated systems without the use of electric power. In order to increase the effectiveness of power optimization strategies while maintaining system performance for text data extraction, it has been developed and put into practice power optimization strategies that are based on scheduling algorithms. Over the last twenty years, texture analysis has been an increasingly busy and profitable field of study. Today, texture interpretation plays a vital role in various activities ranging from remote sensing to medical picture analysis. The absence of tools to newline analyze the many properties of texture pictures was the primary challenge faced by the texture analysis approach. Texture analysis may be roughly categorised as texture classification, texture segmentation, texture synthesis, and texture synthesis. Texture categorization is useful in numerous applications, such as the retrieval of picture databases, industrial agriculture applications, and biomedical applications. Texture categorization relies on three distinct methods, namely, statistical, spectral, and structural methods. Statistical methods are based on the statistical characteristics of the image’s grey level. Features are collected using second order statistical order, autocorrelation function, and grey level co-occurrence matrix function.
AbstractList This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing environments. Information about an object’s appearance and information regarding the object’s motion are both used as crucial signals in the process of identifying and recognising any given item. This information is used to characterise and recognise the item. The identification of objects based solely on their outward appearance has been the subject of a substantial amount of research. However, motion information in the recognition task has received only a marginal amount of attention, despite the fact that motion plays an essential role in the process of recognition. In order to analyze a moving picture in a way that is both fast and accurate, it is required to make use of motion information in conjunction with surface appearance in a strategy that has been designed. Dynamic texture is a kind of visual phenomenon that may be characterised as a type of visual phenomenon that shows spatially repeated features as well as some stationary properties during the course of time by using methodologies that are associated with machine learning. The design of modern VLSI systems takes into consideration a larger chip density, which results in a processor architecture with several cores that are capable of performing a wide range of functions (multicore processor architecture). It is becoming more challenging to run such complicated systems without the use of electric power. In order to increase the effectiveness of power optimization strategies while maintaining system performance for text data extraction, it has been developed and put into practice power optimization strategies that are based on scheduling algorithms. Over the last twenty years, texture analysis has been an increasingly busy and profitable field of study. Today, texture interpretation plays a vital role in various activities ranging from remote sensing to medical picture analysis. The absence of tools to newline analyze the many properties of texture pictures was the primary challenge faced by the texture analysis approach. Texture analysis may be roughly categorised as texture classification, texture segmentation, texture synthesis, and texture synthesis. Texture categorization is useful in numerous applications, such as the retrieval of picture databases, industrial agriculture applications, and biomedical applications. Texture categorization relies on three distinct methods, namely, statistical, spectral, and structural methods. Statistical methods are based on the statistical characteristics of the image’s grey level. Features are collected using second order statistical order, autocorrelation function, and grey level co‐occurrence matrix function.
Author Verma, Himangi
Vidyarthi, Aditya
Hinga, Simon Karanja
Wanjale, Kirti H.
Chitre, Abhijit V.
Anusha, M.
Majrashi, Ali
Author_xml – sequence: 1
  givenname: Himangi
  surname: Verma
  fullname: Verma, Himangi
  organization: Department of Computer Science and EngineeringGuru Jambheswar University of Science and TechnologyHisarHaryanaIndia
– sequence: 2
  givenname: Aditya
  surname: Vidyarthi
  fullname: Vidyarthi, Aditya
  organization: Department of Information TechnologyITM GwaliorMadhya PradeshIndia
– sequence: 3
  givenname: Abhijit V.
  surname: Chitre
  fullname: Chitre, Abhijit V.
  organization: Department of Electronics and Telecommunication EngineeringVishwakarma Institute of Information TechnologyPuneMaharashtraIndia
– sequence: 4
  givenname: Kirti H.
  surname: Wanjale
  fullname: Wanjale, Kirti H.
  organization: Department of Computer EngineeringVishwakarma Institute of Information TechnologyPuneMaharashtraIndia
– sequence: 5
  givenname: M.
  surname: Anusha
  fullname: Anusha, M.
  organization: Associate ProfessorDepartment of Computer Science & EngineeringKoneru LakshmaiahEducation FoundationGreen FieldsVaddeswaramAndhra PradeshIndia
– sequence: 6
  givenname: Ali
  surname: Majrashi
  fullname: Majrashi, Ali
  organization: Department of BiologyCollege of ScienceTaif UniversityP.O. Box 11099Taif 21944Saudi Arabiatu.edu.sa
– sequence: 7
  givenname: Simon Karanja
  orcidid: 0000-0002-5827-3525
  surname: Hinga
  fullname: Hinga, Simon Karanja
  organization: Department of Electrical and Electronic EngineeringTechnical University of MombasaMombasaKenyatum.ac.ke
BookMark eNqFkE1PAyEQhonRxM-bP4DEo67C0l12j7p-JvXj0Ptmyg4tZoUKNLVH_7nUGg8m6oUh4ZmXmWeXbFpnkZBDzk45L4qznOX5Gec1H9T5BtnhhWBZVUq5-X0v622yG8IzY0ywnO-Q96FT0NMLY8Ev6RPEiN4GegEBO-osfUAzmY6dzxq06YleGq3Ro1VI715gglQ7TxvXp3OEb3HukTY9hGC0URBNSliYOKX3oKbGIh0ieGvsJMFqas3rHMM-2dLQBzz4qntkdH01am6z4ePNXXM-zJQQMmYlSsEqRKGgLnMsC-SdqMYMoZRCocZu0NVajyVnkmupdMVYUYKqUDFVj8UeydaxczuD5QL6vp1585K2bjlrV_ralb72S1_ij9b8zLvVmLF9dnNv04RtLtlAFlVR1ok6WVPKuxA86v9C8x-4MvFTU_Rg-t-ajtdNyWAHC_P3Fx_T351U
CitedBy_id crossref_primary_10_3390_rs15102556
crossref_primary_10_1016_j_mex_2023_102295
Cites_doi 10.1109/TVLSI.2013.2265499
10.1109/TVLSI.2012.2199142
10.1109/TVLSI.2017.2736552
10.1109/TVLSI.2013.2280772
10.1109/TVLSI.2016.2555954
10.1016/j.eij.2012.04.001
10.1007/s11042-017-4834-3
10.1109/TVLSI.2013.2237930
10.1109/TVLSI.2012.2233505
10.1007/s11042-020-10116-z
10.1109/TVLSI.2013.2280139
10.1109/TVLSI.2013.2257900
10.1109/TVLSI.2013.2238645
10.1108/SR-07-2016-0120
ContentType Journal Article
Copyright Copyright © 2022 Himangi Verma et al.
Copyright © 2022 Himangi Verma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Himangi Verma et al.
– notice: Copyright © 2022 Himangi Verma et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1155/2022/1191492
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Hashmi, Mohammad Farukh
Editor_xml – sequence: 1
  givenname: Mohammad Farukh
  surname: Hashmi
  fullname: Hashmi, Mohammad Farukh
ExternalDocumentID 10.1155/2022/1191492
10_1155_2022_1191492
GrantInformation_xml – fundername: Taif University
  grantid: TURSP-2020/110
GroupedDBID .3N
.DC
.GA
05W
0R~
123
1L6
24P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACCMX
ACGFO
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HZ~
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
MK4
MY~
N04
N05
NF~
O9-
OIG
OK1
P2P
P2X
P4D
PHGZT
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RX1
RYL
SUPJJ
UB1
W8V
W99
WBKPD
XPP
XV2
~IA
~WT
.Y3
31~
5VS
AAEVG
AAMMB
AANHP
AAYXX
AAZKR
ACBWZ
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AEUCX
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AZFZN
BDRZF
BFHJK
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
PHGZM
PQGLB
PUEGO
ROL
WYUIH
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c337t-6e7308ee3ca962e65e1d38b0ea673cefed4d9ffb71071f7cf80056ac8ec0c9b3
IEDL.DBID RHX
ISSN 1530-8669
1530-8677
IngestDate Wed Oct 01 15:28:00 EDT 2025
Fri Jul 25 09:30:22 EDT 2025
Wed Oct 01 05:18:37 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Apr 16 06:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-6e7308ee3ca962e65e1d38b0ea673cefed4d9ffb71071f7cf80056ac8ec0c9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5827-3525
OpenAccessLink https://dx.doi.org/10.1155/2022/1191492
PQID 2704758569
PQPubID 2034344
ParticipantIDs unpaywall_primary_10_1155_2022_1191492
proquest_journals_2704758569
crossref_primary_10_1155_2022_1191492
crossref_citationtrail_10_1155_2022_1191492
hindawi_primary_10_1155_2022_1191492
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
Feng X. (e_1_2_9_7_2) 2013; 12
e_1_2_9_2_2
e_1_2_9_1_2
Jasmin M. (e_1_2_9_13_2) 2014; 15
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_16_2
e_1_2_9_15_2
Baruch Z. (e_1_2_9_14_2) 2015; 20
e_1_2_9_18_2
Verma Y. (e_1_2_9_10_2) 2014; 15
e_1_2_9_17_2
El-Maleh A. (e_1_2_9_19_2) 2013; 10
References_xml – volume: 10
  year: 2013
  ident: e_1_2_9_19_2
  article-title: Finite state machine state assignment for area and power minimization
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– ident: e_1_2_9_6_2
  doi: 10.1109/TVLSI.2013.2265499
– ident: e_1_2_9_16_2
  doi: 10.1109/TVLSI.2012.2199142
– ident: e_1_2_9_15_2
  doi: 10.1109/TVLSI.2017.2736552
– volume: 20
  year: 2015
  ident: e_1_2_9_14_2
  article-title: Scheduling algorithms for high-level synthesis
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– volume: 15
  year: 2014
  ident: e_1_2_9_10_2
  article-title: Low power approach of clock gating in synchronous system like FIFO: a novel clock gating approach and comparative analysis
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– ident: e_1_2_9_11_2
  doi: 10.1109/TVLSI.2013.2280772
– ident: e_1_2_9_5_2
  doi: 10.1109/TVLSI.2016.2555954
– ident: e_1_2_9_12_2
  doi: 10.1016/j.eij.2012.04.001
– ident: e_1_2_9_9_2
  doi: 10.1007/s11042-017-4834-3
– volume: 15
  year: 2014
  ident: e_1_2_9_13_2
  article-title: Optimization techniques for low power VLSI circuits
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– ident: e_1_2_9_1_2
  doi: 10.1109/TVLSI.2013.2237930
– ident: e_1_2_9_3_2
  doi: 10.1109/TVLSI.2012.2233505
– volume: 12
  year: 2013
  ident: e_1_2_9_7_2
  article-title: Design of an area-effcient million-bit integer multiplier using double modulus NTT
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– ident: e_1_2_9_17_2
  doi: 10.1007/s11042-020-10116-z
– ident: e_1_2_9_18_2
  doi: 10.1109/TVLSI.2013.2280139
– ident: e_1_2_9_4_2
  doi: 10.1109/TVLSI.2013.2257900
– ident: e_1_2_9_2_2
  doi: 10.1109/TVLSI.2013.2238645
– ident: e_1_2_9_8_2
  doi: 10.1108/SR-07-2016-0120
SSID ssj0003021
Score 2.3454776
Snippet This is a topic that receives a lot of interest since many applications of computer vision focus on the detection of objects in visually appealing...
SourceID unpaywall
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Autocorrelation functions
Biomedical materials
Classification
Color texture
Computer vision
Decomposition
Image classification
Image segmentation
Integrated circuits
Machine learning
Microprocessors
Object recognition
Optimization
Personal computers
Remote sensing
Signal processing
Statistical methods
Synthesis
Texture recognition
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwEB2VrRBwqPgUCwXNoXBBVpPYSZxDhbr9UIvoqkKL1FuU2BNAWrLLfqjiyD-vx-ss7aHtfeRDnj3zPBm_B7Bj6khaV4mFNSoRKlZW6EY1wjrqnBqVa1Xw4-SzYXbyXX25SC82YNi9heGxyi4n-kRtJ4Z75LtJHinmtlnxefpHsGsU_13tLDSqYK1g97zE2APYTFgZqwebg6Ph-bd1bpZREhRUI6GzrOhG4dOUuwDJrpc7K5IbRerhT74dX_66wUEfLdtp9feyGo-vlaPjp7AVeCTur4B_BhvUPocn19QFX8C_r1yncOBf3OK5F9Js5zhwdcvipMUhd0XdFhDc4aUZHgavFEN4-tulGXR8Fg9ccpzhyKXw5YzQW2jycJHHE7mJi2d-HJMwKLX-wFEnCzt_CaPjo9HBiQiOC8JImS9ERu7AayJpqiJLKEsptlLXEVVZLg01ZJUtmqZ2tCSPm9w0mqVEK6PJRKao5SvotZOWXgPqnKwmx6aUtSpuYm2o0tZIWziKWMXUh0_dFy5NUCNnU4xx6W8laVoyHmXAow8f1tHTlQrHLXE7Aax7wrY7JMtwZOfl_w3Wh49rdO9c583d67yFxxy9athsQ28xW9I7R2EW9fuwL68AwUXtaA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRVXh0NIHYlta-UB7qbIkGyd2JC5AiwDBisMi0UMVJeNxW7Fk0T60oick_gC_sb-ktuMgtlIf6i2RRk4ynsx8Mxp_A7CBZRgrE4kDhbwb8IirQGquA2Wgc4JcSJ7Zw8nHvXT_lB-eJWcLsNWchVGWIn5YqHHnq81JZ9-ct_Z6HW_O8AJtvt7ddMRkmckKlX4Ai2likHgLFk97J9ufaorUMJCpm2jnr4Vo-t6TZG6JuYj00D92DnA-mlaXxdWsGAzuxZ69J_C5eeu65eS8M52UHfz-C6Hj_37WCjz2oJRt11b0FBaoegbL96gKn8PNkQ16bMcd32UnjpWzGrMdEwQVG1asZ0usxp5-XN_agjGN2Ac_egWJHVwYr8UMPGa7xteOWN9EhOmImJvIaXuVnHkwWxNmx667k5gnfv3C-g3L7PgF9Pc-9nf3Az_AIcA4FpMgJeM_JFGMRZZ2KU0oUrEsQypSESNpUlxlWpcG5YhIC9TSMpMWKAlDzMp4FVrVsKI1YFKQkmTAGVeKRzqSSIVUGKvMIM4ioja8b_YwR09ubmdsDHKX5CRJbrWbe-224e2d9GVN6vEbuQ2_XX8RW29sJW-2NO-KkNtcLM3a8O7Ofv64zst_FXwFS_a2rgStQ2symtJrg40m5Rv_C_wEhN4LSA
  priority: 102
  providerName: Unpaywall
Title Local Binary Patterns Based on Neighbor-Center Difference Image for Color Texture Classification with Machine Learning Techniques
URI https://dx.doi.org/10.1155/2022/1191492
https://www.proquest.com/docview/2704758569
https://downloads.hindawi.com/journals/wcmc/2022/1191492.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1530-8677
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0003021
  issn: 1530-8677
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: [Open Access] Wiley Online Library OA Collection
  customDbUrl:
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003021
  issn: 1530-8677
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1530-8677
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1530-8677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003021
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELY2pmnjYRpjiG5Q3QPby2SRxI7jPLaFriCoqqpI3VOU2BdAKgH1hxCP-893Tt0Khvbj0ZGTSPnsu-8u5-8YOzBFICx5Ym6NjLgMpeW6lCW3RJ1jIxMtU3c4-byvehfydByPvUjS7PkvfPJ2LjyPDmsdspRs7UutXOXWsDdeG1wRRF4WNeBaqXRV3_7bvU88z-srF_LeXz8hlm8W1V3-cJ9PJo98TPc9e-fJIbSWaG6xF1h9YJuPJAO32c8z53ygXR-jhUGtjlnNoE3OyMJtBX2X6iRcuUvb4hSOfAMUg3ByQ7YDiKRChyzeFEZklxdThLovpqsYqkECl5mF87rGEsHLr17CaKX1OvvIRt3jUafHfRsFboRI5lwh7WKNKEyeqghVjKEVuggwV4kwWKKVNi3LgrhGEpaJKbXTB82NRhOYtBA7bKO6rXCXgU7QaiSKJK2VYRlqg7m2RtiUeF8eYoN9W33hzHiJcdfpYpLVoUYcZw6PzOPRYF_Ws--W0hp_mHfgwfrHtL0Vkpnfh7MsSgLpIiKVNtjXNbp_fc6n_3vdZ_bWDZfZmD22MZ8ucJ_4ybxo0hrtfm-yV-3j_mBIo6Nh1KxXLF276A9aP34BZE_hnQ
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUEV7qPpCXQqtD9BLZZHETmIfEOry0G7ZXaEqlbhFiT1pK22zyz604tgf1v-G7XUWOJSeuDs-ZCbzfTOZ-QZgT5UB0waJqVY8ojzkmoqKV1Qb6hwrngou7XByf5B0vvOvl_HlGvxtZmFsW2UTE12g1iNla-QHURpwy20TeTS-onZrlP272qzQKPxqBX3oJMb8YMc5Xi9MCjc97J4Ye-9H0dlpdtyhfssAVYylM5qgcXKByFQhkwiTGEPNRBlgkaRMYYWaa1lVpYHiNKxSVQkrn1kogSpQsmTm2iewwRmXJvfbaJ8OLr6toIAFkRdsDahIEtl03sexLTpEB05dTUb3MPHpT5uML37do7yb83pcXC-K4fAO-p29hBeetpIvSz97BWtYv4bnd8QM38CfnoVF0nYDvuTC6XbWU9I2MKnJqCYDW4Q1HkdtQRkn5MSvZlFIur9NVCOGPpNjE4snJDOIMZ8gcRs7bS-Tcx9ia8ak77o_kXhh2B8ka1Rop28he4xXvwXr9ajGd0BEilqgIW9cax5WoVBYCK2YloaRFiG24HPzhnPlxc_tDo5h7pKgOM6tPXJvjxbsr06Pl6If_zi35431n2M7jSVzHyGm-a0_t-DTyroP3rP98D0fYbOT9Xt5rzs4fw_P7JPLWtEOrM8mc9w17GlWfvA-SiB_5K_iBi-7K8U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4ikWCsyh5YKsTWIncQ4I0S5Ll7arHhaptyixx4C0ZJd9aNUjP4t_h8frLO2Bcurd8cEznu_zZOYbxnZ1HQnjkJgbLRMuY2m4stJy46hzqmWuZEHNySfD7PCL_HyWnm2x320vDJVVtjHRB2oz0ZQj7yZ5JInbZkXXhrKI017__fQnpwlS9Ke1HaexdpEjPF-559v83aDnbL2XJP2Po4NDHiYMcC1EvuAZOgdXiEJXRZZglmJshKojrLJcaLRopCmsrR0M57HNtVUknVlphTrSRS3ctjfYzZxE3KlJvf9pAwIiSoJUa8RVlhVtzX2aUroh6XpdtSK5hIa3vtEzfPX9Etm9s2ym1fmqGo8v4F7_AbsfCCt8WHvYQ7aFzSN274KM4WP265gAEfZ9ay-cesXOZg77DiANTBoYUvrV-RqnVDLOoBeGsmiEwQ8Xz8ARZzhwUXgGI3fgyxmCn9VJVUzecYCyxXDi6z4RgiTsVxi1-rPzJ2x0HQf_lG03kwafMVA5GoWOtkljZGxjpbFSRgtTOC5axdhhb9sTLnWQPafpG-PSP3_StCR7lMEeHba3WT1dy338Y91uMNZ_lu20lixDbJiXfz25w95srHvlPs-v3uc1u-3uQnk8GB69YHfpw3WSaIdtL2ZLfOlo06J-5R0UWHnNF-IP_VUpXw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRVXh0NIHYlta-UB7qbIkGyd2JC5AiwDBisMi0UMVJeNxW7Fk0T60oick_gC_sb-ktuMgtlIf6i2RRk4ynsx8Mxp_A7CBZRgrE4kDhbwb8IirQGquA2Wgc4JcSJ7Zw8nHvXT_lB-eJWcLsNWchVGWIn5YqHHnq81JZ9-ct_Z6HW_O8AJtvt7ddMRkmckKlX4Ai2likHgLFk97J9ufaorUMJCpm2jnr4Vo-t6TZG6JuYj00D92DnA-mlaXxdWsGAzuxZ69J_C5eeu65eS8M52UHfz-C6Hj_37WCjz2oJRt11b0FBaoegbL96gKn8PNkQ16bMcd32UnjpWzGrMdEwQVG1asZ0usxp5-XN_agjGN2Ac_egWJHVwYr8UMPGa7xteOWN9EhOmImJvIaXuVnHkwWxNmx667k5gnfv3C-g3L7PgF9Pc-9nf3Az_AIcA4FpMgJeM_JFGMRZZ2KU0oUrEsQypSESNpUlxlWpcG5YhIC9TSMpMWKAlDzMp4FVrVsKI1YFKQkmTAGVeKRzqSSIVUGKvMIM4ioja8b_YwR09ubmdsDHKX5CRJbrWbe-224e2d9GVN6vEbuQ2_XX8RW29sJW-2NO-KkNtcLM3a8O7Ofv64zst_FXwFS_a2rgStQ2symtJrg40m5Rv_C_wEhN4LSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Binary+Patterns+Based+on+Neighbor-Center+Difference+Image+for+Color+Texture+Classification+with+Machine+Learning+Techniques&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Verma%2C+Himangi&rft.au=Vidyarthi%2C+Aditya&rft.au=Chitre%2C+Abhijit+V.&rft.au=Wanjale%2C+Kirti+H.&rft.date=2022&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1191492&rft.externalDocID=10_1155_2022_1191492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon