Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp)-H and C(sp)-H bonds
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nev...
Saved in:
Published in | Organic & biomolecular chemistry Vol. 22; no. 4; pp. 645 - 681 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
24.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-0520 1477-0539 1477-0539 |
DOI | 10.1039/d3ob01847d |
Cover
Abstract | Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp
2
)-H and C(sp
3
)-H bonds
via
transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp
3
)-H dichalcogenation; (4) dichalcogenation of both C(sp
2
)-H and C(sp
3
)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
This review comprehensively summarizes the recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of various C-H bonds
via
transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. |
---|---|
AbstractList | Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp
2
)-H and C(sp
3
)-H bonds
via
transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp
3
)-H dichalcogenation; (4) dichalcogenation of both C(sp
2
)-H and C(sp
3
)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
This review comprehensively summarizes the recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of various C-H bonds
via
transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C–H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C–H chalcogenation severely lags behind C–C, C–N and C–O bond formations. Moreover, compared with the C–H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C–H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)–H and C(sp3)–H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C–H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C–H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C–H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)–H dichalcogenation; (4) dichalcogenation of both C(sp2)–H and C(sp3)–H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery. Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery. Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp )-H and C(sp )-H bonds transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp )-H dichalcogenation; (4) dichalcogenation of both C(sp )-H and C(sp )-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery. Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C–H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C–H chalcogenation severely lags behind C–C, C–N and C–O bond formations. Moreover, compared with the C–H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C–H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp 2 )–H and C(sp 3 )–H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C–H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C–H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C–H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp 3 )–H dichalcogenation; (4) dichalcogenation of both C(sp 2 )–H and C(sp 3 )–H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery. |
Author | Xu, Yuan Wang, Chang-Sheng Sun, Qiao Wang, Guowei Wang, Shao-Peng Zheng, Chun-Ling |
AuthorAffiliation | Nanjing Tech University School of Food Science and Light Industry School of Biotechnology and Pharmaceutical Engineering Chemical Engineering and Biotechnology School of Chemistry Nanyang Technological University |
AuthorAffiliation_xml | – sequence: 0 name: School of Food Science and Light Industry – sequence: 0 name: Nanyang Technological University – sequence: 0 name: Nanjing Tech University – sequence: 0 name: School of Chemistry – sequence: 0 name: Chemical Engineering and Biotechnology – sequence: 0 name: School of Biotechnology and Pharmaceutical Engineering |
Author_xml | – sequence: 1 givenname: Chang-Sheng surname: Wang fullname: Wang, Chang-Sheng – sequence: 2 givenname: Yuan surname: Xu fullname: Xu, Yuan – sequence: 3 givenname: Shao-Peng surname: Wang fullname: Wang, Shao-Peng – sequence: 4 givenname: Chun-Ling surname: Zheng fullname: Zheng, Chun-Ling – sequence: 5 givenname: Guowei surname: Wang fullname: Wang, Guowei – sequence: 6 givenname: Qiao surname: Sun fullname: Sun, Qiao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38180073$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0VtLwzAUB_AgE92mL74rBV-mUE2apEkfdV5BEMT3ksupdnTJbNqh397u4oTpUw7kdw6H8x-gnvMOEDoi-IJgml1a6jUmkgm7g_qECRFjTrPepk7wPhqEMMGYZCJle2ifSiIxFrSP_AsYcE2k7Fw5AyEqXRSgAtOUc4im3vn40pbmXVXGv4FTTeldpJyN4NNUbVigP9--iMajMDuLH5byp9be2XCAdgtVBThcv0P0enf7On6In57vH8dXT7GhVDRxahMpwKRaGpZwmRaJ1szizHKtCg7Kqowwq7lmgDVXJuUGlMYFzySTRNMhGq3Gzmr_0UJo8mkZDFSVcuDbkCcZkSTjqSAdPd2iE9_WrltuoYRICae0Uydr1eop2HxWl1NVf-U_l-zA-QqY2odQQ7EhBOeLmPIb-ny9jOmmw3gLm7JZHq-pVVn933K8aqmD2Yz-TZ5-A815nak |
CitedBy_id | crossref_primary_10_1002_asia_202400272 crossref_primary_10_1021_acs_orglett_4c01799 crossref_primary_10_1039_D4OB01974A crossref_primary_10_1002_asia_202400124 crossref_primary_10_1039_D4QO00522H crossref_primary_10_1039_D4QO01179A crossref_primary_10_1039_D4NJ01989J crossref_primary_10_1039_D4OB01865F |
Cites_doi | 10.1039/C5RA12995H 10.6023/cjoc201912011 10.1039/C9DT00473D 10.1021/acs.orglett.6b00764 10.1021/acs.orglett.0c02012 10.3184/174751918X15350179602459 10.1002/aoc.6482 10.1039/D3GC00889D 10.1039/C9OB00705A 10.1016/j.tetlet.2018.10.038 10.1021/cr100347k 10.1080/17415993.2019.1582654 10.1016/j.jorganchem.2015.09.040 10.1039/D1CC03760A 10.1021/acssuschemeng.2c03868 10.1021/acs.joc.9b00405 10.1039/c0ob00086h 10.1016/j.ccr.2018.05.015 10.1021/acs.chemrev.1c00084 10.1039/C4OB01992J 10.1021/acs.joc.3c00906 10.1021/jm401375q 10.1021/acs.chemrev.1c00836 10.1021/acs.joc.9b01632 10.1002/cssc.202002409 10.1002/ejoc.201501148 10.1002/ejoc.201700147 10.1039/D2CC04030A 10.1021/jo502402d 10.1039/D0QO00377H 10.1016/0040-4020(61)80037-9 10.1039/C5GC00403A 10.1002/adsc.201400929 10.1002/adsc.201300566 10.1021/jo1014849 10.1021/ol502439m 10.1039/C5CC01970B 10.1016/j.ultsonch.2017.06.007 10.1039/C8QO00840J 10.1021/acs.joc.6b01702 10.1039/C8QO00899J 10.3390/catal10111339 10.1080/17415993.2019.1683181 10.1039/C8QO00360B 10.1016/j.tetlet.2020.152368 10.1016/j.tet.2013.09.095 10.1002/adsc.201800090 10.1039/D2QO01534J 10.1039/D3GC02546B 10.1002/ajoc.202100751 10.1039/P19930003167 10.1021/acs.orglett.7b00996 10.1139/V09-043 10.6023/cjoc202206029 10.1039/C6RA02302A 10.1021/cr400441m 10.1002/adsc.201900035 10.1016/j.tetlet.2015.06.057 10.1039/C4CC10431E 10.1039/D2QO01699K 10.1021/acs.joc.5b00146 10.1002/ejoc.202000610 10.1021/om00050a059 10.1002/ejoc.202300290 10.1039/C9OB02044F 10.1246/bcsj.45.866 10.1039/c39820001183 10.1002/adsc.201400804 10.1002/asia.201901334 10.1021/jo001710q 10.1080/00397911.2011.569867 10.1021/jacs.2c02126 10.1021/acs.accounts.5b00047 10.1002/ejoc.201701293 10.1039/D3QO00933E 10.1002/cctc.201801548 10.1002/chem.201705404 10.1021/acs.orglett.6b03735 10.1016/j.drudis.2020.10.014 10.1021/ol201007e 10.1016/S0040-4039(00)96953-3 10.1021/acs.orglett.1c00829 10.1016/j.cclet.2022.02.019 10.1002/chem.201603092 10.1016/j.tet.2015.09.070 10.1080/15583724.2013.863209 10.1039/D2CS00553K 10.1039/b800473k 10.1039/C8QO00435H 10.1039/B818390B 10.1002/adsc.201801307 10.1016/j.tetlet.2011.02.077 10.1055/s-0033-1341277 10.1039/D0QO00640H 10.1021/jo501778h 10.1016/j.tetlet.2023.154341 10.1021/acs.joc.0c02683 10.1016/j.jorganchem.2010.05.022 10.1021/acs.joc.9b00311 10.1016/j.tetlet.2016.06.126 10.1080/17415993.2019.1596268 10.6023/cjoc201910020 10.1016/j.tetlet.2004.02.042 10.1039/C6OB02833K 10.1039/D1RA09060G 10.1248/cpb.17.419 10.1016/j.cclet.2008.09.053 10.1021/ol4036209 10.1021/acs.joc.7b02718 10.1002/ejoc.201700853 10.1002/slct.201701758 10.6023/cjoc202210015 10.1002/slct.202102042 10.1039/D0QO01226B 10.1039/c2dt12225a 10.1021/jacs.1c09635 10.1002/ajoc.201500192 10.1021/acs.orglett.3c01002 10.1002/ajoc.202200038 10.1002/adsc.202300434 10.1039/D1RA01035B 10.1016/j.tetlet.2022.153697 10.1016/j.tet.2018.02.014 10.1002/ejoc.202200752 10.1021/acs.chemrev.6b00517 10.1002/slct.202003650 10.1039/C6DT02167K 10.1021/acs.joc.6b02271 10.1002/ejoc.201801765 10.1039/C7OB03177G 10.1002/chem.201600800 10.1039/C7GC03576D 10.1002/chem.201304717 10.1039/D2OB00986B 10.1002/adsc.201801510 10.1002/ejoc.201700744 10.1002/ejoc.201801071 10.1021/acs.orglett.3c02004 10.1039/C7OB01662J 10.1021/cr9902749 10.1002/ajoc.202000318 10.1039/C9GC00007K 10.6023/cjoc202009030 10.1021/jo0401265 10.1021/ja953246q 10.1021/acs.orglett.1c00751 10.2174/1568026615666150915111741 10.1016/j.tet.2017.07.053 10.1021/acs.joc.8b00974 10.1021/acs.chemrev.6b00697 10.1039/C7CC03107F 10.1371/journal.pone.0048780 10.1016/j.tet.2018.05.084 10.1080/10426509608046352 10.1039/C7SC01162H 10.1039/C9QO01497G 10.1021/om00134a005 10.1021/cr5002386 10.1002/adsc.201601431 10.1039/D0OB02320E 10.1016/j.tetlet.2020.152062 10.1002/asia.201301500 10.1021/acs.joc.0c02078 10.1021/jo071209z 10.1021/jo972022i 10.1002/adsc.201900301 10.3390/molecules16010590 10.1016/j.tet.2015.06.077 10.1021/acs.accounts.7b00023 10.1021/jo0493727 10.1002/ajoc.202300252 10.1002/ejoc.201101245 10.1021/acs.orglett.8b03954 10.1039/C8CC09821B 10.1016/j.mencom.2019.05.032 10.1039/C7RA02350B 10.1039/C8OB02792G 10.2174/1570178615666180627111437 10.1039/C8NP00093J 10.6023/cjoc202303042 10.1021/acs.joc.9b01237 10.1016/j.cclet.2019.05.048 10.1016/j.biopha.2017.01.173 10.1021/acscatal.6b03236 10.1021/ol3028225 10.1039/C9OB01255A 10.2174/1385272821666170222110412 10.3762/bjoc.14.228 10.1002/anie.201411997 10.1002/adsc.201801138 10.3389/fchem.2022.1089860 10.1039/c1cc13633j 10.1039/C9GC03384J 10.1002/ajoc.202200226 10.2174/1385272826666220620153347 10.1039/D3QO01042B 10.1002/chem.201303730 10.1021/acssuschemeng.2c01006 10.1016/j.cbpa.2014.09.018 10.1002/cbic.201600582 10.1021/acs.joc.2c01567 10.1021/jo302480j 10.1016/j.jfluchem.2019.05.004 10.1039/C5OB02193F 10.1039/b900786e 10.1002/chem.202001414 10.1039/C6OB02823C 10.1039/c3ob41601a 10.1080/00304940709458600 10.1016/j.tet.2014.09.042 10.1016/j.ccr.2021.213885 10.1039/D0RA03086D 10.1021/cr068440h 10.1039/D2SC00765G 10.1016/S0040-4039(00)61445-4 10.1002/adsc.202300208 10.1016/j.tet.2012.08.086 10.1002/adsc.202300812 10.1021/acs.orglett.6b01420 10.1021/ja3092278 10.1002/ajoc.201600491 10.1039/D0RA10629A 10.1021/acs.joc.1c02502 10.1039/C9CC09001K 10.1039/D0GC00591F 10.1002/ejoc.202000162 10.1002/ejoc.202100568 10.1007/s41061-017-0169-9 10.3762/bjoc.13.58 10.1039/C6OB01856D 10.1002/adsc.201700949 10.1021/acs.joc.1c00898 10.1021/cr500235v 10.1039/C9NA00671K 10.1021/om061144a 10.1016/j.tetlet.2022.154041 10.1039/C7SC03891G 10.1021/acs.orglett.8b01168 10.1002/adsc.200390042 10.1016/j.tetlet.2017.06.003 10.1021/acs.joc.9b02963 10.1016/j.cclet.2021.09.068 10.6023/cjoc201702009 10.1039/C4CC03600J 10.1021/jo501793q 10.1021/acs.joc.8b00721 10.1021/acs.orglett.2c03066 10.1002/asia.201300636 10.1039/C9CC08784B 10.1021/acs.joc.0c00921 10.1039/D2RA04128F 10.2174/1570193X1104140926165906 10.1039/C9QO00631A 10.1039/D3OB01109G 10.1002/cjoc.201800164 10.1002/anie.201903511 10.1246/cl.1973.287 10.1080/10426507.2014.965820 10.1002/adsc.201600846 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
DOI | 10.1039/d3ob01847d |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-0539 |
EndPage | 681 |
ExternalDocumentID | 38180073 10_1039_D3OB01847D d3ob01847d |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ VH6 VQA WH7 XSW YNT YZZ AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c337t-6d287ec6b8c42586f2bb4d09d5baf5eada914db5b4e0b5ac65ceab0f598481b3 |
ISSN | 1477-0520 1477-0539 |
IngestDate | Fri Jul 11 10:02:36 EDT 2025 Mon Jun 30 11:15:08 EDT 2025 Mon Jul 21 06:02:42 EDT 2025 Tue Jul 01 01:52:33 EDT 2025 Thu Apr 24 22:54:39 EDT 2025 Tue Dec 17 20:58:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-6d287ec6b8c42586f2bb4d09d5baf5eada914db5b4e0b5ac65ceab0f598481b3 |
Notes | Shao-Peng Wang was born in Guangxi Province (China) in 2000. In 2022, he received his Bachelor's degree from Nanjing Tech University. He has continued to pursue a Master's degree at the same university since then. His research mainly focuses on the electrochemical C-H amination reactions. Chun-Ling Zheng was born in Hubei Province (China). She received her Master's degree in Textile Chemistry and Dyeing & Finishing Engineering from Soochow University in 2005. The same year, she began her Ph.D. studies at the lab of Professor Yukio Nagaosa at Fukui University, Japan, where she focused on the development of natural chemicals. In 2009, she began her independent career at Nanjing Tech University. Her research interest focuses on the fields of structural modification and application of natural organic compounds. Yuan Xu completed his undergraduate and graduate studies at Soochow University in China, where he earned both a Bachelor's and Master's degree. He then pursued his Ph.D. Degree at Nanyang Technological University (NTU) in Singapore, specializing in the field of organic synthesis and antimicrobial drug development. After successfully completing his doctoral studies, he continued his research journey as a postdoctoral fellow at NTU. During this pivotal period, his work primarily focuses on carbohydrate synthesis and its practical applications in addressing challenges in the realms of medicine and biochemistry. Guowei Wang was born in Sichuan Province (China). He obtained his Master's degree from Sichuan University in 2002. Then he began his independent career at Nanjing Tech University. Meanwhile, he began his Ph.D. studies of Applied Chemistry at the lab of Professor Jintang Wang at Nanjing Tech University, where he focused on the preparation and application of novel thiazole compounds. In recent five years, his research interest focuses on the preparation and application of ionic liquids and surface-active ionic liquids. Qiao Sun received her Bachelor's degree from Sichuan University (2010) and Master's degree from the University of Chinese Academy of Sciences (2013) under the supervision of Prof. Sheng Jiang. In 2019, he obtained her Ph.D. degree in Organic Chemistry from NTU Singapore under the supervision of Prof. Naohiko Yoshikai. Then she spent two years in Shanghai STA Pharmaceutical as a senior researcher, working on the high-throughput screening and optimization of chemical processes. In 2023, she joined Nanjing Tech University as a research associate professor and her research interests include organic synthetic methodology, medical chemistry, and high throughput-screening. Chang-Sheng Wang obtained his Bachelor's degree in 2012 and Master's degree (Joint Master's Program with SIOC in Prof. Qi-Long Shen's group) in 2015 from Nanjing Tech University under the supervision of Prof. Cheng Yao. In 2018, he obtained his Ph.D. degree from the University of Rennes 1 under the supervision of Prof. P. H. Dixneuf and Dr Jean-François Soulé supported by CSC Scholarship. After three years' Postdoctoral research in Prof. Naohiko Yoshikai's group at NTU Singapore, he started his independent career at Nanjing Tech University as a research professor. His research interests include organic synthetic methodology, bio-transformations and flow chemistry. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6410-0906 0000-0002-4970-0636 0009-0004-2497-1423 |
PMID | 38180073 |
PQID | 2917761533 |
PQPubID | 2047497 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2917761533 rsc_primary_d3ob01847d proquest_miscellaneous_2918195671 pubmed_primary_38180073 crossref_citationtrail_10_1039_D3OB01847D crossref_primary_10_1039_D3OB01847D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-24 |
PublicationDateYYYYMMDD | 2024-01-24 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Organic & biomolecular chemistry |
PublicationTitleAlternate | Org Biomol Chem |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Otocka (D3OB01847D/cit8/1) 2017; 117 Wu (D3OB01847D/cit87/1) 2017; 8 Dong (D3OB01847D/cit48/1) 2020; 5 Ghorai (D3OB01847D/cit146/1) 2021; 57 Kisch (D3OB01847D/cit109/1) 2017; 50 Zhao (D3OB01847D/cit250/1) 2014; 11 Vats (D3OB01847D/cit76/1) 2018; 360 Bettanin (D3OB01847D/cit177/1) 2018; 74 Tamotsu (D3OB01847D/cit254/1) 1973; 2 Rampon (D3OB01847D/cit69/1) 2022; 20 Duan (D3OB01847D/cit263/1) 2022; 94 Saba (D3OB01847D/cit210/1) 2018; 16 Zhang (D3OB01847D/cit265/1) 2021; 23 Li (D3OB01847D/cit169/1) 2020; 56 Abedinifar (D3OB01847D/cit47/1) 2022; 36 Ni (D3OB01847D/cit12/1) 2015; 115 Lu (D3OB01847D/cit17/1) 2020; 41 Lee (D3OB01847D/cit42/1) 2014; 9 Chu (D3OB01847D/cit13/1) 2021; 121 Ranu (D3OB01847D/cit246/1) 2004; 69 Varun (D3OB01847D/cit185/1) 2014; 79 Singh (D3OB01847D/cit123/1) 2017; 2 Ge (D3OB01847D/cit50/1) 2022; 33 Mandal (D3OB01847D/cit124/1) 2017; 19 Zhang (D3OB01847D/cit206/1) 2012; 42 Hayashi (D3OB01847D/cit251/1) 1969; 17 Reddy (D3OB01847D/cit219/1) 2016; 57 Ma (D3OB01847D/cit68/1) 2020; 7 Ni (D3OB01847D/cit262/1) 2019; 361 Lu (D3OB01847D/cit52/1) 2023; 365 Wang (D3OB01847D/cit54/1) 2023; 10 Zhao (D3OB01847D/cit212/1) 2020; 22 Hu (D3OB01847D/cit261/1) 2019; 361 Qiu (D3OB01847D/cit113/1) 2014; 80 Luo (D3OB01847D/cit229/1) 2022; 144 Sundaravelu (D3OB01847D/cit23/1) 2021; 19 Qu (D3OB01847D/cit51/1) 2023; 25 Saravanan (D3OB01847D/cit202/1) 2014; 16 Beletskaya (D3OB01847D/cit25/1) 2022; 122 Stefani (D3OB01847D/cit92/1) 1991; 10 Zhang (D3OB01847D/cit60/1) 2020; 40 Zhang (D3OB01847D/cit204/1) 2010; 75 Liu (D3OB01847D/cit58/1) 2019; 361 Mamane (D3OB01847D/cit242/1) 2007; 72 Semwal (D3OB01847D/cit174/1) 2019; 84 Song (D3OB01847D/cit189/1) 2020; 56 Kausar (D3OB01847D/cit5/1) 2014; 54 Yin (D3OB01847D/cit191/1) 2023 Gao (D3OB01847D/cit235/1) 2016; 81 Liu (D3OB01847D/cit193/1) 2019; 17 Godoi (D3OB01847D/cit96/1) 2012; 68 Lee (D3OB01847D/cit83/1) 2020 Li (D3OB01847D/cit22/1) 2020; 7 Yang (D3OB01847D/cit238/1) 2018; 5 Tsukazaki (D3OB01847D/cit139/1) 1996; 118 Bhunia (D3OB01847D/cit86/1) 2018; 16 Xiao (D3OB01847D/cit225/1) 2019; 361 Zhang (D3OB01847D/cit131/1) 2015; 71 Lazzaris (D3OB01847D/cit233/1) 2021 Liu (D3OB01847D/cit266/1) 2022; 13 Liu (D3OB01847D/cit194/1) 2023; 25 Petragnani (D3OB01847D/cit94/1) 1961; 12 Gu (D3OB01847D/cit162/1) 2023; 365 Wu (D3OB01847D/cit168/1) 2020; 22 Silva (D3OB01847D/cit209/1) 2017 Wu (D3OB01847D/cit237/1) 2022; 42 Zhao (D3OB01847D/cit125/1) 2018 Rahaman (D3OB01847D/cit153/1) 2017 Cheng (D3OB01847D/cit31/1) 2022; 26 Rafique (D3OB01847D/cit175/1) 2016; 22 Han (D3OB01847D/cit195/1) 2009; 7 Dunbar (D3OB01847D/cit40/1) 2017; 117 Qi (D3OB01847D/cit158/1) 2022; 87 Li (D3OB01847D/cit165/1) 2018; 20 Yang (D3OB01847D/cit136/1) 2023; 25 Sahu (D3OB01847D/cit201/1) 2021; 86 Liu (D3OB01847D/cit163/1) 2019; 17 Wladislaw (D3OB01847D/cit249/1) 2007; 39 Liu (D3OB01847D/cit154/1) 2018; 36 Qian (D3OB01847D/cit264/1) 2023; 116 Hamzehloo (D3OB01847D/cit57/1) 2019; 224 Jiang (D3OB01847D/cit144/1) 2019; 84 Thurow (D3OB01847D/cit155/1) 2018; 5 Lv (D3OB01847D/cit198/1) 2019; 55 Vásquez-Céspedes (D3OB01847D/cit187/1) 2015; 54 Lai (D3OB01847D/cit244/1) 2018; 5 Yaubasarova (D3OB01847D/cit147/1) 2019; 29 Johnson (D3OB01847D/cit192/1) 2018; 9 Zhao (D3OB01847D/cit222/1) 2016; 14 Abdtawfeeq (D3OB01847D/cit49/1) 2022; 12 Iwasaki (D3OB01847D/cit114/1) 2014; 16 Penteado (D3OB01847D/cit167/1) 2020 Kundu (D3OB01847D/cit30/1) 2021; 11 Feng (D3OB01847D/cit3/1) 2016; 16 Xu (D3OB01847D/cit145/1) 2019 Xu (D3OB01847D/cit64/1) 2022; 10 Liu (D3OB01847D/cit171/1) 2023; 10 Pimentel (D3OB01847D/cit104/1) 2012; 7 Lin (D3OB01847D/cit226/1) 2016; 358 Gao (D3OB01847D/cit120/1) 2016; 81 Redon (D3OB01847D/cit176/1) 2017; 58 Das (D3OB01847D/cit227/1) 2018; 14 Ding (D3OB01847D/cit178/1) 2018; 10 Zhang (D3OB01847D/cit230/1) 2023; 25 Schumacher (D3OB01847D/cit108/1) 2014; 22 Saroha (D3OB01847D/cit29/1) 2021; 6 Gandeepan (D3OB01847D/cit75/1) 2017; 53 Chen (D3OB01847D/cit44/1) 2019; 40 Jha (D3OB01847D/cit81/1) 2022; 24 Yang (D3OB01847D/cit118/1) 2015; 51 Iwasaki (D3OB01847D/cit66/1) 2016; 45 Wang (D3OB01847D/cit143/1) 2021; 41 Tian (D3OB01847D/cit184/1) 2014; 50 Kanchana (D3OB01847D/cit26/1) 2022; 11 Kathiravan (D3OB01847D/cit135/1) 2021; 23 Iwasaki (D3OB01847D/cit116/1) 2014; 20 Müller (D3OB01847D/cit119/1) 2016; 22 Penteado (D3OB01847D/cit172/1) 2020; 9 Trécourt (D3OB01847D/cit241/1) 1998; 63 Raghuvanshi (D3OB01847D/cit223/1) 2017; 7 Ali (D3OB01847D/cit107/1) 2021; 26 Sahoo (D3OB01847D/cit36/1) 2023; 12 Liao (D3OB01847D/cit159/1) 2017; 21 Kang (D3OB01847D/cit127/1) 2019; 58 Truong (D3OB01847D/cit157/1) 2022; 11 Xu (D3OB01847D/cit82/1) 2023 Chen (D3OB01847D/cit188/1) 2018; 42 Ilardi (D3OB01847D/cit2/1) 2014; 57 Wu (D3OB01847D/cit128/1) 2020; 61 Metallinos (D3OB01847D/cit140/1) 2003; 345 Chauhan (D3OB01847D/cit90/1) 2008 Beletskaya (D3OB01847D/cit21/1) 2011; 111 Wang (D3OB01847D/cit1/1) 2020; 37 Engman (D3OB01847D/cit93/1) 1986; 5 Nishino (D3OB01847D/cit65/1) 2019 Liu (D3OB01847D/cit138/1) 2017; 6 Parumala (D3OB01847D/cit215/1) 2015; 17 Prasad (D3OB01847D/cit151/1) 2013; 11 Zhang (D3OB01847D/cit28/1) 2020; 26 Villadsen (D3OB01847D/cit110/1) 2017; 18 Sattar (D3OB01847D/cit84/1) 2019; 84 Mukaiyama (D3OB01847D/cit252/1) 1970; 11 Mellah (D3OB01847D/cit7/1) 2007; 107 Yan (D3OB01847D/cit115/1) 2014; 70 Bieber (D3OB01847D/cit100/1) 2004; 45 Kumar (D3OB01847D/cit142/1) 2019; 16 Liu (D3OB01847D/cit220/1) 2023; 88 Dong (D3OB01847D/cit70/1) 2017 Sena-Lopes (D3OB01847D/cit106/1) 2017; 89 Yan (D3OB01847D/cit207/1) 2014; 12 Song (D3OB01847D/cit37/1) 2019 Gandeepan (D3OB01847D/cit74/1) 2017; 7 Ye (D3OB01847D/cit117/1) 2015; 51 Wladislaw (D3OB01847D/cit256/1) 1993 Chauhan (D3OB01847D/cit89/1) 2010; 695 Kumar (D3OB01847D/cit243/1) 2016; 14 Liu (D3OB01847D/cit71/1) 2017; 37 Huang (D3OB01847D/cit24/1) 2022; 51 Kosso (D3OB01847D/cit181/1) 2020; 85 Arisawa (D3OB01847D/cit183/1) 2011; 52 Qin (D3OB01847D/cit19/1) 2023; 43 Zou (D3OB01847D/cit259/1) 2013; 355 Zhao (D3OB01847D/cit186/1) 2015; 80 Feng (D3OB01847D/cit34/1) 2023; 365 Hassanpour (D3OB01847D/cit61/1) 2021; 11 Dénès (D3OB01847D/cit10/1) 2014; 114 Huang (D3OB01847D/cit216/1) 2016; 18 Yang (D3OB01847D/cit134/1) 2014; 20 Wang (D3OB01847D/cit211/1) 2016; 6 Xu (D3OB01847D/cit73/1) 2020; 31 Li (D3OB01847D/cit6/1) 2020; 7 Gaggero (D3OB01847D/cit111/1) 2017; 15 Arora (D3OB01847D/cit9/1) 2021; 438 Qiao (D3OB01847D/cit45/1) 2017; 15 Ivanova (D3OB01847D/cit15/1) 2018; 370 Rampon (D3OB01847D/cit97/1) 2011 Yang (D3OB01847D/cit33/1) 2022; 33 Dong (D3OB01847D/cit55/1) 2023; 10 Eichman (D3OB01847D/cit41/1) 2011; 16 Batista (D3OB01847D/cit18/1) 2021; 8 Rathore (D3OB01847D/cit80/1) 2019; 21 Zhu (D3OB01847D/cit166/1) 2020; 61 Chen (D3OB01847D/cit228/1) 2018; 74 Sattar (D3OB01847D/cit141/1) 2019; 14 Li (D3OB01847D/cit190/1) 2022; 104 Fonseca (D3OB01847D/cit231/1) 2017; 39 Chen (D3OB01847D/cit149/1) 2022; 87 Deng (D3OB01847D/cit126/1) 2019; 17 Xu (D3OB01847D/cit72/1) 2020; 40 Godoi (D3OB01847D/cit95/1) 2014; 70 Devi (D3OB01847D/cit257/1) 2016 Liu (D3OB01847D/cit122/1) 2017 Zou (D3OB01847D/cit260/1) 2018; 5 Majedi (D3OB01847D/cit27/1) 2020; 1 Chauhan (D3OB01847D/cit38/1) 2014; 114 Tran (D3OB01847D/cit112/1) 2012; 134 Peppe (D3OB01847D/cit247/1) 2009; 87 Cohen (D3OB01847D/cit101/1) 2004; 69 Prasad (D3OB01847D/cit79/1) 2017; 19 Xu (D3OB01847D/cit213/1) 2017; 15 Wang (D3OB01847D/cit150/1) 2022; 10 Tian (D3OB01847D/cit203/1) 2015; 357 Zhang (D3OB01847D/cit152/1) 2015; 71 Liu (D3OB01847D/cit43/1) 2017; 13 Srivastava (D3OB01847D/cit32/1) 2020; 10 Karmaker (D3OB01847D/cit63/1) 2022; 12 Jin (D3OB01847D/cit133/1) 2016; 812 Karmaker (D3OB01847D/cit62/1) 2022; 11 Leen (D3OB01847D/cit197/1) 2012; 14 Ma (D3OB01847D/cit224/1) 2018; 59 Hosseinian (D3OB01847D/cit16/1) 2019; 40 Sahu (D3OB01847D/cit200/1) 2020; 2 Li (D3OB01847D/cit121/1) 2017; 359 Ba (D3OB01847D/cit105/1) 2010; 8 Zhu (D3OB01847D/cit173/1) 2017; 359 Wu (D3OB01847D/cit164/1) 2011; 47 Chouhan (D3OB01847D/cit170/1) 2023; 21 Prasad (D3OB01847D/cit78/1) 2013; 78 Mandal (D3OB01847D/cit137/1) 2016; 18 Liang (D3OB01847D/cit67/1) 2018; 69 Sattar (D3OB01847D/cit85/1) 2018; 83 Braga (D3OB01847D/cit102/1) 1993; 34 Kang (D3OB01847D/cit221/1) 2014; 79 Zhou (D3OB01847D/cit239/1) 2018; 83 Fron (D3OB01847D/cit196/1) 2009; 33 Ricordi (D3OB01847D/cit208/1) 2015; 357 Zhang (D3OB01847D/cit46/1) 2020; 10 Devendar (D3OB01847D/cit4/1) 2017; 375 Chauhan (D3OB01847D/cit91/1) 2007; 26 Rafique (D3OB01847D/cit179/1) 2018; 24 Song (D3OB01847D/cit161/1) 2020; 85 Yan (D3OB01847D/cit214/1) 2015; 56 Kumamoto (D3OB01847D/cit253/1) 1972; 45 Han (D3OB01847D/cit180/1) 2019; 6 Ma (D3OB01847D/cit53/1) 2023; 43 Li (D3OB01847D/cit99/1) 2008; 19 Huang (D3OB01847D/cit217/1) 2018; 83 Matsugi (D3OB01847D/cit182/1) 2001; 66 Tazaki (D3OB01847D/cit240/1) 1996; 112 Singla (D3OB01847D/cit35/1) 2023; 10 Mokhtari (D3OB01847D/cit234/1) 2018; 20 Lv (D3OB01847D/cit39/1) 2022; 10 Khan (D3OB01847D/cit88/1) 2015; 190 Movassagh (D3OB01847D/cit98/1) 2014 Kondo (D3OB01847D/cit20/1) 2000; 100 Sinha (D3OB01847D/cit77/1) 2022; 144 Kajiwara (D3OB01847D/cit129/1) 2020; 22 Han (D3OB01847D/cit232/1) 2021; 86 Shao (D3OB01847D/cit11/1) 2015; 48 Fang (D3OB01847D/cit205/1) 2011 Tiekink (D3OB01847D/cit103/1) 2012; 41 Shibatomi (D3OB01847D/cit248/1) 2011; 13 Margalef (D3OB01847D/cit245/1) 2021; 14 Grossert (D3OB01847D/cit255/1) 1982; 20 Zhao (D3OB01847D/cit236/1) 2021; 86 Benchawan (D3OB01847D/cit156/1) 2022 Liu (D3OB01847D/cit14/1) 2013; 8 Chen (D3OB01847D/cit160/1) 2018; 42 Choudhuri (D3OB01847D/cit218/1) 2019; 361 Peglow (D3OB01847D/cit148/1) 2019; 84 Ma (D3OB01847D/cit199/1) 2019; 21 Rampon (D3OB01847D/cit59/1) 2019; 48 Prasad (D3OB01847D/cit56/1) 2015; 5 Duan (D3OB01847D/cit130/1) 2022; 58 Jin (D3OB01847D/cit132/1) 2015; 4 Zhao (D3OB01847D/cit258/1) 2017; 73 |
References_xml | – issn: 2018 issue: 69 end-page: 135-207 publication-title: Advances in Organometallic Chemistry doi: Liang Shaaban Liu Hofman Manolikakes – volume: 5 start-page: 75881 year: 2015 ident: D3OB01847D/cit56/1 publication-title: RSC Adv. doi: 10.1039/C5RA12995H – volume: 40 start-page: 1117 year: 2020 ident: D3OB01847D/cit60/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc201912011 – volume: 48 start-page: 9851 year: 2019 ident: D3OB01847D/cit59/1 publication-title: Dalton Trans. doi: 10.1039/C9DT00473D – volume: 18 start-page: 2351 year: 2016 ident: D3OB01847D/cit216/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b00764 – volume: 22 start-page: 5915 year: 2020 ident: D3OB01847D/cit129/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02012 – start-page: 1099 year: 2011 ident: D3OB01847D/cit205/1 publication-title: Synthesis – volume: 42 start-page: 456 year: 2018 ident: D3OB01847D/cit160/1 publication-title: J. Chem. Res. doi: 10.3184/174751918X15350179602459 – volume: 36 start-page: e6482 year: 2022 ident: D3OB01847D/cit47/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.6482 – volume: 25 start-page: 3847 year: 2023 ident: D3OB01847D/cit194/1 publication-title: Green Chem. doi: 10.1039/D3GC00889D – volume: 17 start-page: 5009 year: 2019 ident: D3OB01847D/cit193/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB00705A – volume: 59 start-page: 4255 year: 2018 ident: D3OB01847D/cit224/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2018.10.038 – volume: 111 start-page: 1596 year: 2011 ident: D3OB01847D/cit21/1 publication-title: Chem. Rev. doi: 10.1021/cr100347k – volume: 40 start-page: 289 year: 2019 ident: D3OB01847D/cit16/1 publication-title: J. Sulphur Chem. doi: 10.1080/17415993.2019.1582654 – volume: 812 start-page: 66 year: 2016 ident: D3OB01847D/cit133/1 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2015.09.040 – volume: 57 start-page: 10544 year: 2021 ident: D3OB01847D/cit146/1 publication-title: Chem. Commun. doi: 10.1039/D1CC03760A – volume: 10 start-page: 13901 year: 2022 ident: D3OB01847D/cit39/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c03868 – volume: 84 start-page: 5471 year: 2019 ident: D3OB01847D/cit148/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b00405 – volume: 8 start-page: 4203 year: 2010 ident: D3OB01847D/cit105/1 publication-title: Org. Biomol. Chem. doi: 10.1039/c0ob00086h – volume: 370 start-page: 55 year: 2018 ident: D3OB01847D/cit15/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.05.015 – volume: 121 start-page: 12548 year: 2021 ident: D3OB01847D/cit13/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00084 – volume: 12 start-page: 9557 year: 2014 ident: D3OB01847D/cit207/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB01992J – volume: 88 start-page: 10058 year: 2023 ident: D3OB01847D/cit220/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.3c00906 – volume: 57 start-page: 2832 year: 2014 ident: D3OB01847D/cit2/1 publication-title: J. Med. Chem. doi: 10.1021/jm401375q – volume: 122 start-page: 16110 year: 2022 ident: D3OB01847D/cit25/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00836 – volume: 84 start-page: 14151 year: 2019 ident: D3OB01847D/cit174/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b01632 – volume: 14 start-page: 808 year: 2021 ident: D3OB01847D/cit245/1 publication-title: ChemSusChem doi: 10.1002/cssc.202002409 – start-page: 384 year: 2016 ident: D3OB01847D/cit257/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201501148 – start-page: 2280 year: 2017 ident: D3OB01847D/cit122/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201700147 – volume: 58 start-page: 11555 year: 2022 ident: D3OB01847D/cit130/1 publication-title: Chem. Commun. doi: 10.1039/D2CC04030A – volume: 80 start-page: 367 year: 2014 ident: D3OB01847D/cit113/1 publication-title: J. Org. Chem. doi: 10.1021/jo502402d – volume: 7 start-page: 1395 year: 2020 ident: D3OB01847D/cit22/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00377H – volume: 12 start-page: 219 year: 1961 ident: D3OB01847D/cit94/1 publication-title: Tetrahedron doi: 10.1016/0040-4020(61)80037-9 – volume: 17 start-page: 4068 year: 2015 ident: D3OB01847D/cit215/1 publication-title: Green Chem. doi: 10.1039/C5GC00403A – volume: 357 start-page: 481 year: 2015 ident: D3OB01847D/cit203/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201400929 – volume: 355 start-page: 2558 year: 2013 ident: D3OB01847D/cit259/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201300566 – volume: 69 start-page: 135 volume-title: Advances in Organometallic Chemistry year: 2018 ident: D3OB01847D/cit67/1 – volume: 75 start-page: 6732 year: 2010 ident: D3OB01847D/cit204/1 publication-title: J. Org. Chem. doi: 10.1021/jo1014849 – volume: 16 start-page: 4920 year: 2014 ident: D3OB01847D/cit114/1 publication-title: Org. Lett. doi: 10.1021/ol502439m – volume: 51 start-page: 7863 year: 2015 ident: D3OB01847D/cit117/1 publication-title: Chem. Commun. doi: 10.1039/C5CC01970B – volume: 39 start-page: 827 year: 2017 ident: D3OB01847D/cit231/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.06.007 – start-page: 545 year: 2019 ident: D3OB01847D/cit145/1 publication-title: Synthesis – volume: 5 start-page: 2986 year: 2018 ident: D3OB01847D/cit244/1 publication-title: Org. Chem. Front. doi: 10.1039/C8QO00840J – volume: 81 start-page: 9122 year: 2016 ident: D3OB01847D/cit120/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b01702 – volume: 5 start-page: 2974 year: 2018 ident: D3OB01847D/cit238/1 publication-title: Org. Chem. Front. doi: 10.1039/C8QO00899J – volume: 10 start-page: 1339 year: 2020 ident: D3OB01847D/cit46/1 publication-title: Catalysts doi: 10.3390/catal10111339 – volume: 41 start-page: 210 year: 2020 ident: D3OB01847D/cit17/1 publication-title: J. Sulphur Chem. doi: 10.1080/17415993.2019.1683181 – volume: 5 start-page: 1983 year: 2018 ident: D3OB01847D/cit155/1 publication-title: Org. Chem. Front. doi: 10.1039/C8QO00360B – volume: 61 start-page: 152368 year: 2020 ident: D3OB01847D/cit166/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2020.152368 – volume: 1 start-page: 25 year: 2020 ident: D3OB01847D/cit27/1 publication-title: J. Chem. Lett. – volume: 70 start-page: 3349 year: 2014 ident: D3OB01847D/cit95/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2013.09.095 – volume: 360 start-page: 2291 year: 2018 ident: D3OB01847D/cit76/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201800090 – volume: 10 start-page: 237 year: 2023 ident: D3OB01847D/cit35/1 publication-title: Org. Chem. Front. doi: 10.1039/D2QO01534J – volume: 25 start-page: 7485 year: 2023 ident: D3OB01847D/cit51/1 publication-title: Green Chem. doi: 10.1039/D3GC02546B – volume: 11 start-page: e202100751 year: 2022 ident: D3OB01847D/cit157/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202100751 – start-page: 3167 year: 1993 ident: D3OB01847D/cit256/1 publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/P19930003167 – volume: 19 start-page: 2430 year: 2017 ident: D3OB01847D/cit124/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b00996 – volume: 87 start-page: 678 year: 2009 ident: D3OB01847D/cit247/1 publication-title: Can. J. Chem. doi: 10.1139/V09-043 – volume: 42 start-page: 3721 year: 2022 ident: D3OB01847D/cit237/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202206029 – volume: 6 start-page: 54377 year: 2016 ident: D3OB01847D/cit211/1 publication-title: RSC Adv. doi: 10.1039/C6RA02302A – volume: 114 start-page: 2587 year: 2014 ident: D3OB01847D/cit10/1 publication-title: Chem. Rev. doi: 10.1021/cr400441m – volume: 361 start-page: 2004 year: 2019 ident: D3OB01847D/cit262/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900035 – volume: 56 start-page: 4792 year: 2015 ident: D3OB01847D/cit214/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.06.057 – volume: 51 start-page: 3582 year: 2015 ident: D3OB01847D/cit118/1 publication-title: Chem. Commun. doi: 10.1039/C4CC10431E – volume: 42 start-page: 456 year: 2018 ident: D3OB01847D/cit188/1 publication-title: J. Chem. Res. doi: 10.3184/174751918X15350179602459 – volume: 10 start-page: 1322 year: 2023 ident: D3OB01847D/cit55/1 publication-title: Org. Chem. Front. doi: 10.1039/D2QO01699K – volume: 80 start-page: 2918 year: 2015 ident: D3OB01847D/cit186/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00146 – start-page: 4886 year: 2020 ident: D3OB01847D/cit83/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202000610 – volume: 10 start-page: 1178 year: 1991 ident: D3OB01847D/cit92/1 publication-title: Organometallics doi: 10.1021/om00050a059 – start-page: e202300290 year: 2023 ident: D3OB01847D/cit191/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202300290 – volume: 17 start-page: 10073 year: 2019 ident: D3OB01847D/cit163/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB02044F – volume: 45 start-page: 866 year: 1972 ident: D3OB01847D/cit253/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.45.866 – volume: 20 start-page: 1183 year: 1982 ident: D3OB01847D/cit255/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39820001183 – volume: 357 start-page: 933 year: 2015 ident: D3OB01847D/cit208/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201400804 – volume: 14 start-page: 4807 year: 2019 ident: D3OB01847D/cit141/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201901334 – volume: 66 start-page: 2434 year: 2001 ident: D3OB01847D/cit182/1 publication-title: J. Org. Chem. doi: 10.1021/jo001710q – volume: 42 start-page: 2844 year: 2012 ident: D3OB01847D/cit206/1 publication-title: Synth. Commun. doi: 10.1080/00397911.2011.569867 – volume: 144 start-page: 12032 year: 2022 ident: D3OB01847D/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02126 – volume: 48 start-page: 1227 year: 2015 ident: D3OB01847D/cit11/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00047 – start-page: 6327 year: 2017 ident: D3OB01847D/cit153/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201701293 – volume: 10 start-page: 4972 year: 2023 ident: D3OB01847D/cit54/1 publication-title: Org. Chem. Front. doi: 10.1039/D3QO00933E – volume: 10 start-page: 5397 year: 2018 ident: D3OB01847D/cit178/1 publication-title: ChemCatChem doi: 10.1002/cctc.201801548 – start-page: 1149 year: 2019 ident: D3OB01847D/cit37/1 publication-title: Synlett – volume: 24 start-page: 4173 year: 2018 ident: D3OB01847D/cit179/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201705404 – volume: 19 start-page: 774 year: 2017 ident: D3OB01847D/cit79/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b03735 – volume: 26 start-page: 256 year: 2021 ident: D3OB01847D/cit107/1 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2020.10.014 – volume: 13 start-page: 2944 year: 2011 ident: D3OB01847D/cit248/1 publication-title: Org. Lett. doi: 10.1021/ol201007e – volume: 11 start-page: 5115 year: 1970 ident: D3OB01847D/cit252/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)96953-3 – volume: 23 start-page: 3331 year: 2021 ident: D3OB01847D/cit135/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c00829 – volume: 33 start-page: 4732 year: 2022 ident: D3OB01847D/cit50/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.02.019 – volume: 22 start-page: 14151 year: 2016 ident: D3OB01847D/cit119/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201603092 – volume: 71 start-page: 8885 year: 2015 ident: D3OB01847D/cit152/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2015.09.070 – volume: 54 start-page: 185 year: 2014 ident: D3OB01847D/cit5/1 publication-title: Polym. Rev. doi: 10.1080/15583724.2013.863209 – volume: 51 start-page: 8351 year: 2022 ident: D3OB01847D/cit24/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00553K – start-page: 4023 year: 2008 ident: D3OB01847D/cit90/1 publication-title: Dalton Trans. doi: 10.1039/b800473k – volume: 5 start-page: 2317 year: 2018 ident: D3OB01847D/cit260/1 publication-title: Org. Chem. Front. doi: 10.1039/C8QO00435H – volume: 7 start-page: 34 year: 2009 ident: D3OB01847D/cit195/1 publication-title: Org. Biomol. Chem. doi: 10.1039/B818390B – volume: 361 start-page: 1710 year: 2019 ident: D3OB01847D/cit58/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801307 – volume: 52 start-page: 2344 year: 2011 ident: D3OB01847D/cit183/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2011.02.077 – start-page: 1385 year: 2014 ident: D3OB01847D/cit98/1 publication-title: Synlett doi: 10.1055/s-0033-1341277 – volume: 7 start-page: 2815 year: 2020 ident: D3OB01847D/cit6/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00640H – volume: 79 start-page: 10605 year: 2014 ident: D3OB01847D/cit221/1 publication-title: J. Org. Chem. doi: 10.1021/jo501778h – volume: 116 start-page: 154341 year: 2023 ident: D3OB01847D/cit264/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2023.154341 – volume: 86 start-page: 3324 year: 2021 ident: D3OB01847D/cit201/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c02683 – start-page: 124 year: 2023 ident: D3OB01847D/cit82/1 publication-title: Synlett – volume: 695 start-page: 2118 year: 2010 ident: D3OB01847D/cit89/1 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2010.05.022 – volume: 84 start-page: 6669 year: 2019 ident: D3OB01847D/cit84/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b00311 – volume: 57 start-page: 3622 year: 2016 ident: D3OB01847D/cit219/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.06.126 – volume: 40 start-page: 451 year: 2019 ident: D3OB01847D/cit44/1 publication-title: J. Sulphur Chem. doi: 10.1080/17415993.2019.1596268 – volume: 40 start-page: 886 year: 2020 ident: D3OB01847D/cit72/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc201910020 – volume: 45 start-page: 2735 year: 2004 ident: D3OB01847D/cit100/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2004.02.042 – volume: 15 start-page: 1942 year: 2017 ident: D3OB01847D/cit45/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB02833K – volume: 12 start-page: 6214 year: 2022 ident: D3OB01847D/cit63/1 publication-title: RSC Adv. doi: 10.1039/D1RA09060G – volume: 17 start-page: 419 year: 1969 ident: D3OB01847D/cit251/1 publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.17.419 – volume: 19 start-page: 1401 year: 2008 ident: D3OB01847D/cit99/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2008.09.053 – volume: 16 start-page: 848 year: 2014 ident: D3OB01847D/cit202/1 publication-title: Org. Lett. doi: 10.1021/ol4036209 – volume: 83 start-page: 7331 year: 2018 ident: D3OB01847D/cit217/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b02718 – start-page: 6576 year: 2017 ident: D3OB01847D/cit70/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201700853 – volume: 2 start-page: 9227 year: 2017 ident: D3OB01847D/cit123/1 publication-title: ChemistrySelect doi: 10.1002/slct.201701758 – volume: 43 start-page: 2040 year: 2023 ident: D3OB01847D/cit53/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202210015 – volume: 6 start-page: 13077 year: 2021 ident: D3OB01847D/cit29/1 publication-title: ChemistrySelect doi: 10.1002/slct.202102042 – volume: 8 start-page: 326 year: 2021 ident: D3OB01847D/cit18/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO01226B – volume: 41 start-page: 6390 year: 2012 ident: D3OB01847D/cit103/1 publication-title: Dalton Trans. doi: 10.1039/c2dt12225a – volume: 144 start-page: 2943 year: 2022 ident: D3OB01847D/cit229/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09635 – volume: 4 start-page: 875 year: 2015 ident: D3OB01847D/cit132/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201500192 – volume: 25 start-page: 3445 year: 2023 ident: D3OB01847D/cit230/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.3c01002 – volume: 11 start-page: e202200038 year: 2022 ident: D3OB01847D/cit26/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202200038 – volume: 365 start-page: 2310 year: 2023 ident: D3OB01847D/cit52/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202300434 – volume: 11 start-page: 22305 year: 2021 ident: D3OB01847D/cit61/1 publication-title: RSC Adv. doi: 10.1039/D1RA01035B – volume: 94 start-page: 153697 year: 2022 ident: D3OB01847D/cit263/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2022.153697 – volume: 74 start-page: 1513 year: 2018 ident: D3OB01847D/cit228/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2018.02.014 – start-page: e202200752 year: 2022 ident: D3OB01847D/cit156/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202200752 – volume: 117 start-page: 4147 year: 2017 ident: D3OB01847D/cit8/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00517 – volume: 5 start-page: 13103 year: 2020 ident: D3OB01847D/cit48/1 publication-title: ChemistrySelect doi: 10.1002/slct.202003650 – volume: 45 start-page: 15278 year: 2016 ident: D3OB01847D/cit66/1 publication-title: Dalton Trans. doi: 10.1039/C6DT02167K – volume: 81 start-page: 11297 year: 2016 ident: D3OB01847D/cit235/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b02271 – start-page: 1588 year: 2019 ident: D3OB01847D/cit65/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201801765 – volume: 16 start-page: 880 year: 2018 ident: D3OB01847D/cit210/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB03177G – volume: 22 start-page: 11854 year: 2016 ident: D3OB01847D/cit175/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201600800 – volume: 20 start-page: 1499 year: 2018 ident: D3OB01847D/cit234/1 publication-title: Green Chem. doi: 10.1039/C7GC03576D – volume: 20 start-page: 2459 year: 2014 ident: D3OB01847D/cit116/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201304717 – volume: 20 start-page: 6072 year: 2022 ident: D3OB01847D/cit69/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D2OB00986B – volume: 361 start-page: 1092 year: 2019 ident: D3OB01847D/cit218/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801510 – start-page: 4740 year: 2017 ident: D3OB01847D/cit209/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201700744 – start-page: 6167 year: 2018 ident: D3OB01847D/cit125/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201801071 – volume: 25 start-page: 5779 year: 2023 ident: D3OB01847D/cit136/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.3c02004 – volume: 15 start-page: 6867 year: 2017 ident: D3OB01847D/cit111/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB01662J – volume: 100 start-page: 3205 year: 2000 ident: D3OB01847D/cit20/1 publication-title: Chem. Rev. doi: 10.1021/cr9902749 – volume: 9 start-page: 1631 year: 2020 ident: D3OB01847D/cit172/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202000318 – volume: 21 start-page: 2670 year: 2019 ident: D3OB01847D/cit80/1 publication-title: Green Chem. doi: 10.1039/C9GC00007K – volume: 41 start-page: 1098 year: 2021 ident: D3OB01847D/cit143/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202009030 – volume: 69 start-page: 4265 year: 2004 ident: D3OB01847D/cit101/1 publication-title: J. Org. Chem. doi: 10.1021/jo0401265 – volume: 118 start-page: 685 year: 1996 ident: D3OB01847D/cit139/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja953246q – volume: 23 start-page: 3076 year: 2021 ident: D3OB01847D/cit265/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c00751 – volume: 16 start-page: 1200 year: 2016 ident: D3OB01847D/cit3/1 publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026615666150915111741 – volume: 73 start-page: 5444 year: 2017 ident: D3OB01847D/cit258/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2017.07.053 – volume: 83 start-page: 8241 year: 2018 ident: D3OB01847D/cit85/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b00974 – volume: 117 start-page: 5521 year: 2017 ident: D3OB01847D/cit40/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00697 – volume: 53 start-page: 5906 year: 2017 ident: D3OB01847D/cit75/1 publication-title: Chem. Commun. doi: 10.1039/C7CC03107F – volume: 7 start-page: e48780 year: 2012 ident: D3OB01847D/cit104/1 publication-title: PLoS One doi: 10.1371/journal.pone.0048780 – volume: 74 start-page: 3971 year: 2018 ident: D3OB01847D/cit177/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2018.05.084 – volume: 112 start-page: 101 year: 1996 ident: D3OB01847D/cit240/1 publication-title: Phosphorus, Sulfur Silicon Relat. Elem. doi: 10.1080/10426509608046352 – volume: 8 start-page: 4527 year: 2017 ident: D3OB01847D/cit87/1 publication-title: Chem. Sci. doi: 10.1039/C7SC01162H – volume: 7 start-page: 1022 year: 2020 ident: D3OB01847D/cit68/1 publication-title: Org. Chem. Front. doi: 10.1039/C9QO01497G – volume: 5 start-page: 427 year: 1986 ident: D3OB01847D/cit93/1 publication-title: Organometallics doi: 10.1021/om00134a005 – volume: 115 start-page: 765 year: 2015 ident: D3OB01847D/cit12/1 publication-title: Chem. Rev. doi: 10.1021/cr5002386 – volume: 359 start-page: 2215 year: 2017 ident: D3OB01847D/cit173/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201601431 – volume: 19 start-page: 1459 year: 2021 ident: D3OB01847D/cit23/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB02320E – volume: 61 start-page: 152062 year: 2020 ident: D3OB01847D/cit128/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2020.152062 – volume: 9 start-page: 706 year: 2014 ident: D3OB01847D/cit42/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201301500 – volume: 86 start-page: 291 year: 2021 ident: D3OB01847D/cit236/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c02078 – volume: 72 start-page: 7294 year: 2007 ident: D3OB01847D/cit242/1 publication-title: J. Org. Chem. doi: 10.1021/jo071209z – volume: 63 start-page: 2892 year: 1998 ident: D3OB01847D/cit241/1 publication-title: J. Org. Chem. doi: 10.1021/jo972022i – volume: 361 start-page: 3331 year: 2019 ident: D3OB01847D/cit225/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900301 – volume: 16 start-page: 590 year: 2011 ident: D3OB01847D/cit41/1 publication-title: Molecules doi: 10.3390/molecules16010590 – volume: 71 start-page: 5458 year: 2015 ident: D3OB01847D/cit131/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2015.06.077 – volume: 50 start-page: 1002 year: 2017 ident: D3OB01847D/cit109/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00023 – volume: 69 start-page: 5793 year: 2004 ident: D3OB01847D/cit246/1 publication-title: J. Org. Chem. doi: 10.1021/jo0493727 – volume: 12 start-page: e202300252 year: 2023 ident: D3OB01847D/cit36/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202300252 – start-page: 7066 year: 2011 ident: D3OB01847D/cit97/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201101245 – volume: 21 start-page: 733 year: 2019 ident: D3OB01847D/cit199/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b03954 – volume: 55 start-page: 1639 year: 2019 ident: D3OB01847D/cit198/1 publication-title: Chem. Commun. doi: 10.1039/C8CC09821B – volume: 29 start-page: 334 year: 2019 ident: D3OB01847D/cit147/1 publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2019.05.032 – volume: 7 start-page: 22860 year: 2017 ident: D3OB01847D/cit223/1 publication-title: RSC Adv. doi: 10.1039/C7RA02350B – volume: 16 start-page: 9243 year: 2018 ident: D3OB01847D/cit86/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB02792G – volume: 16 start-page: 110 year: 2019 ident: D3OB01847D/cit142/1 publication-title: Lett. Org. Chem. doi: 10.2174/1570178615666180627111437 – volume: 37 start-page: 246 year: 2020 ident: D3OB01847D/cit1/1 publication-title: Nat. Prod. Rep. doi: 10.1039/C8NP00093J – volume: 43 start-page: 3761 year: 2023 ident: D3OB01847D/cit19/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202303042 – volume: 84 start-page: 10490 year: 2019 ident: D3OB01847D/cit144/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b01237 – volume: 31 start-page: 49 year: 2020 ident: D3OB01847D/cit73/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.05.048 – volume: 89 start-page: 284 year: 2017 ident: D3OB01847D/cit106/1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.01.173 – volume: 7 start-page: 1030 year: 2017 ident: D3OB01847D/cit74/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03236 – volume: 14 start-page: 6150 year: 2012 ident: D3OB01847D/cit197/1 publication-title: Org. Lett. doi: 10.1021/ol3028225 – volume: 17 start-page: 7055 year: 2019 ident: D3OB01847D/cit126/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01255A – volume: 21 start-page: 2509 year: 2017 ident: D3OB01847D/cit159/1 publication-title: Curr. Org. Chem. doi: 10.2174/1385272821666170222110412 – volume: 14 start-page: 2520 year: 2018 ident: D3OB01847D/cit227/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.14.228 – volume: 54 start-page: 5772 year: 2015 ident: D3OB01847D/cit187/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411997 – volume: 361 start-page: 49 year: 2019 ident: D3OB01847D/cit261/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801138 – volume: 10 start-page: 1089860 year: 2022 ident: D3OB01847D/cit150/1 publication-title: Front. Chem. doi: 10.3389/fchem.2022.1089860 – volume: 47 start-page: 9188 year: 2011 ident: D3OB01847D/cit164/1 publication-title: Chem. Commun. doi: 10.1039/c1cc13633j – volume: 22 start-page: 427 year: 2020 ident: D3OB01847D/cit212/1 publication-title: Green Chem. doi: 10.1039/C9GC03384J – volume: 11 start-page: e202200226 year: 2022 ident: D3OB01847D/cit62/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202200226 – volume: 26 start-page: 1935 year: 2022 ident: D3OB01847D/cit31/1 publication-title: Curr. Org. Chem. doi: 10.2174/1385272826666220620153347 – volume: 10 start-page: 5198 year: 2023 ident: D3OB01847D/cit171/1 publication-title: Org. Chem. Front. doi: 10.1039/D3QO01042B – volume: 20 start-page: 416 year: 2014 ident: D3OB01847D/cit134/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201303730 – volume: 10 start-page: 6889 year: 2022 ident: D3OB01847D/cit64/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c01006 – volume: 22 start-page: 62 year: 2014 ident: D3OB01847D/cit108/1 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.09.018 – volume: 18 start-page: 574 year: 2017 ident: D3OB01847D/cit110/1 publication-title: ChemBioChem doi: 10.1002/cbic.201600582 – volume: 87 start-page: 16175 year: 2022 ident: D3OB01847D/cit149/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.2c01567 – volume: 78 start-page: 1434 year: 2013 ident: D3OB01847D/cit78/1 publication-title: J. Org. Chem. doi: 10.1021/jo302480j – volume: 224 start-page: 52 year: 2019 ident: D3OB01847D/cit57/1 publication-title: J. Fluor. Chem. doi: 10.1016/j.jfluchem.2019.05.004 – volume: 14 start-page: 1131 year: 2016 ident: D3OB01847D/cit222/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB02193F – volume: 33 start-page: 1490 year: 2009 ident: D3OB01847D/cit196/1 publication-title: New J. Chem. doi: 10.1039/b900786e – volume: 26 start-page: 17289 year: 2020 ident: D3OB01847D/cit28/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202001414 – volume: 15 start-page: 2804 year: 2017 ident: D3OB01847D/cit213/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB02823C – volume: 11 start-page: 8036 year: 2013 ident: D3OB01847D/cit151/1 publication-title: Org. Biomol. Chem. doi: 10.1039/c3ob41601a – volume: 39 start-page: 447 year: 2007 ident: D3OB01847D/cit249/1 publication-title: Org. Prep. Proced. Int. doi: 10.1080/00304940709458600 – volume: 70 start-page: 8730 year: 2014 ident: D3OB01847D/cit115/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2014.09.042 – volume: 438 start-page: 213885 year: 2021 ident: D3OB01847D/cit9/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213885 – volume: 10 start-page: 20046 year: 2020 ident: D3OB01847D/cit32/1 publication-title: RSC Adv. doi: 10.1039/D0RA03086D – volume: 107 start-page: 5133 year: 2007 ident: D3OB01847D/cit7/1 publication-title: Chem. Rev. doi: 10.1021/cr068440h – volume: 13 start-page: 7886 year: 2022 ident: D3OB01847D/cit266/1 publication-title: Chem. Sci. doi: 10.1039/D2SC00765G – volume: 34 start-page: 8041 year: 1993 ident: D3OB01847D/cit102/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)61445-4 – volume: 365 start-page: 990 year: 2023 ident: D3OB01847D/cit162/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202300208 – volume: 68 start-page: 10426 year: 2012 ident: D3OB01847D/cit96/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2012.08.086 – volume: 365 start-page: 3413 year: 2023 ident: D3OB01847D/cit34/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202300812 – volume: 18 start-page: 3202 year: 2016 ident: D3OB01847D/cit137/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b01420 – volume: 134 start-page: 18237 year: 2012 ident: D3OB01847D/cit112/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3092278 – volume: 6 start-page: 41 year: 2017 ident: D3OB01847D/cit138/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201600491 – volume: 11 start-page: 6682 year: 2021 ident: D3OB01847D/cit30/1 publication-title: RSC Adv. doi: 10.1039/D0RA10629A – volume: 87 start-page: 1133 year: 2022 ident: D3OB01847D/cit158/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c02502 – volume: 56 start-page: 1847 year: 2020 ident: D3OB01847D/cit189/1 publication-title: Chem. Commun. doi: 10.1039/C9CC09001K – volume: 22 start-page: 4906 year: 2020 ident: D3OB01847D/cit168/1 publication-title: Green Chem. doi: 10.1039/D0GC00591F – start-page: 2110 year: 2020 ident: D3OB01847D/cit167/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202000162 – start-page: 4411 year: 2021 ident: D3OB01847D/cit233/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202100568 – volume: 375 start-page: 82 year: 2017 ident: D3OB01847D/cit4/1 publication-title: Top. Curr. Chem. doi: 10.1007/s41061-017-0169-9 – volume: 13 start-page: 589 year: 2017 ident: D3OB01847D/cit43/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.13.58 – volume: 14 start-page: 9210 year: 2016 ident: D3OB01847D/cit243/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB01856D – volume: 359 start-page: 4117 year: 2017 ident: D3OB01847D/cit121/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201700949 – volume: 86 start-page: 10166 year: 2021 ident: D3OB01847D/cit232/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c00898 – volume: 114 start-page: 8807 year: 2014 ident: D3OB01847D/cit38/1 publication-title: Chem. Rev. doi: 10.1021/cr500235v – volume: 2 start-page: 166 year: 2020 ident: D3OB01847D/cit200/1 publication-title: Nanoscale Adv. doi: 10.1039/C9NA00671K – volume: 26 start-page: 1955 year: 2007 ident: D3OB01847D/cit91/1 publication-title: Organometallics doi: 10.1021/om061144a – volume: 104 start-page: 154041 year: 2022 ident: D3OB01847D/cit190/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2022.154041 – volume: 9 start-page: 629 year: 2018 ident: D3OB01847D/cit192/1 publication-title: Chem. Sci. doi: 10.1039/C7SC03891G – volume: 20 start-page: 3291 year: 2018 ident: D3OB01847D/cit165/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b01168 – volume: 345 start-page: 370 year: 2003 ident: D3OB01847D/cit140/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200390042 – volume: 58 start-page: 2771 year: 2017 ident: D3OB01847D/cit176/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2017.06.003 – volume: 85 start-page: 3071 year: 2020 ident: D3OB01847D/cit181/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b02963 – volume: 33 start-page: 1798 year: 2022 ident: D3OB01847D/cit33/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.09.068 – volume: 37 start-page: 1667 year: 2017 ident: D3OB01847D/cit71/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc201702009 – volume: 50 start-page: 8875 year: 2014 ident: D3OB01847D/cit184/1 publication-title: Chem. Commun. doi: 10.1039/C4CC03600J – volume: 79 start-page: 9655 year: 2014 ident: D3OB01847D/cit185/1 publication-title: J. Org. Chem. doi: 10.1021/jo501793q – volume: 83 start-page: 6056 year: 2018 ident: D3OB01847D/cit239/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b00721 – volume: 24 start-page: 7605 year: 2022 ident: D3OB01847D/cit81/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.2c03066 – volume: 8 start-page: 2546 year: 2013 ident: D3OB01847D/cit14/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.201300636 – volume: 56 start-page: 735 year: 2020 ident: D3OB01847D/cit169/1 publication-title: Chem. Commun. doi: 10.1039/C9CC08784B – volume: 85 start-page: 11104 year: 2020 ident: D3OB01847D/cit161/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c00921 – volume: 12 start-page: 30564 year: 2022 ident: D3OB01847D/cit49/1 publication-title: RSC Adv. doi: 10.1039/D2RA04128F – volume: 11 start-page: 424 year: 2014 ident: D3OB01847D/cit250/1 publication-title: Mini-Rev. Org. Chem. doi: 10.2174/1570193X1104140926165906 – volume: 6 start-page: 2732 year: 2019 ident: D3OB01847D/cit180/1 publication-title: Org. Chem. Front. doi: 10.1039/C9QO00631A – volume: 21 start-page: 7643 year: 2023 ident: D3OB01847D/cit170/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D3OB01109G – volume: 36 start-page: 819 year: 2018 ident: D3OB01847D/cit154/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201800164 – volume: 58 start-page: 9099 year: 2019 ident: D3OB01847D/cit127/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903511 – volume: 2 start-page: 287 year: 1973 ident: D3OB01847D/cit254/1 publication-title: Chem. Lett. doi: 10.1246/cl.1973.287 – volume: 190 start-page: 537 year: 2015 ident: D3OB01847D/cit88/1 publication-title: Phosphorus, Sulfur Silicon Relat. Elem. doi: 10.1080/10426507.2014.965820 – volume: 358 start-page: 4100 year: 2016 ident: D3OB01847D/cit226/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201600846 |
SSID | ssj0019764 |
Score | 2.4839861 |
SecondaryResourceType | review_article |
Snippet | Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 645 |
SubjectTerms | Agrochemicals Aromatic compounds Chelation Chemical bonds Electrochemistry Intermediates Natural products Polymers Substrates Transition metals |
Title | Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp)-H and C(sp)-H bonds |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38180073 https://www.proquest.com/docview/2917761533 https://www.proquest.com/docview/2918195671 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKdwE3iL9BYaAgQGJC3hI7iZvL0XUqqGxIy0TFTRT_lCJVybQ2EuKKd-CBeBeehGM7TjI6IeAmamzXiXy--Jzj89kHoee5ALcn5gwLFRIcsmiOeQReClgizB9KEQRMb05-dxxPzsK3s2jW6_3osJaqNd8TX6_cV_I_UoUykKveJfsPkm06hQL4DfKFK0gYrn8lY7D5DEXcxvENs3Vl8tpoOhC8RYmhb6mJ8UtRQi9W2HqpXH0Ry8ow1zeqNT8DzM7VOXlBEseFoBPzN1tBL1fwst4t7Ixcu79TGFTp7f0uA-8r4bLLdUgFxSd8ulB2xvmQ13oUqmaV0Q5Vi97TRV7i91c0HS2qAk_r5CwfdWfdtQyi-S-YtGuZdsXE0VUNHaX7WnaGDhnDmrxjFVi3zJ6K5KZ1QjrwDTtzdGzPr6zVfWwzxmxoEp_qg1glLbkPTjCTrb50HIHjk-zobDrN0vEsvYa2CAPjrY-2Dsbpm2kTyAJrzxAb3Fu7E3Jpst_2fdkm2nB0wOy5cOlojNmT3kI3a3_FO7Dgu416qriDrjcjdhdVFoSeA6H3ufAaEHoGhPu_Y8wDLHkNBL2N6nLujV4CAHd_fvs-MY31LbW3Bm73UHo0TkcTXOfywIJStsaxBNdciZgPBWiJYTwnnIfST2TE83kE01meBKHkEQ-Vz6NcxJFQOffnUaLzPXC6jfpFWagHyAsIy5mSJhF9yBk4-BKsVgWKSA510HyAdt1gZqI-516nW1lmhm9Bk-yQnrw2A384QM-atuf2dJcrW-04mWT117_KSBIwZrylAXraVMPY64BbXqiyMm10mDpmwQDdt7JsHqMtZR0mH6BtEG5T3ILi4Z-f-gjdaL-gHdRfX1TqMdjHa_6kxuAv09m6qQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+selective+mono-%2Fdichalcogenation+and+exclusive+dichalcogenation+of+C%28sp2%29%E2%80%93H+and+C%28sp3%29%E2%80%93H+bonds&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Chang-Sheng%2C+Wang&rft.au=Xu%2C+Yuan&rft.au=Shao-Peng%2C+Wang&rft.au=Chun-Ling%2C+Zheng&rft.date=2024-01-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=22&rft.issue=4&rft.spage=645&rft.epage=681&rft_id=info:doi/10.1039%2Fd3ob01847d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon |