Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp)-H and C(sp)-H bonds

Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nev...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 22; no. 4; pp. 645 - 681
Main Authors Wang, Chang-Sheng, Xu, Yuan, Wang, Shao-Peng, Zheng, Chun-Ling, Wang, Guowei, Sun, Qiao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 24.01.2024
Subjects
Online AccessGet full text
ISSN1477-0520
1477-0539
1477-0539
DOI10.1039/d3ob01847d

Cover

Abstract Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp 2 )-H and C(sp 3 )-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp 3 )-H dichalcogenation; (4) dichalcogenation of both C(sp 2 )-H and C(sp 3 )-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery. This review comprehensively summarizes the recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of various C-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches.
AbstractList Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp 2 )-H and C(sp 3 )-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp 3 )-H dichalcogenation; (4) dichalcogenation of both C(sp 2 )-H and C(sp 3 )-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery. This review comprehensively summarizes the recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of various C-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches.
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C–H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C–H chalcogenation severely lags behind C–C, C–N and C–O bond formations. Moreover, compared with the C–H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C–H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)–H and C(sp3)–H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C–H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C–H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C–H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)–H dichalcogenation; (4) dichalcogenation of both C(sp2)–H and C(sp3)–H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp )-H and C(sp )-H bonds transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp )-H dichalcogenation; (4) dichalcogenation of both C(sp )-H and C(sp )-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C–H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C–H chalcogenation severely lags behind C–C, C–N and C–O bond formations. Moreover, compared with the C–H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C–H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp 2 )–H and C(sp 3 )–H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C–H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C–H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C–H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp 3 )–H dichalcogenation; (4) dichalcogenation of both C(sp 2 )–H and C(sp 3 )–H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Author Xu, Yuan
Wang, Chang-Sheng
Sun, Qiao
Wang, Guowei
Wang, Shao-Peng
Zheng, Chun-Ling
AuthorAffiliation Nanjing Tech University
School of Food Science and Light Industry
School of Biotechnology and Pharmaceutical Engineering
Chemical Engineering and Biotechnology
School of Chemistry
Nanyang Technological University
AuthorAffiliation_xml – sequence: 0
  name: School of Food Science and Light Industry
– sequence: 0
  name: Nanyang Technological University
– sequence: 0
  name: Nanjing Tech University
– sequence: 0
  name: School of Chemistry
– sequence: 0
  name: Chemical Engineering and Biotechnology
– sequence: 0
  name: School of Biotechnology and Pharmaceutical Engineering
Author_xml – sequence: 1
  givenname: Chang-Sheng
  surname: Wang
  fullname: Wang, Chang-Sheng
– sequence: 2
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
– sequence: 3
  givenname: Shao-Peng
  surname: Wang
  fullname: Wang, Shao-Peng
– sequence: 4
  givenname: Chun-Ling
  surname: Zheng
  fullname: Zheng, Chun-Ling
– sequence: 5
  givenname: Guowei
  surname: Wang
  fullname: Wang, Guowei
– sequence: 6
  givenname: Qiao
  surname: Sun
  fullname: Sun, Qiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38180073$$D View this record in MEDLINE/PubMed
BookMark eNpt0VtLwzAUB_AgE92mL74rBV-mUE2apEkfdV5BEMT3ksupdnTJbNqh397u4oTpUw7kdw6H8x-gnvMOEDoi-IJgml1a6jUmkgm7g_qECRFjTrPepk7wPhqEMMGYZCJle2ifSiIxFrSP_AsYcE2k7Fw5AyEqXRSgAtOUc4im3vn40pbmXVXGv4FTTeldpJyN4NNUbVigP9--iMajMDuLH5byp9be2XCAdgtVBThcv0P0enf7On6In57vH8dXT7GhVDRxahMpwKRaGpZwmRaJ1szizHKtCg7Kqowwq7lmgDVXJuUGlMYFzySTRNMhGq3Gzmr_0UJo8mkZDFSVcuDbkCcZkSTjqSAdPd2iE9_WrltuoYRICae0Uydr1eop2HxWl1NVf-U_l-zA-QqY2odQQ7EhBOeLmPIb-ny9jOmmw3gLm7JZHq-pVVn933K8aqmD2Yz-TZ5-A815nak
CitedBy_id crossref_primary_10_1002_asia_202400272
crossref_primary_10_1021_acs_orglett_4c01799
crossref_primary_10_1039_D4OB01974A
crossref_primary_10_1002_asia_202400124
crossref_primary_10_1039_D4QO00522H
crossref_primary_10_1039_D4QO01179A
crossref_primary_10_1039_D4NJ01989J
crossref_primary_10_1039_D4OB01865F
Cites_doi 10.1039/C5RA12995H
10.6023/cjoc201912011
10.1039/C9DT00473D
10.1021/acs.orglett.6b00764
10.1021/acs.orglett.0c02012
10.3184/174751918X15350179602459
10.1002/aoc.6482
10.1039/D3GC00889D
10.1039/C9OB00705A
10.1016/j.tetlet.2018.10.038
10.1021/cr100347k
10.1080/17415993.2019.1582654
10.1016/j.jorganchem.2015.09.040
10.1039/D1CC03760A
10.1021/acssuschemeng.2c03868
10.1021/acs.joc.9b00405
10.1039/c0ob00086h
10.1016/j.ccr.2018.05.015
10.1021/acs.chemrev.1c00084
10.1039/C4OB01992J
10.1021/acs.joc.3c00906
10.1021/jm401375q
10.1021/acs.chemrev.1c00836
10.1021/acs.joc.9b01632
10.1002/cssc.202002409
10.1002/ejoc.201501148
10.1002/ejoc.201700147
10.1039/D2CC04030A
10.1021/jo502402d
10.1039/D0QO00377H
10.1016/0040-4020(61)80037-9
10.1039/C5GC00403A
10.1002/adsc.201400929
10.1002/adsc.201300566
10.1021/jo1014849
10.1021/ol502439m
10.1039/C5CC01970B
10.1016/j.ultsonch.2017.06.007
10.1039/C8QO00840J
10.1021/acs.joc.6b01702
10.1039/C8QO00899J
10.3390/catal10111339
10.1080/17415993.2019.1683181
10.1039/C8QO00360B
10.1016/j.tetlet.2020.152368
10.1016/j.tet.2013.09.095
10.1002/adsc.201800090
10.1039/D2QO01534J
10.1039/D3GC02546B
10.1002/ajoc.202100751
10.1039/P19930003167
10.1021/acs.orglett.7b00996
10.1139/V09-043
10.6023/cjoc202206029
10.1039/C6RA02302A
10.1021/cr400441m
10.1002/adsc.201900035
10.1016/j.tetlet.2015.06.057
10.1039/C4CC10431E
10.1039/D2QO01699K
10.1021/acs.joc.5b00146
10.1002/ejoc.202000610
10.1021/om00050a059
10.1002/ejoc.202300290
10.1039/C9OB02044F
10.1246/bcsj.45.866
10.1039/c39820001183
10.1002/adsc.201400804
10.1002/asia.201901334
10.1021/jo001710q
10.1080/00397911.2011.569867
10.1021/jacs.2c02126
10.1021/acs.accounts.5b00047
10.1002/ejoc.201701293
10.1039/D3QO00933E
10.1002/cctc.201801548
10.1002/chem.201705404
10.1021/acs.orglett.6b03735
10.1016/j.drudis.2020.10.014
10.1021/ol201007e
10.1016/S0040-4039(00)96953-3
10.1021/acs.orglett.1c00829
10.1016/j.cclet.2022.02.019
10.1002/chem.201603092
10.1016/j.tet.2015.09.070
10.1080/15583724.2013.863209
10.1039/D2CS00553K
10.1039/b800473k
10.1039/C8QO00435H
10.1039/B818390B
10.1002/adsc.201801307
10.1016/j.tetlet.2011.02.077
10.1055/s-0033-1341277
10.1039/D0QO00640H
10.1021/jo501778h
10.1016/j.tetlet.2023.154341
10.1021/acs.joc.0c02683
10.1016/j.jorganchem.2010.05.022
10.1021/acs.joc.9b00311
10.1016/j.tetlet.2016.06.126
10.1080/17415993.2019.1596268
10.6023/cjoc201910020
10.1016/j.tetlet.2004.02.042
10.1039/C6OB02833K
10.1039/D1RA09060G
10.1248/cpb.17.419
10.1016/j.cclet.2008.09.053
10.1021/ol4036209
10.1021/acs.joc.7b02718
10.1002/ejoc.201700853
10.1002/slct.201701758
10.6023/cjoc202210015
10.1002/slct.202102042
10.1039/D0QO01226B
10.1039/c2dt12225a
10.1021/jacs.1c09635
10.1002/ajoc.201500192
10.1021/acs.orglett.3c01002
10.1002/ajoc.202200038
10.1002/adsc.202300434
10.1039/D1RA01035B
10.1016/j.tetlet.2022.153697
10.1016/j.tet.2018.02.014
10.1002/ejoc.202200752
10.1021/acs.chemrev.6b00517
10.1002/slct.202003650
10.1039/C6DT02167K
10.1021/acs.joc.6b02271
10.1002/ejoc.201801765
10.1039/C7OB03177G
10.1002/chem.201600800
10.1039/C7GC03576D
10.1002/chem.201304717
10.1039/D2OB00986B
10.1002/adsc.201801510
10.1002/ejoc.201700744
10.1002/ejoc.201801071
10.1021/acs.orglett.3c02004
10.1039/C7OB01662J
10.1021/cr9902749
10.1002/ajoc.202000318
10.1039/C9GC00007K
10.6023/cjoc202009030
10.1021/jo0401265
10.1021/ja953246q
10.1021/acs.orglett.1c00751
10.2174/1568026615666150915111741
10.1016/j.tet.2017.07.053
10.1021/acs.joc.8b00974
10.1021/acs.chemrev.6b00697
10.1039/C7CC03107F
10.1371/journal.pone.0048780
10.1016/j.tet.2018.05.084
10.1080/10426509608046352
10.1039/C7SC01162H
10.1039/C9QO01497G
10.1021/om00134a005
10.1021/cr5002386
10.1002/adsc.201601431
10.1039/D0OB02320E
10.1016/j.tetlet.2020.152062
10.1002/asia.201301500
10.1021/acs.joc.0c02078
10.1021/jo071209z
10.1021/jo972022i
10.1002/adsc.201900301
10.3390/molecules16010590
10.1016/j.tet.2015.06.077
10.1021/acs.accounts.7b00023
10.1021/jo0493727
10.1002/ajoc.202300252
10.1002/ejoc.201101245
10.1021/acs.orglett.8b03954
10.1039/C8CC09821B
10.1016/j.mencom.2019.05.032
10.1039/C7RA02350B
10.1039/C8OB02792G
10.2174/1570178615666180627111437
10.1039/C8NP00093J
10.6023/cjoc202303042
10.1021/acs.joc.9b01237
10.1016/j.cclet.2019.05.048
10.1016/j.biopha.2017.01.173
10.1021/acscatal.6b03236
10.1021/ol3028225
10.1039/C9OB01255A
10.2174/1385272821666170222110412
10.3762/bjoc.14.228
10.1002/anie.201411997
10.1002/adsc.201801138
10.3389/fchem.2022.1089860
10.1039/c1cc13633j
10.1039/C9GC03384J
10.1002/ajoc.202200226
10.2174/1385272826666220620153347
10.1039/D3QO01042B
10.1002/chem.201303730
10.1021/acssuschemeng.2c01006
10.1016/j.cbpa.2014.09.018
10.1002/cbic.201600582
10.1021/acs.joc.2c01567
10.1021/jo302480j
10.1016/j.jfluchem.2019.05.004
10.1039/C5OB02193F
10.1039/b900786e
10.1002/chem.202001414
10.1039/C6OB02823C
10.1039/c3ob41601a
10.1080/00304940709458600
10.1016/j.tet.2014.09.042
10.1016/j.ccr.2021.213885
10.1039/D0RA03086D
10.1021/cr068440h
10.1039/D2SC00765G
10.1016/S0040-4039(00)61445-4
10.1002/adsc.202300208
10.1016/j.tet.2012.08.086
10.1002/adsc.202300812
10.1021/acs.orglett.6b01420
10.1021/ja3092278
10.1002/ajoc.201600491
10.1039/D0RA10629A
10.1021/acs.joc.1c02502
10.1039/C9CC09001K
10.1039/D0GC00591F
10.1002/ejoc.202000162
10.1002/ejoc.202100568
10.1007/s41061-017-0169-9
10.3762/bjoc.13.58
10.1039/C6OB01856D
10.1002/adsc.201700949
10.1021/acs.joc.1c00898
10.1021/cr500235v
10.1039/C9NA00671K
10.1021/om061144a
10.1016/j.tetlet.2022.154041
10.1039/C7SC03891G
10.1021/acs.orglett.8b01168
10.1002/adsc.200390042
10.1016/j.tetlet.2017.06.003
10.1021/acs.joc.9b02963
10.1016/j.cclet.2021.09.068
10.6023/cjoc201702009
10.1039/C4CC03600J
10.1021/jo501793q
10.1021/acs.joc.8b00721
10.1021/acs.orglett.2c03066
10.1002/asia.201300636
10.1039/C9CC08784B
10.1021/acs.joc.0c00921
10.1039/D2RA04128F
10.2174/1570193X1104140926165906
10.1039/C9QO00631A
10.1039/D3OB01109G
10.1002/cjoc.201800164
10.1002/anie.201903511
10.1246/cl.1973.287
10.1080/10426507.2014.965820
10.1002/adsc.201600846
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
DOI 10.1039/d3ob01847d
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 681
ExternalDocumentID 38180073
10_1039_D3OB01847D
d3ob01847d
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
VH6
VQA
WH7
XSW
YNT
YZZ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c337t-6d287ec6b8c42586f2bb4d09d5baf5eada914db5b4e0b5ac65ceab0f598481b3
ISSN 1477-0520
1477-0539
IngestDate Fri Jul 11 10:02:36 EDT 2025
Mon Jun 30 11:15:08 EDT 2025
Mon Jul 21 06:02:42 EDT 2025
Tue Jul 01 01:52:33 EDT 2025
Thu Apr 24 22:54:39 EDT 2025
Tue Dec 17 20:58:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-6d287ec6b8c42586f2bb4d09d5baf5eada914db5b4e0b5ac65ceab0f598481b3
Notes Shao-Peng Wang was born in Guangxi Province (China) in 2000. In 2022, he received his Bachelor's degree from Nanjing Tech University. He has continued to pursue a Master's degree at the same university since then. His research mainly focuses on the electrochemical C-H amination reactions.
Chun-Ling Zheng was born in Hubei Province (China). She received her Master's degree in Textile Chemistry and Dyeing & Finishing Engineering from Soochow University in 2005. The same year, she began her Ph.D. studies at the lab of Professor Yukio Nagaosa at Fukui University, Japan, where she focused on the development of natural chemicals. In 2009, she began her independent career at Nanjing Tech University. Her research interest focuses on the fields of structural modification and application of natural organic compounds.
Yuan Xu completed his undergraduate and graduate studies at Soochow University in China, where he earned both a Bachelor's and Master's degree. He then pursued his Ph.D. Degree at Nanyang Technological University (NTU) in Singapore, specializing in the field of organic synthesis and antimicrobial drug development. After successfully completing his doctoral studies, he continued his research journey as a postdoctoral fellow at NTU. During this pivotal period, his work primarily focuses on carbohydrate synthesis and its practical applications in addressing challenges in the realms of medicine and biochemistry.
Guowei Wang was born in Sichuan Province (China). He obtained his Master's degree from Sichuan University in 2002. Then he began his independent career at Nanjing Tech University. Meanwhile, he began his Ph.D. studies of Applied Chemistry at the lab of Professor Jintang Wang at Nanjing Tech University, where he focused on the preparation and application of novel thiazole compounds. In recent five years, his research interest focuses on the preparation and application of ionic liquids and surface-active ionic liquids.
Qiao Sun received her Bachelor's degree from Sichuan University (2010) and Master's degree from the University of Chinese Academy of Sciences (2013) under the supervision of Prof. Sheng Jiang. In 2019, he obtained her Ph.D. degree in Organic Chemistry from NTU Singapore under the supervision of Prof. Naohiko Yoshikai. Then she spent two years in Shanghai STA Pharmaceutical as a senior researcher, working on the high-throughput screening and optimization of chemical processes. In 2023, she joined Nanjing Tech University as a research associate professor and her research interests include organic synthetic methodology, medical chemistry, and high throughput-screening.
Chang-Sheng Wang obtained his Bachelor's degree in 2012 and Master's degree (Joint Master's Program with SIOC in Prof. Qi-Long Shen's group) in 2015 from Nanjing Tech University under the supervision of Prof. Cheng Yao. In 2018, he obtained his Ph.D. degree from the University of Rennes 1 under the supervision of Prof. P. H. Dixneuf and Dr Jean-François Soulé supported by CSC Scholarship. After three years' Postdoctoral research in Prof. Naohiko Yoshikai's group at NTU Singapore, he started his independent career at Nanjing Tech University as a research professor. His research interests include organic synthetic methodology, bio-transformations and flow chemistry.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6410-0906
0000-0002-4970-0636
0009-0004-2497-1423
PMID 38180073
PQID 2917761533
PQPubID 2047497
PageCount 37
ParticipantIDs proquest_journals_2917761533
rsc_primary_d3ob01847d
proquest_miscellaneous_2918195671
pubmed_primary_38180073
crossref_citationtrail_10_1039_D3OB01847D
crossref_primary_10_1039_D3OB01847D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-24
PublicationDateYYYYMMDD 2024-01-24
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Otocka (D3OB01847D/cit8/1) 2017; 117
Wu (D3OB01847D/cit87/1) 2017; 8
Dong (D3OB01847D/cit48/1) 2020; 5
Ghorai (D3OB01847D/cit146/1) 2021; 57
Kisch (D3OB01847D/cit109/1) 2017; 50
Zhao (D3OB01847D/cit250/1) 2014; 11
Vats (D3OB01847D/cit76/1) 2018; 360
Bettanin (D3OB01847D/cit177/1) 2018; 74
Tamotsu (D3OB01847D/cit254/1) 1973; 2
Rampon (D3OB01847D/cit69/1) 2022; 20
Duan (D3OB01847D/cit263/1) 2022; 94
Saba (D3OB01847D/cit210/1) 2018; 16
Zhang (D3OB01847D/cit265/1) 2021; 23
Li (D3OB01847D/cit169/1) 2020; 56
Abedinifar (D3OB01847D/cit47/1) 2022; 36
Ni (D3OB01847D/cit12/1) 2015; 115
Lu (D3OB01847D/cit17/1) 2020; 41
Lee (D3OB01847D/cit42/1) 2014; 9
Chu (D3OB01847D/cit13/1) 2021; 121
Ranu (D3OB01847D/cit246/1) 2004; 69
Varun (D3OB01847D/cit185/1) 2014; 79
Singh (D3OB01847D/cit123/1) 2017; 2
Ge (D3OB01847D/cit50/1) 2022; 33
Mandal (D3OB01847D/cit124/1) 2017; 19
Zhang (D3OB01847D/cit206/1) 2012; 42
Hayashi (D3OB01847D/cit251/1) 1969; 17
Reddy (D3OB01847D/cit219/1) 2016; 57
Ma (D3OB01847D/cit68/1) 2020; 7
Ni (D3OB01847D/cit262/1) 2019; 361
Lu (D3OB01847D/cit52/1) 2023; 365
Wang (D3OB01847D/cit54/1) 2023; 10
Zhao (D3OB01847D/cit212/1) 2020; 22
Hu (D3OB01847D/cit261/1) 2019; 361
Qiu (D3OB01847D/cit113/1) 2014; 80
Luo (D3OB01847D/cit229/1) 2022; 144
Sundaravelu (D3OB01847D/cit23/1) 2021; 19
Qu (D3OB01847D/cit51/1) 2023; 25
Saravanan (D3OB01847D/cit202/1) 2014; 16
Beletskaya (D3OB01847D/cit25/1) 2022; 122
Stefani (D3OB01847D/cit92/1) 1991; 10
Zhang (D3OB01847D/cit60/1) 2020; 40
Zhang (D3OB01847D/cit204/1) 2010; 75
Liu (D3OB01847D/cit58/1) 2019; 361
Mamane (D3OB01847D/cit242/1) 2007; 72
Semwal (D3OB01847D/cit174/1) 2019; 84
Song (D3OB01847D/cit189/1) 2020; 56
Kausar (D3OB01847D/cit5/1) 2014; 54
Yin (D3OB01847D/cit191/1) 2023
Gao (D3OB01847D/cit235/1) 2016; 81
Liu (D3OB01847D/cit193/1) 2019; 17
Godoi (D3OB01847D/cit96/1) 2012; 68
Lee (D3OB01847D/cit83/1) 2020
Li (D3OB01847D/cit22/1) 2020; 7
Yang (D3OB01847D/cit238/1) 2018; 5
Tsukazaki (D3OB01847D/cit139/1) 1996; 118
Bhunia (D3OB01847D/cit86/1) 2018; 16
Xiao (D3OB01847D/cit225/1) 2019; 361
Zhang (D3OB01847D/cit131/1) 2015; 71
Lazzaris (D3OB01847D/cit233/1) 2021
Liu (D3OB01847D/cit266/1) 2022; 13
Liu (D3OB01847D/cit194/1) 2023; 25
Petragnani (D3OB01847D/cit94/1) 1961; 12
Gu (D3OB01847D/cit162/1) 2023; 365
Wu (D3OB01847D/cit168/1) 2020; 22
Silva (D3OB01847D/cit209/1) 2017
Wu (D3OB01847D/cit237/1) 2022; 42
Zhao (D3OB01847D/cit125/1) 2018
Rahaman (D3OB01847D/cit153/1) 2017
Cheng (D3OB01847D/cit31/1) 2022; 26
Rafique (D3OB01847D/cit175/1) 2016; 22
Han (D3OB01847D/cit195/1) 2009; 7
Dunbar (D3OB01847D/cit40/1) 2017; 117
Qi (D3OB01847D/cit158/1) 2022; 87
Li (D3OB01847D/cit165/1) 2018; 20
Yang (D3OB01847D/cit136/1) 2023; 25
Sahu (D3OB01847D/cit201/1) 2021; 86
Liu (D3OB01847D/cit163/1) 2019; 17
Wladislaw (D3OB01847D/cit249/1) 2007; 39
Liu (D3OB01847D/cit154/1) 2018; 36
Qian (D3OB01847D/cit264/1) 2023; 116
Hamzehloo (D3OB01847D/cit57/1) 2019; 224
Jiang (D3OB01847D/cit144/1) 2019; 84
Thurow (D3OB01847D/cit155/1) 2018; 5
Lv (D3OB01847D/cit198/1) 2019; 55
Vásquez-Céspedes (D3OB01847D/cit187/1) 2015; 54
Lai (D3OB01847D/cit244/1) 2018; 5
Yaubasarova (D3OB01847D/cit147/1) 2019; 29
Johnson (D3OB01847D/cit192/1) 2018; 9
Zhao (D3OB01847D/cit222/1) 2016; 14
Abdtawfeeq (D3OB01847D/cit49/1) 2022; 12
Iwasaki (D3OB01847D/cit114/1) 2014; 16
Penteado (D3OB01847D/cit167/1) 2020
Kundu (D3OB01847D/cit30/1) 2021; 11
Feng (D3OB01847D/cit3/1) 2016; 16
Xu (D3OB01847D/cit145/1) 2019
Xu (D3OB01847D/cit64/1) 2022; 10
Liu (D3OB01847D/cit171/1) 2023; 10
Pimentel (D3OB01847D/cit104/1) 2012; 7
Lin (D3OB01847D/cit226/1) 2016; 358
Gao (D3OB01847D/cit120/1) 2016; 81
Redon (D3OB01847D/cit176/1) 2017; 58
Das (D3OB01847D/cit227/1) 2018; 14
Ding (D3OB01847D/cit178/1) 2018; 10
Zhang (D3OB01847D/cit230/1) 2023; 25
Schumacher (D3OB01847D/cit108/1) 2014; 22
Saroha (D3OB01847D/cit29/1) 2021; 6
Gandeepan (D3OB01847D/cit75/1) 2017; 53
Chen (D3OB01847D/cit44/1) 2019; 40
Jha (D3OB01847D/cit81/1) 2022; 24
Yang (D3OB01847D/cit118/1) 2015; 51
Iwasaki (D3OB01847D/cit66/1) 2016; 45
Wang (D3OB01847D/cit143/1) 2021; 41
Tian (D3OB01847D/cit184/1) 2014; 50
Kanchana (D3OB01847D/cit26/1) 2022; 11
Kathiravan (D3OB01847D/cit135/1) 2021; 23
Iwasaki (D3OB01847D/cit116/1) 2014; 20
Müller (D3OB01847D/cit119/1) 2016; 22
Penteado (D3OB01847D/cit172/1) 2020; 9
Trécourt (D3OB01847D/cit241/1) 1998; 63
Raghuvanshi (D3OB01847D/cit223/1) 2017; 7
Ali (D3OB01847D/cit107/1) 2021; 26
Sahoo (D3OB01847D/cit36/1) 2023; 12
Liao (D3OB01847D/cit159/1) 2017; 21
Kang (D3OB01847D/cit127/1) 2019; 58
Truong (D3OB01847D/cit157/1) 2022; 11
Xu (D3OB01847D/cit82/1) 2023
Chen (D3OB01847D/cit188/1) 2018; 42
Ilardi (D3OB01847D/cit2/1) 2014; 57
Wu (D3OB01847D/cit128/1) 2020; 61
Metallinos (D3OB01847D/cit140/1) 2003; 345
Chauhan (D3OB01847D/cit90/1) 2008
Beletskaya (D3OB01847D/cit21/1) 2011; 111
Wang (D3OB01847D/cit1/1) 2020; 37
Engman (D3OB01847D/cit93/1) 1986; 5
Nishino (D3OB01847D/cit65/1) 2019
Liu (D3OB01847D/cit138/1) 2017; 6
Parumala (D3OB01847D/cit215/1) 2015; 17
Prasad (D3OB01847D/cit151/1) 2013; 11
Zhang (D3OB01847D/cit28/1) 2020; 26
Villadsen (D3OB01847D/cit110/1) 2017; 18
Sattar (D3OB01847D/cit84/1) 2019; 84
Mukaiyama (D3OB01847D/cit252/1) 1970; 11
Mellah (D3OB01847D/cit7/1) 2007; 107
Yan (D3OB01847D/cit115/1) 2014; 70
Bieber (D3OB01847D/cit100/1) 2004; 45
Kumar (D3OB01847D/cit142/1) 2019; 16
Liu (D3OB01847D/cit220/1) 2023; 88
Dong (D3OB01847D/cit70/1) 2017
Sena-Lopes (D3OB01847D/cit106/1) 2017; 89
Yan (D3OB01847D/cit207/1) 2014; 12
Song (D3OB01847D/cit37/1) 2019
Gandeepan (D3OB01847D/cit74/1) 2017; 7
Ye (D3OB01847D/cit117/1) 2015; 51
Wladislaw (D3OB01847D/cit256/1) 1993
Chauhan (D3OB01847D/cit89/1) 2010; 695
Kumar (D3OB01847D/cit243/1) 2016; 14
Liu (D3OB01847D/cit71/1) 2017; 37
Huang (D3OB01847D/cit24/1) 2022; 51
Kosso (D3OB01847D/cit181/1) 2020; 85
Arisawa (D3OB01847D/cit183/1) 2011; 52
Qin (D3OB01847D/cit19/1) 2023; 43
Zou (D3OB01847D/cit259/1) 2013; 355
Zhao (D3OB01847D/cit186/1) 2015; 80
Feng (D3OB01847D/cit34/1) 2023; 365
Hassanpour (D3OB01847D/cit61/1) 2021; 11
Dénès (D3OB01847D/cit10/1) 2014; 114
Huang (D3OB01847D/cit216/1) 2016; 18
Yang (D3OB01847D/cit134/1) 2014; 20
Wang (D3OB01847D/cit211/1) 2016; 6
Xu (D3OB01847D/cit73/1) 2020; 31
Li (D3OB01847D/cit6/1) 2020; 7
Gaggero (D3OB01847D/cit111/1) 2017; 15
Arora (D3OB01847D/cit9/1) 2021; 438
Qiao (D3OB01847D/cit45/1) 2017; 15
Ivanova (D3OB01847D/cit15/1) 2018; 370
Rampon (D3OB01847D/cit97/1) 2011
Yang (D3OB01847D/cit33/1) 2022; 33
Dong (D3OB01847D/cit55/1) 2023; 10
Eichman (D3OB01847D/cit41/1) 2011; 16
Batista (D3OB01847D/cit18/1) 2021; 8
Rathore (D3OB01847D/cit80/1) 2019; 21
Zhu (D3OB01847D/cit166/1) 2020; 61
Chen (D3OB01847D/cit228/1) 2018; 74
Sattar (D3OB01847D/cit141/1) 2019; 14
Li (D3OB01847D/cit190/1) 2022; 104
Fonseca (D3OB01847D/cit231/1) 2017; 39
Chen (D3OB01847D/cit149/1) 2022; 87
Deng (D3OB01847D/cit126/1) 2019; 17
Xu (D3OB01847D/cit72/1) 2020; 40
Godoi (D3OB01847D/cit95/1) 2014; 70
Devi (D3OB01847D/cit257/1) 2016
Liu (D3OB01847D/cit122/1) 2017
Zou (D3OB01847D/cit260/1) 2018; 5
Majedi (D3OB01847D/cit27/1) 2020; 1
Chauhan (D3OB01847D/cit38/1) 2014; 114
Tran (D3OB01847D/cit112/1) 2012; 134
Peppe (D3OB01847D/cit247/1) 2009; 87
Cohen (D3OB01847D/cit101/1) 2004; 69
Prasad (D3OB01847D/cit79/1) 2017; 19
Xu (D3OB01847D/cit213/1) 2017; 15
Wang (D3OB01847D/cit150/1) 2022; 10
Tian (D3OB01847D/cit203/1) 2015; 357
Zhang (D3OB01847D/cit152/1) 2015; 71
Liu (D3OB01847D/cit43/1) 2017; 13
Srivastava (D3OB01847D/cit32/1) 2020; 10
Karmaker (D3OB01847D/cit63/1) 2022; 12
Jin (D3OB01847D/cit133/1) 2016; 812
Karmaker (D3OB01847D/cit62/1) 2022; 11
Leen (D3OB01847D/cit197/1) 2012; 14
Ma (D3OB01847D/cit224/1) 2018; 59
Hosseinian (D3OB01847D/cit16/1) 2019; 40
Sahu (D3OB01847D/cit200/1) 2020; 2
Li (D3OB01847D/cit121/1) 2017; 359
Ba (D3OB01847D/cit105/1) 2010; 8
Zhu (D3OB01847D/cit173/1) 2017; 359
Wu (D3OB01847D/cit164/1) 2011; 47
Chouhan (D3OB01847D/cit170/1) 2023; 21
Prasad (D3OB01847D/cit78/1) 2013; 78
Mandal (D3OB01847D/cit137/1) 2016; 18
Liang (D3OB01847D/cit67/1) 2018; 69
Sattar (D3OB01847D/cit85/1) 2018; 83
Braga (D3OB01847D/cit102/1) 1993; 34
Kang (D3OB01847D/cit221/1) 2014; 79
Zhou (D3OB01847D/cit239/1) 2018; 83
Fron (D3OB01847D/cit196/1) 2009; 33
Ricordi (D3OB01847D/cit208/1) 2015; 357
Zhang (D3OB01847D/cit46/1) 2020; 10
Devendar (D3OB01847D/cit4/1) 2017; 375
Chauhan (D3OB01847D/cit91/1) 2007; 26
Rafique (D3OB01847D/cit179/1) 2018; 24
Song (D3OB01847D/cit161/1) 2020; 85
Yan (D3OB01847D/cit214/1) 2015; 56
Kumamoto (D3OB01847D/cit253/1) 1972; 45
Han (D3OB01847D/cit180/1) 2019; 6
Ma (D3OB01847D/cit53/1) 2023; 43
Li (D3OB01847D/cit99/1) 2008; 19
Huang (D3OB01847D/cit217/1) 2018; 83
Matsugi (D3OB01847D/cit182/1) 2001; 66
Tazaki (D3OB01847D/cit240/1) 1996; 112
Singla (D3OB01847D/cit35/1) 2023; 10
Mokhtari (D3OB01847D/cit234/1) 2018; 20
Lv (D3OB01847D/cit39/1) 2022; 10
Khan (D3OB01847D/cit88/1) 2015; 190
Movassagh (D3OB01847D/cit98/1) 2014
Kondo (D3OB01847D/cit20/1) 2000; 100
Sinha (D3OB01847D/cit77/1) 2022; 144
Kajiwara (D3OB01847D/cit129/1) 2020; 22
Han (D3OB01847D/cit232/1) 2021; 86
Shao (D3OB01847D/cit11/1) 2015; 48
Fang (D3OB01847D/cit205/1) 2011
Tiekink (D3OB01847D/cit103/1) 2012; 41
Shibatomi (D3OB01847D/cit248/1) 2011; 13
Margalef (D3OB01847D/cit245/1) 2021; 14
Grossert (D3OB01847D/cit255/1) 1982; 20
Zhao (D3OB01847D/cit236/1) 2021; 86
Benchawan (D3OB01847D/cit156/1) 2022
Liu (D3OB01847D/cit14/1) 2013; 8
Chen (D3OB01847D/cit160/1) 2018; 42
Choudhuri (D3OB01847D/cit218/1) 2019; 361
Peglow (D3OB01847D/cit148/1) 2019; 84
Ma (D3OB01847D/cit199/1) 2019; 21
Rampon (D3OB01847D/cit59/1) 2019; 48
Prasad (D3OB01847D/cit56/1) 2015; 5
Duan (D3OB01847D/cit130/1) 2022; 58
Jin (D3OB01847D/cit132/1) 2015; 4
Zhao (D3OB01847D/cit258/1) 2017; 73
References_xml – issn: 2018
  issue: 69
  end-page: 135-207
  publication-title: Advances in Organometallic Chemistry
  doi: Liang Shaaban Liu Hofman Manolikakes
– volume: 5
  start-page: 75881
  year: 2015
  ident: D3OB01847D/cit56/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12995H
– volume: 40
  start-page: 1117
  year: 2020
  ident: D3OB01847D/cit60/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc201912011
– volume: 48
  start-page: 9851
  year: 2019
  ident: D3OB01847D/cit59/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT00473D
– volume: 18
  start-page: 2351
  year: 2016
  ident: D3OB01847D/cit216/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b00764
– volume: 22
  start-page: 5915
  year: 2020
  ident: D3OB01847D/cit129/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02012
– start-page: 1099
  year: 2011
  ident: D3OB01847D/cit205/1
  publication-title: Synthesis
– volume: 42
  start-page: 456
  year: 2018
  ident: D3OB01847D/cit160/1
  publication-title: J. Chem. Res.
  doi: 10.3184/174751918X15350179602459
– volume: 36
  start-page: e6482
  year: 2022
  ident: D3OB01847D/cit47/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.6482
– volume: 25
  start-page: 3847
  year: 2023
  ident: D3OB01847D/cit194/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC00889D
– volume: 17
  start-page: 5009
  year: 2019
  ident: D3OB01847D/cit193/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00705A
– volume: 59
  start-page: 4255
  year: 2018
  ident: D3OB01847D/cit224/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2018.10.038
– volume: 111
  start-page: 1596
  year: 2011
  ident: D3OB01847D/cit21/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100347k
– volume: 40
  start-page: 289
  year: 2019
  ident: D3OB01847D/cit16/1
  publication-title: J. Sulphur Chem.
  doi: 10.1080/17415993.2019.1582654
– volume: 812
  start-page: 66
  year: 2016
  ident: D3OB01847D/cit133/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2015.09.040
– volume: 57
  start-page: 10544
  year: 2021
  ident: D3OB01847D/cit146/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC03760A
– volume: 10
  start-page: 13901
  year: 2022
  ident: D3OB01847D/cit39/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c03868
– volume: 84
  start-page: 5471
  year: 2019
  ident: D3OB01847D/cit148/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b00405
– volume: 8
  start-page: 4203
  year: 2010
  ident: D3OB01847D/cit105/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c0ob00086h
– volume: 370
  start-page: 55
  year: 2018
  ident: D3OB01847D/cit15/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.05.015
– volume: 121
  start-page: 12548
  year: 2021
  ident: D3OB01847D/cit13/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00084
– volume: 12
  start-page: 9557
  year: 2014
  ident: D3OB01847D/cit207/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB01992J
– volume: 88
  start-page: 10058
  year: 2023
  ident: D3OB01847D/cit220/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.3c00906
– volume: 57
  start-page: 2832
  year: 2014
  ident: D3OB01847D/cit2/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm401375q
– volume: 122
  start-page: 16110
  year: 2022
  ident: D3OB01847D/cit25/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00836
– volume: 84
  start-page: 14151
  year: 2019
  ident: D3OB01847D/cit174/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b01632
– volume: 14
  start-page: 808
  year: 2021
  ident: D3OB01847D/cit245/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002409
– start-page: 384
  year: 2016
  ident: D3OB01847D/cit257/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201501148
– start-page: 2280
  year: 2017
  ident: D3OB01847D/cit122/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201700147
– volume: 58
  start-page: 11555
  year: 2022
  ident: D3OB01847D/cit130/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC04030A
– volume: 80
  start-page: 367
  year: 2014
  ident: D3OB01847D/cit113/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo502402d
– volume: 7
  start-page: 1395
  year: 2020
  ident: D3OB01847D/cit22/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00377H
– volume: 12
  start-page: 219
  year: 1961
  ident: D3OB01847D/cit94/1
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(61)80037-9
– volume: 17
  start-page: 4068
  year: 2015
  ident: D3OB01847D/cit215/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC00403A
– volume: 357
  start-page: 481
  year: 2015
  ident: D3OB01847D/cit203/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201400929
– volume: 355
  start-page: 2558
  year: 2013
  ident: D3OB01847D/cit259/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201300566
– volume: 69
  start-page: 135
  volume-title: Advances in Organometallic Chemistry
  year: 2018
  ident: D3OB01847D/cit67/1
– volume: 75
  start-page: 6732
  year: 2010
  ident: D3OB01847D/cit204/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo1014849
– volume: 16
  start-page: 4920
  year: 2014
  ident: D3OB01847D/cit114/1
  publication-title: Org. Lett.
  doi: 10.1021/ol502439m
– volume: 51
  start-page: 7863
  year: 2015
  ident: D3OB01847D/cit117/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01970B
– volume: 39
  start-page: 827
  year: 2017
  ident: D3OB01847D/cit231/1
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.06.007
– start-page: 545
  year: 2019
  ident: D3OB01847D/cit145/1
  publication-title: Synthesis
– volume: 5
  start-page: 2986
  year: 2018
  ident: D3OB01847D/cit244/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C8QO00840J
– volume: 81
  start-page: 9122
  year: 2016
  ident: D3OB01847D/cit120/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b01702
– volume: 5
  start-page: 2974
  year: 2018
  ident: D3OB01847D/cit238/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C8QO00899J
– volume: 10
  start-page: 1339
  year: 2020
  ident: D3OB01847D/cit46/1
  publication-title: Catalysts
  doi: 10.3390/catal10111339
– volume: 41
  start-page: 210
  year: 2020
  ident: D3OB01847D/cit17/1
  publication-title: J. Sulphur Chem.
  doi: 10.1080/17415993.2019.1683181
– volume: 5
  start-page: 1983
  year: 2018
  ident: D3OB01847D/cit155/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C8QO00360B
– volume: 61
  start-page: 152368
  year: 2020
  ident: D3OB01847D/cit166/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2020.152368
– volume: 1
  start-page: 25
  year: 2020
  ident: D3OB01847D/cit27/1
  publication-title: J. Chem. Lett.
– volume: 70
  start-page: 3349
  year: 2014
  ident: D3OB01847D/cit95/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.09.095
– volume: 360
  start-page: 2291
  year: 2018
  ident: D3OB01847D/cit76/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201800090
– volume: 10
  start-page: 237
  year: 2023
  ident: D3OB01847D/cit35/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D2QO01534J
– volume: 25
  start-page: 7485
  year: 2023
  ident: D3OB01847D/cit51/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC02546B
– volume: 11
  start-page: e202100751
  year: 2022
  ident: D3OB01847D/cit157/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202100751
– start-page: 3167
  year: 1993
  ident: D3OB01847D/cit256/1
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/P19930003167
– volume: 19
  start-page: 2430
  year: 2017
  ident: D3OB01847D/cit124/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b00996
– volume: 87
  start-page: 678
  year: 2009
  ident: D3OB01847D/cit247/1
  publication-title: Can. J. Chem.
  doi: 10.1139/V09-043
– volume: 42
  start-page: 3721
  year: 2022
  ident: D3OB01847D/cit237/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202206029
– volume: 6
  start-page: 54377
  year: 2016
  ident: D3OB01847D/cit211/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA02302A
– volume: 114
  start-page: 2587
  year: 2014
  ident: D3OB01847D/cit10/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr400441m
– volume: 361
  start-page: 2004
  year: 2019
  ident: D3OB01847D/cit262/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900035
– volume: 56
  start-page: 4792
  year: 2015
  ident: D3OB01847D/cit214/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.06.057
– volume: 51
  start-page: 3582
  year: 2015
  ident: D3OB01847D/cit118/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10431E
– volume: 42
  start-page: 456
  year: 2018
  ident: D3OB01847D/cit188/1
  publication-title: J. Chem. Res.
  doi: 10.3184/174751918X15350179602459
– volume: 10
  start-page: 1322
  year: 2023
  ident: D3OB01847D/cit55/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D2QO01699K
– volume: 80
  start-page: 2918
  year: 2015
  ident: D3OB01847D/cit186/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00146
– start-page: 4886
  year: 2020
  ident: D3OB01847D/cit83/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202000610
– volume: 10
  start-page: 1178
  year: 1991
  ident: D3OB01847D/cit92/1
  publication-title: Organometallics
  doi: 10.1021/om00050a059
– start-page: e202300290
  year: 2023
  ident: D3OB01847D/cit191/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202300290
– volume: 17
  start-page: 10073
  year: 2019
  ident: D3OB01847D/cit163/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB02044F
– volume: 45
  start-page: 866
  year: 1972
  ident: D3OB01847D/cit253/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.45.866
– volume: 20
  start-page: 1183
  year: 1982
  ident: D3OB01847D/cit255/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39820001183
– volume: 357
  start-page: 933
  year: 2015
  ident: D3OB01847D/cit208/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201400804
– volume: 14
  start-page: 4807
  year: 2019
  ident: D3OB01847D/cit141/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201901334
– volume: 66
  start-page: 2434
  year: 2001
  ident: D3OB01847D/cit182/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo001710q
– volume: 42
  start-page: 2844
  year: 2012
  ident: D3OB01847D/cit206/1
  publication-title: Synth. Commun.
  doi: 10.1080/00397911.2011.569867
– volume: 144
  start-page: 12032
  year: 2022
  ident: D3OB01847D/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02126
– volume: 48
  start-page: 1227
  year: 2015
  ident: D3OB01847D/cit11/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00047
– start-page: 6327
  year: 2017
  ident: D3OB01847D/cit153/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201701293
– volume: 10
  start-page: 4972
  year: 2023
  ident: D3OB01847D/cit54/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D3QO00933E
– volume: 10
  start-page: 5397
  year: 2018
  ident: D3OB01847D/cit178/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801548
– start-page: 1149
  year: 2019
  ident: D3OB01847D/cit37/1
  publication-title: Synlett
– volume: 24
  start-page: 4173
  year: 2018
  ident: D3OB01847D/cit179/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201705404
– volume: 19
  start-page: 774
  year: 2017
  ident: D3OB01847D/cit79/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b03735
– volume: 26
  start-page: 256
  year: 2021
  ident: D3OB01847D/cit107/1
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2020.10.014
– volume: 13
  start-page: 2944
  year: 2011
  ident: D3OB01847D/cit248/1
  publication-title: Org. Lett.
  doi: 10.1021/ol201007e
– volume: 11
  start-page: 5115
  year: 1970
  ident: D3OB01847D/cit252/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)96953-3
– volume: 23
  start-page: 3331
  year: 2021
  ident: D3OB01847D/cit135/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c00829
– volume: 33
  start-page: 4732
  year: 2022
  ident: D3OB01847D/cit50/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.02.019
– volume: 22
  start-page: 14151
  year: 2016
  ident: D3OB01847D/cit119/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201603092
– volume: 71
  start-page: 8885
  year: 2015
  ident: D3OB01847D/cit152/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2015.09.070
– volume: 54
  start-page: 185
  year: 2014
  ident: D3OB01847D/cit5/1
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2013.863209
– volume: 51
  start-page: 8351
  year: 2022
  ident: D3OB01847D/cit24/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00553K
– start-page: 4023
  year: 2008
  ident: D3OB01847D/cit90/1
  publication-title: Dalton Trans.
  doi: 10.1039/b800473k
– volume: 5
  start-page: 2317
  year: 2018
  ident: D3OB01847D/cit260/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C8QO00435H
– volume: 7
  start-page: 34
  year: 2009
  ident: D3OB01847D/cit195/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B818390B
– volume: 361
  start-page: 1710
  year: 2019
  ident: D3OB01847D/cit58/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801307
– volume: 52
  start-page: 2344
  year: 2011
  ident: D3OB01847D/cit183/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2011.02.077
– start-page: 1385
  year: 2014
  ident: D3OB01847D/cit98/1
  publication-title: Synlett
  doi: 10.1055/s-0033-1341277
– volume: 7
  start-page: 2815
  year: 2020
  ident: D3OB01847D/cit6/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00640H
– volume: 79
  start-page: 10605
  year: 2014
  ident: D3OB01847D/cit221/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo501778h
– volume: 116
  start-page: 154341
  year: 2023
  ident: D3OB01847D/cit264/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2023.154341
– volume: 86
  start-page: 3324
  year: 2021
  ident: D3OB01847D/cit201/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c02683
– start-page: 124
  year: 2023
  ident: D3OB01847D/cit82/1
  publication-title: Synlett
– volume: 695
  start-page: 2118
  year: 2010
  ident: D3OB01847D/cit89/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2010.05.022
– volume: 84
  start-page: 6669
  year: 2019
  ident: D3OB01847D/cit84/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b00311
– volume: 57
  start-page: 3622
  year: 2016
  ident: D3OB01847D/cit219/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2016.06.126
– volume: 40
  start-page: 451
  year: 2019
  ident: D3OB01847D/cit44/1
  publication-title: J. Sulphur Chem.
  doi: 10.1080/17415993.2019.1596268
– volume: 40
  start-page: 886
  year: 2020
  ident: D3OB01847D/cit72/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc201910020
– volume: 45
  start-page: 2735
  year: 2004
  ident: D3OB01847D/cit100/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2004.02.042
– volume: 15
  start-page: 1942
  year: 2017
  ident: D3OB01847D/cit45/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB02833K
– volume: 12
  start-page: 6214
  year: 2022
  ident: D3OB01847D/cit63/1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA09060G
– volume: 17
  start-page: 419
  year: 1969
  ident: D3OB01847D/cit251/1
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.17.419
– volume: 19
  start-page: 1401
  year: 2008
  ident: D3OB01847D/cit99/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2008.09.053
– volume: 16
  start-page: 848
  year: 2014
  ident: D3OB01847D/cit202/1
  publication-title: Org. Lett.
  doi: 10.1021/ol4036209
– volume: 83
  start-page: 7331
  year: 2018
  ident: D3OB01847D/cit217/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b02718
– start-page: 6576
  year: 2017
  ident: D3OB01847D/cit70/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201700853
– volume: 2
  start-page: 9227
  year: 2017
  ident: D3OB01847D/cit123/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201701758
– volume: 43
  start-page: 2040
  year: 2023
  ident: D3OB01847D/cit53/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202210015
– volume: 6
  start-page: 13077
  year: 2021
  ident: D3OB01847D/cit29/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202102042
– volume: 8
  start-page: 326
  year: 2021
  ident: D3OB01847D/cit18/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO01226B
– volume: 41
  start-page: 6390
  year: 2012
  ident: D3OB01847D/cit103/1
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt12225a
– volume: 144
  start-page: 2943
  year: 2022
  ident: D3OB01847D/cit229/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09635
– volume: 4
  start-page: 875
  year: 2015
  ident: D3OB01847D/cit132/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201500192
– volume: 25
  start-page: 3445
  year: 2023
  ident: D3OB01847D/cit230/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.3c01002
– volume: 11
  start-page: e202200038
  year: 2022
  ident: D3OB01847D/cit26/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202200038
– volume: 365
  start-page: 2310
  year: 2023
  ident: D3OB01847D/cit52/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202300434
– volume: 11
  start-page: 22305
  year: 2021
  ident: D3OB01847D/cit61/1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA01035B
– volume: 94
  start-page: 153697
  year: 2022
  ident: D3OB01847D/cit263/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2022.153697
– volume: 74
  start-page: 1513
  year: 2018
  ident: D3OB01847D/cit228/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2018.02.014
– start-page: e202200752
  year: 2022
  ident: D3OB01847D/cit156/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202200752
– volume: 117
  start-page: 4147
  year: 2017
  ident: D3OB01847D/cit8/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00517
– volume: 5
  start-page: 13103
  year: 2020
  ident: D3OB01847D/cit48/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202003650
– volume: 45
  start-page: 15278
  year: 2016
  ident: D3OB01847D/cit66/1
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT02167K
– volume: 81
  start-page: 11297
  year: 2016
  ident: D3OB01847D/cit235/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b02271
– start-page: 1588
  year: 2019
  ident: D3OB01847D/cit65/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201801765
– volume: 16
  start-page: 880
  year: 2018
  ident: D3OB01847D/cit210/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C7OB03177G
– volume: 22
  start-page: 11854
  year: 2016
  ident: D3OB01847D/cit175/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201600800
– volume: 20
  start-page: 1499
  year: 2018
  ident: D3OB01847D/cit234/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC03576D
– volume: 20
  start-page: 2459
  year: 2014
  ident: D3OB01847D/cit116/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201304717
– volume: 20
  start-page: 6072
  year: 2022
  ident: D3OB01847D/cit69/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D2OB00986B
– volume: 361
  start-page: 1092
  year: 2019
  ident: D3OB01847D/cit218/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801510
– start-page: 4740
  year: 2017
  ident: D3OB01847D/cit209/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201700744
– start-page: 6167
  year: 2018
  ident: D3OB01847D/cit125/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201801071
– volume: 25
  start-page: 5779
  year: 2023
  ident: D3OB01847D/cit136/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.3c02004
– volume: 15
  start-page: 6867
  year: 2017
  ident: D3OB01847D/cit111/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C7OB01662J
– volume: 100
  start-page: 3205
  year: 2000
  ident: D3OB01847D/cit20/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9902749
– volume: 9
  start-page: 1631
  year: 2020
  ident: D3OB01847D/cit172/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202000318
– volume: 21
  start-page: 2670
  year: 2019
  ident: D3OB01847D/cit80/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC00007K
– volume: 41
  start-page: 1098
  year: 2021
  ident: D3OB01847D/cit143/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202009030
– volume: 69
  start-page: 4265
  year: 2004
  ident: D3OB01847D/cit101/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0401265
– volume: 118
  start-page: 685
  year: 1996
  ident: D3OB01847D/cit139/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja953246q
– volume: 23
  start-page: 3076
  year: 2021
  ident: D3OB01847D/cit265/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c00751
– volume: 16
  start-page: 1200
  year: 2016
  ident: D3OB01847D/cit3/1
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150915111741
– volume: 73
  start-page: 5444
  year: 2017
  ident: D3OB01847D/cit258/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2017.07.053
– volume: 83
  start-page: 8241
  year: 2018
  ident: D3OB01847D/cit85/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b00974
– volume: 117
  start-page: 5521
  year: 2017
  ident: D3OB01847D/cit40/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00697
– volume: 53
  start-page: 5906
  year: 2017
  ident: D3OB01847D/cit75/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03107F
– volume: 7
  start-page: e48780
  year: 2012
  ident: D3OB01847D/cit104/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048780
– volume: 74
  start-page: 3971
  year: 2018
  ident: D3OB01847D/cit177/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2018.05.084
– volume: 112
  start-page: 101
  year: 1996
  ident: D3OB01847D/cit240/1
  publication-title: Phosphorus, Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426509608046352
– volume: 8
  start-page: 4527
  year: 2017
  ident: D3OB01847D/cit87/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01162H
– volume: 7
  start-page: 1022
  year: 2020
  ident: D3OB01847D/cit68/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C9QO01497G
– volume: 5
  start-page: 427
  year: 1986
  ident: D3OB01847D/cit93/1
  publication-title: Organometallics
  doi: 10.1021/om00134a005
– volume: 115
  start-page: 765
  year: 2015
  ident: D3OB01847D/cit12/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr5002386
– volume: 359
  start-page: 2215
  year: 2017
  ident: D3OB01847D/cit173/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201601431
– volume: 19
  start-page: 1459
  year: 2021
  ident: D3OB01847D/cit23/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB02320E
– volume: 61
  start-page: 152062
  year: 2020
  ident: D3OB01847D/cit128/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2020.152062
– volume: 9
  start-page: 706
  year: 2014
  ident: D3OB01847D/cit42/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201301500
– volume: 86
  start-page: 291
  year: 2021
  ident: D3OB01847D/cit236/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c02078
– volume: 72
  start-page: 7294
  year: 2007
  ident: D3OB01847D/cit242/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo071209z
– volume: 63
  start-page: 2892
  year: 1998
  ident: D3OB01847D/cit241/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo972022i
– volume: 361
  start-page: 3331
  year: 2019
  ident: D3OB01847D/cit225/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900301
– volume: 16
  start-page: 590
  year: 2011
  ident: D3OB01847D/cit41/1
  publication-title: Molecules
  doi: 10.3390/molecules16010590
– volume: 71
  start-page: 5458
  year: 2015
  ident: D3OB01847D/cit131/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2015.06.077
– volume: 50
  start-page: 1002
  year: 2017
  ident: D3OB01847D/cit109/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00023
– volume: 69
  start-page: 5793
  year: 2004
  ident: D3OB01847D/cit246/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0493727
– volume: 12
  start-page: e202300252
  year: 2023
  ident: D3OB01847D/cit36/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202300252
– start-page: 7066
  year: 2011
  ident: D3OB01847D/cit97/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201101245
– volume: 21
  start-page: 733
  year: 2019
  ident: D3OB01847D/cit199/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03954
– volume: 55
  start-page: 1639
  year: 2019
  ident: D3OB01847D/cit198/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09821B
– volume: 29
  start-page: 334
  year: 2019
  ident: D3OB01847D/cit147/1
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2019.05.032
– volume: 7
  start-page: 22860
  year: 2017
  ident: D3OB01847D/cit223/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02350B
– volume: 16
  start-page: 9243
  year: 2018
  ident: D3OB01847D/cit86/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB02792G
– volume: 16
  start-page: 110
  year: 2019
  ident: D3OB01847D/cit142/1
  publication-title: Lett. Org. Chem.
  doi: 10.2174/1570178615666180627111437
– volume: 37
  start-page: 246
  year: 2020
  ident: D3OB01847D/cit1/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C8NP00093J
– volume: 43
  start-page: 3761
  year: 2023
  ident: D3OB01847D/cit19/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202303042
– volume: 84
  start-page: 10490
  year: 2019
  ident: D3OB01847D/cit144/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b01237
– volume: 31
  start-page: 49
  year: 2020
  ident: D3OB01847D/cit73/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.05.048
– volume: 89
  start-page: 284
  year: 2017
  ident: D3OB01847D/cit106/1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.01.173
– volume: 7
  start-page: 1030
  year: 2017
  ident: D3OB01847D/cit74/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03236
– volume: 14
  start-page: 6150
  year: 2012
  ident: D3OB01847D/cit197/1
  publication-title: Org. Lett.
  doi: 10.1021/ol3028225
– volume: 17
  start-page: 7055
  year: 2019
  ident: D3OB01847D/cit126/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01255A
– volume: 21
  start-page: 2509
  year: 2017
  ident: D3OB01847D/cit159/1
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272821666170222110412
– volume: 14
  start-page: 2520
  year: 2018
  ident: D3OB01847D/cit227/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.14.228
– volume: 54
  start-page: 5772
  year: 2015
  ident: D3OB01847D/cit187/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411997
– volume: 361
  start-page: 49
  year: 2019
  ident: D3OB01847D/cit261/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801138
– volume: 10
  start-page: 1089860
  year: 2022
  ident: D3OB01847D/cit150/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.1089860
– volume: 47
  start-page: 9188
  year: 2011
  ident: D3OB01847D/cit164/1
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13633j
– volume: 22
  start-page: 427
  year: 2020
  ident: D3OB01847D/cit212/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC03384J
– volume: 11
  start-page: e202200226
  year: 2022
  ident: D3OB01847D/cit62/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202200226
– volume: 26
  start-page: 1935
  year: 2022
  ident: D3OB01847D/cit31/1
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272826666220620153347
– volume: 10
  start-page: 5198
  year: 2023
  ident: D3OB01847D/cit171/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D3QO01042B
– volume: 20
  start-page: 416
  year: 2014
  ident: D3OB01847D/cit134/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201303730
– volume: 10
  start-page: 6889
  year: 2022
  ident: D3OB01847D/cit64/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c01006
– volume: 22
  start-page: 62
  year: 2014
  ident: D3OB01847D/cit108/1
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.09.018
– volume: 18
  start-page: 574
  year: 2017
  ident: D3OB01847D/cit110/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201600582
– volume: 87
  start-page: 16175
  year: 2022
  ident: D3OB01847D/cit149/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.2c01567
– volume: 78
  start-page: 1434
  year: 2013
  ident: D3OB01847D/cit78/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo302480j
– volume: 224
  start-page: 52
  year: 2019
  ident: D3OB01847D/cit57/1
  publication-title: J. Fluor. Chem.
  doi: 10.1016/j.jfluchem.2019.05.004
– volume: 14
  start-page: 1131
  year: 2016
  ident: D3OB01847D/cit222/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB02193F
– volume: 33
  start-page: 1490
  year: 2009
  ident: D3OB01847D/cit196/1
  publication-title: New J. Chem.
  doi: 10.1039/b900786e
– volume: 26
  start-page: 17289
  year: 2020
  ident: D3OB01847D/cit28/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202001414
– volume: 15
  start-page: 2804
  year: 2017
  ident: D3OB01847D/cit213/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB02823C
– volume: 11
  start-page: 8036
  year: 2013
  ident: D3OB01847D/cit151/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c3ob41601a
– volume: 39
  start-page: 447
  year: 2007
  ident: D3OB01847D/cit249/1
  publication-title: Org. Prep. Proced. Int.
  doi: 10.1080/00304940709458600
– volume: 70
  start-page: 8730
  year: 2014
  ident: D3OB01847D/cit115/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2014.09.042
– volume: 438
  start-page: 213885
  year: 2021
  ident: D3OB01847D/cit9/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213885
– volume: 10
  start-page: 20046
  year: 2020
  ident: D3OB01847D/cit32/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03086D
– volume: 107
  start-page: 5133
  year: 2007
  ident: D3OB01847D/cit7/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr068440h
– volume: 13
  start-page: 7886
  year: 2022
  ident: D3OB01847D/cit266/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC00765G
– volume: 34
  start-page: 8041
  year: 1993
  ident: D3OB01847D/cit102/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)61445-4
– volume: 365
  start-page: 990
  year: 2023
  ident: D3OB01847D/cit162/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202300208
– volume: 68
  start-page: 10426
  year: 2012
  ident: D3OB01847D/cit96/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2012.08.086
– volume: 365
  start-page: 3413
  year: 2023
  ident: D3OB01847D/cit34/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202300812
– volume: 18
  start-page: 3202
  year: 2016
  ident: D3OB01847D/cit137/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b01420
– volume: 134
  start-page: 18237
  year: 2012
  ident: D3OB01847D/cit112/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3092278
– volume: 6
  start-page: 41
  year: 2017
  ident: D3OB01847D/cit138/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201600491
– volume: 11
  start-page: 6682
  year: 2021
  ident: D3OB01847D/cit30/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA10629A
– volume: 87
  start-page: 1133
  year: 2022
  ident: D3OB01847D/cit158/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c02502
– volume: 56
  start-page: 1847
  year: 2020
  ident: D3OB01847D/cit189/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC09001K
– volume: 22
  start-page: 4906
  year: 2020
  ident: D3OB01847D/cit168/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC00591F
– start-page: 2110
  year: 2020
  ident: D3OB01847D/cit167/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202000162
– start-page: 4411
  year: 2021
  ident: D3OB01847D/cit233/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202100568
– volume: 375
  start-page: 82
  year: 2017
  ident: D3OB01847D/cit4/1
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-017-0169-9
– volume: 13
  start-page: 589
  year: 2017
  ident: D3OB01847D/cit43/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.13.58
– volume: 14
  start-page: 9210
  year: 2016
  ident: D3OB01847D/cit243/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB01856D
– volume: 359
  start-page: 4117
  year: 2017
  ident: D3OB01847D/cit121/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201700949
– volume: 86
  start-page: 10166
  year: 2021
  ident: D3OB01847D/cit232/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c00898
– volume: 114
  start-page: 8807
  year: 2014
  ident: D3OB01847D/cit38/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500235v
– volume: 2
  start-page: 166
  year: 2020
  ident: D3OB01847D/cit200/1
  publication-title: Nanoscale Adv.
  doi: 10.1039/C9NA00671K
– volume: 26
  start-page: 1955
  year: 2007
  ident: D3OB01847D/cit91/1
  publication-title: Organometallics
  doi: 10.1021/om061144a
– volume: 104
  start-page: 154041
  year: 2022
  ident: D3OB01847D/cit190/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2022.154041
– volume: 9
  start-page: 629
  year: 2018
  ident: D3OB01847D/cit192/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03891G
– volume: 20
  start-page: 3291
  year: 2018
  ident: D3OB01847D/cit165/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b01168
– volume: 345
  start-page: 370
  year: 2003
  ident: D3OB01847D/cit140/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200390042
– volume: 58
  start-page: 2771
  year: 2017
  ident: D3OB01847D/cit176/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.06.003
– volume: 85
  start-page: 3071
  year: 2020
  ident: D3OB01847D/cit181/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b02963
– volume: 33
  start-page: 1798
  year: 2022
  ident: D3OB01847D/cit33/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.09.068
– volume: 37
  start-page: 1667
  year: 2017
  ident: D3OB01847D/cit71/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc201702009
– volume: 50
  start-page: 8875
  year: 2014
  ident: D3OB01847D/cit184/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03600J
– volume: 79
  start-page: 9655
  year: 2014
  ident: D3OB01847D/cit185/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo501793q
– volume: 83
  start-page: 6056
  year: 2018
  ident: D3OB01847D/cit239/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b00721
– volume: 24
  start-page: 7605
  year: 2022
  ident: D3OB01847D/cit81/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.2c03066
– volume: 8
  start-page: 2546
  year: 2013
  ident: D3OB01847D/cit14/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201300636
– volume: 56
  start-page: 735
  year: 2020
  ident: D3OB01847D/cit169/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08784B
– volume: 85
  start-page: 11104
  year: 2020
  ident: D3OB01847D/cit161/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c00921
– volume: 12
  start-page: 30564
  year: 2022
  ident: D3OB01847D/cit49/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA04128F
– volume: 11
  start-page: 424
  year: 2014
  ident: D3OB01847D/cit250/1
  publication-title: Mini-Rev. Org. Chem.
  doi: 10.2174/1570193X1104140926165906
– volume: 6
  start-page: 2732
  year: 2019
  ident: D3OB01847D/cit180/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C9QO00631A
– volume: 21
  start-page: 7643
  year: 2023
  ident: D3OB01847D/cit170/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D3OB01109G
– volume: 36
  start-page: 819
  year: 2018
  ident: D3OB01847D/cit154/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800164
– volume: 58
  start-page: 9099
  year: 2019
  ident: D3OB01847D/cit127/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903511
– volume: 2
  start-page: 287
  year: 1973
  ident: D3OB01847D/cit254/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1973.287
– volume: 190
  start-page: 537
  year: 2015
  ident: D3OB01847D/cit88/1
  publication-title: Phosphorus, Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426507.2014.965820
– volume: 358
  start-page: 4100
  year: 2016
  ident: D3OB01847D/cit226/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201600846
SSID ssj0019764
Score 2.4839861
SecondaryResourceType review_article
Snippet Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 645
SubjectTerms Agrochemicals
Aromatic compounds
Chelation
Chemical bonds
Electrochemistry
Intermediates
Natural products
Polymers
Substrates
Transition metals
Title Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp)-H and C(sp)-H bonds
URI https://www.ncbi.nlm.nih.gov/pubmed/38180073
https://www.proquest.com/docview/2917761533
https://www.proquest.com/docview/2918195671
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKdwE3iL9BYaAgQGJC3hI7iZvL0XUqqGxIy0TFTRT_lCJVybQ2EuKKd-CBeBeehGM7TjI6IeAmamzXiXy--Jzj89kHoee5ALcn5gwLFRIcsmiOeQReClgizB9KEQRMb05-dxxPzsK3s2jW6_3osJaqNd8TX6_cV_I_UoUykKveJfsPkm06hQL4DfKFK0gYrn8lY7D5DEXcxvENs3Vl8tpoOhC8RYmhb6mJ8UtRQi9W2HqpXH0Ry8ow1zeqNT8DzM7VOXlBEseFoBPzN1tBL1fwst4t7Ixcu79TGFTp7f0uA-8r4bLLdUgFxSd8ulB2xvmQ13oUqmaV0Q5Vi97TRV7i91c0HS2qAk_r5CwfdWfdtQyi-S-YtGuZdsXE0VUNHaX7WnaGDhnDmrxjFVi3zJ6K5KZ1QjrwDTtzdGzPr6zVfWwzxmxoEp_qg1glLbkPTjCTrb50HIHjk-zobDrN0vEsvYa2CAPjrY-2Dsbpm2kTyAJrzxAb3Fu7E3Jpst_2fdkm2nB0wOy5cOlojNmT3kI3a3_FO7Dgu416qriDrjcjdhdVFoSeA6H3ufAaEHoGhPu_Y8wDLHkNBL2N6nLujV4CAHd_fvs-MY31LbW3Bm73UHo0TkcTXOfywIJStsaxBNdciZgPBWiJYTwnnIfST2TE83kE01meBKHkEQ-Vz6NcxJFQOffnUaLzPXC6jfpFWagHyAsIy5mSJhF9yBk4-BKsVgWKSA510HyAdt1gZqI-516nW1lmhm9Bk-yQnrw2A384QM-atuf2dJcrW-04mWT117_KSBIwZrylAXraVMPY64BbXqiyMm10mDpmwQDdt7JsHqMtZR0mH6BtEG5T3ILi4Z-f-gjdaL-gHdRfX1TqMdjHa_6kxuAv09m6qQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+selective+mono-%2Fdichalcogenation+and+exclusive+dichalcogenation+of+C%28sp2%29%E2%80%93H+and+C%28sp3%29%E2%80%93H+bonds&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Chang-Sheng%2C+Wang&rft.au=Xu%2C+Yuan&rft.au=Shao-Peng%2C+Wang&rft.au=Chun-Ling%2C+Zheng&rft.date=2024-01-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=22&rft.issue=4&rft.spage=645&rft.epage=681&rft_id=info:doi/10.1039%2Fd3ob01847d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon