Symmetry-Based Fusion Algorithm for Bone Age Detection with YOLOv5 and ResNet34
Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the extent of human growth and development. The prevalent viewpoint and research development direction now favor the employment of deep learning-base...
Saved in:
| Published in | Symmetry (Basel) Vol. 15; no. 7; p. 1377 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-8994 2073-8994 |
| DOI | 10.3390/sym15071377 |
Cover
| Abstract | Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the extent of human growth and development. The prevalent viewpoint and research development direction now favor the employment of deep learning-based bone age detection algorithms to determine bone age. Although bone age detection accuracy has increased when compared to more established methods, more work needs to be conducted to raise it because bone age detection is primarily used in clinical medicine, forensic identification, and other critical and rigorous fields. Due to the symmetry of human hand bones, bone age detection can be performed on either the left hand or the right hand, and the results are the same. In other words, the bone age detection results of both hands are universal. In this regard, the left hand is chosen as the target of bone age detection in this paper. To accomplish this, the You Only Look Once-v5 (YOLOv5) and Residual Network-34 (ResNet34) integration techniques are combined in this paper to create an innovative bone age detection model (YARN), which is then combined with the RUS-CHN scoring method that applies to Chinese adolescent children to comprehensively assess bone age at multiple levels. In this study, the images in the hand bone dataset are first preprocessed with number enhancement, then YOLOv5 is used to train the hand bone dataset to identify and filter out the main 13 joints in the hand bone, and finally, ResNet34 is used to complete the classification of local joints and achieve the determination of the developmental level of the detected region, followed by the calculation of the bone age by combining with the RUS-CHN method. The bone age detection model based on YOLOv5 and ResNet34 can significantly improve the accuracy and efficiency of bone age detection, and the model has significant advantages in the deep feature extraction of key regions of hand bone joints, which can efficiently complete the task of bone age detection. This was discovered through experiments on the public dataset of Flying Paddle AI Studio. |
|---|---|
| AbstractList | Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the extent of human growth and development. The prevalent viewpoint and research development direction now favor the employment of deep learning-based bone age detection algorithms to determine bone age. Although bone age detection accuracy has increased when compared to more established methods, more work needs to be conducted to raise it because bone age detection is primarily used in clinical medicine, forensic identification, and other critical and rigorous fields. Due to the symmetry of human hand bones, bone age detection can be performed on either the left hand or the right hand, and the results are the same. In other words, the bone age detection results of both hands are universal. In this regard, the left hand is chosen as the target of bone age detection in this paper. To accomplish this, the You Only Look Once-v5 (YOLOv5) and Residual Network-34 (ResNet34) integration techniques are combined in this paper to create an innovative bone age detection model (YARN), which is then combined with the RUS-CHN scoring method that applies to Chinese adolescent children to comprehensively assess bone age at multiple levels. In this study, the images in the hand bone dataset are first preprocessed with number enhancement, then YOLOv5 is used to train the hand bone dataset to identify and filter out the main 13 joints in the hand bone, and finally, ResNet34 is used to complete the classification of local joints and achieve the determination of the developmental level of the detected region, followed by the calculation of the bone age by combining with the RUS-CHN method. The bone age detection model based on YOLOv5 and ResNet34 can significantly improve the accuracy and efficiency of bone age detection, and the model has significant advantages in the deep feature extraction of key regions of hand bone joints, which can efficiently complete the task of bone age detection. This was discovered through experiments on the public dataset of Flying Paddle AI Studio. |
| Audience | Academic |
| Author | Shen, Jiahui Liu, Zhixuan Huang, Qiming Lin, Jiayan Zhu, Qi Zhou, Lan Sheng, Wenshun |
| Author_xml | – sequence: 1 givenname: Wenshun orcidid: 0000-0001-5393-2889 surname: Sheng fullname: Sheng, Wenshun – sequence: 2 givenname: Jiahui surname: Shen fullname: Shen, Jiahui – sequence: 3 givenname: Qiming surname: Huang fullname: Huang, Qiming – sequence: 4 givenname: Zhixuan surname: Liu fullname: Liu, Zhixuan – sequence: 5 givenname: Jiayan surname: Lin fullname: Lin, Jiayan – sequence: 6 givenname: Qi surname: Zhu fullname: Zhu, Qi – sequence: 7 givenname: Lan surname: Zhou fullname: Zhou, Lan |
| BookMark | eNp9kEtLAzEUhYMoWGtX_oGAS52amUxey7ZaFYoDPhauhjRN6pR51CRjmX9vyrgoguYukpt8J_dwzsBx3dQagIsYjTEW6MZ1VUwQizFjR2CQIIYjLkR6fHA-BSPnNigsgkhK0QBkL11VaW-7aCqdXsF564qmhpNy3djCf1TQNBZOwyA4WWt4q71Wfg_swiN8zxbZF4GyXsFn7Z60x-k5ODGydHr0sw_B2_zudfYQLbL7x9lkESmMmY_IEi8FTUjoUo6kodwwijBbxgmXSvAUY4I5VdzwRCCmlNTEaLrE2rBVygQeguv-37beym4nyzLf2qKStstjlO_zyA_yCPhlj29t89lq5_NN09o6OMyTMCyOBcU0UOOeWstS50VtGm-lCrXSVaFCCKYI9xNGRIJpgngQxL1A2cY5q02uCi_3AQVhUf5h5eqX5j_j38tqjZE |
| CitedBy_id | crossref_primary_10_32604_cmc_2024_047377 crossref_primary_10_1016_j_displa_2024_102905 crossref_primary_10_3390_sym16040450 |
| Cites_doi | 10.1109/CVPR.2016.90 10.1186/s40537-020-00347-0 10.1007/978-3-642-32639-4_6 10.1007/s10278-017-9955-8 10.15377/2409-5761.2020.07.2 10.3390/s22020464 10.3348/kjr.2020.1468 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY |
| DOI | 10.3390/sym15071377 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10.3390/sym15071377 A759236208 10_3390_sym15071377 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c337t-5b3b9625c33480af68f76037b128ac984335386c8f82907ccae5fe6b3ef7d4793 |
| IEDL.DBID | BENPR |
| ISSN | 2073-8994 |
| IngestDate | Sun Oct 26 05:54:42 EDT 2025 Fri Jul 25 11:56:14 EDT 2025 Mon Oct 20 17:18:49 EDT 2025 Thu Oct 16 04:26:22 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-5b3b9625c33480af68f76037b128ac984335386c8f82907ccae5fe6b3ef7d4793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5393-2889 |
| OpenAccessLink | https://www.proquest.com/docview/2843119636?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2843119636 |
| PQPubID | 2032326 |
| ParticipantIDs | unpaywall_primary_10_3390_sym15071377 proquest_journals_2843119636 gale_infotracacademiconefile_A759236208 crossref_citationtrail_10_3390_sym15071377 crossref_primary_10_3390_sym15071377 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_24) 2023; 13 Peng (ref_4) 2021; 18 Mao (ref_14) 2023; 45 Zhang (ref_10) 2021; 34 Zhang (ref_5) 2022; 11 Fang (ref_19) 2023; 7 Wibisono (ref_9) 2020; 7 ref_15 Tang (ref_16) 2021; 35 Li (ref_17) 2023; 44 Huang (ref_21) 2022; 45 Wang (ref_26) 2010; 43 Ning (ref_1) 2008; 4 Wu (ref_20) 2022; 43 Chen (ref_18) 2022; 30 Lee (ref_7) 2017; 4 ref_22 Sharkawy (ref_25) 2020; 7 ref_3 ref_2 Wang (ref_11) 2021; 47 Xu (ref_23) 2023; 53 Zhan (ref_8) 2019; 34 Ding (ref_12) 2021; 49 Lee (ref_13) 2021; 22 Davis (ref_6) 2012; 7435 |
| References_xml | – volume: 45 start-page: 958 year: 2023 ident: ref_14 article-title: A Study of the CHN Intelligent Bone Age Assessment Method concerning Atlas Developmental Indication publication-title: J. Electron. Inf. Technol. – ident: ref_3 doi: 10.1109/CVPR.2016.90 – volume: 18 start-page: 113 year: 2021 ident: ref_4 article-title: The value of novel artificial intelligence in the determination of bone age in regional population publication-title: China Med. Equip. – volume: 11 start-page: 26 year: 2022 ident: ref_5 article-title: Baid Paddlepaddle: Independent AI based deep learning accelerates industrial upgrading publication-title: In-Depth Interview – volume: 34 start-page: 252 year: 2021 ident: ref_10 article-title: Bone Age Assessment Method on X-ray Images of Pediatric Hand Bone Based on Deep Learning publication-title: Space Med. Med. Eng. – volume: 45 start-page: 225 year: 2022 ident: ref_21 article-title: Design and Implementation of Batched GEMM for Deep Learning publication-title: Chin. J. Comput. – volume: 7 start-page: 67 year: 2020 ident: ref_9 article-title: Multi Region-Based Feature Connected Layer (RB-FCL) of deep learning models for bone age assessment publication-title: J. Big Data doi: 10.1186/s40537-020-00347-0 – volume: 47 start-page: 291 year: 2021 ident: ref_11 article-title: Bone Age Assessment for X-ray Images of Hand Bone Based on Deep Learning publication-title: Comput. Eng. – volume: 13 start-page: 52 year: 2023 ident: ref_24 article-title: Improved LFM-SGD collaborative filtering recommendation algorithm based on implicit data publication-title: Intell. Comput. Appl. – volume: 7435 start-page: 43 year: 2012 ident: ref_6 article-title: Automated Bone Age Assessment Using Feature Extraction publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-32639-4_6 – volume: 4 start-page: 427 year: 2017 ident: ref_7 article-title: Fully Automated Deep Learning System for Bone Age Assessment publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9955-8 – volume: 43 start-page: 194 year: 2010 ident: ref_26 article-title: X-Ray Luggage Image Enhancement Based on CLAHE publication-title: J. Tianjin Univ. – volume: 35 start-page: 127 year: 2021 ident: ref_16 article-title: Improved BP neural network with ADAM optimizer and the application of dynamic weighing publication-title: J. Electron. Meas. Instrum. – volume: 7 start-page: 8 year: 2020 ident: ref_25 article-title: Principle of neural network and its main types publication-title: J. Adv. Appl. Comput. Math. doi: 10.15377/2409-5761.2020.07.2 – volume: 44 start-page: 16 year: 2023 ident: ref_17 article-title: Mask detection algorithm based on YOLOv5 integrating attention mechanism publication-title: J. Graph. – volume: 43 start-page: 791 year: 2022 ident: ref_20 article-title: An object detection method of a falling person based on optimized YOLOv5s publication-title: J. Graph. – volume: 7 start-page: 111 year: 2023 ident: ref_19 article-title: Optimization and Application of K-means Algorithm publication-title: Mod. Inf. Technol. – volume: 4 start-page: 16 year: 2008 ident: ref_1 article-title: Diagnostic Test of TW System Bone Age of the Radius Ulna and Short of Bones in Chinese Girls With Idiopathic Precocious Puberty publication-title: Chin. J. Obs./Gyne Pediatr. (Electron. Version) – volume: 30 start-page: 188 year: 2022 ident: ref_18 article-title: Logo Detection Based on Improved Mosaic Data Enhancement and Feature Fusion publication-title: Comput. Meas. Control – ident: ref_15 – volume: 53 start-page: 1 year: 2023 ident: ref_23 article-title: Classification Method of Crystalline Silicon Wafer Based on Residual Network and Attention Mechanism publication-title: Math. Pract. Theory – ident: ref_2 doi: 10.3390/s22020464 – volume: 49 start-page: 511 year: 2021 ident: ref_12 article-title: Bone age assessment of the carpal region based on improved bilinear network publication-title: J. Zhe Jiang Univ. Technol. – ident: ref_22 – volume: 34 start-page: 427 year: 2019 ident: ref_8 article-title: Automated bone age assessment of left hand and wrist in Sichuan Han adolescents based on deep learning publication-title: Chin. J. Forensic Med. – volume: 22 start-page: 2017 year: 2021 ident: ref_13 article-title: Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment publication-title: Korean J. Radiol. doi: 10.3348/kjr.2020.1468 |
| SSID | ssj0000505460 |
| Score | 2.2943215 |
| Snippet | Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1377 |
| SubjectTerms | Accuracy Age Algorithms Automation Bones Classification Clinical medicine Comparative analysis Datasets Deep learning Feature extraction Hand (anatomy) Image enhancement Joints (anatomy) Machine learning Neural networks Object recognition Symmetry Target detection X-rays |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8ATdA_DAGB-isCE_DPEhZUnq2E6epgyoJoRaBFTanjLbscdEm1VNOlR-_c6JO40JISTeL5eL7vtyHwC7CWMpjbQKVGZpkGgmgky2_U-KRjK2pZVtt8WIH06Sj0fsyN85rX1bJabiZ62RHqD8BZgQJGHMQhG65XjhvLT7F76UFHNUkTiijN-GDc4wGO_BxmT0OT92J-XWD3dTeRST-7BezdoACBH95oduWuN7cGdZzeXqp5xOr7mb4SacrAntukx-7C0btad_3djh-B9f8gDu-1CU5J3sbMEtUz2ELa_sNXntN1K_eQTjr6vZzDSLVXCATq8kw6VDR_Lp6fnirPk-Ixj5koPzypD81JD3pmn7uyriirzkePxpfMGIrEryxdQj09DkMUyGH769Owz8JYZAUyqagCmqMsyUtJvbjaTlqRU8okKhd5M6SxNK0XBynVr3X1agVBhmDVfUWFG62t0T6FVIxVMgA01VJFSmDeaWYsBTWUa0pDGVVvJYln14u-ZLof2acnctY1pguuKYWFxjYh92r4Dn3XaOP4O9cgwunM4iLi396AFS5LZfFblgGOfyQZT2YXstA4VX5rpAD05jZ6l4H15eycXfXvjsH-Gew113vr5r_92GXrNYmh0Mchr1wgvyJdkY8_U priority: 102 providerName: Unpaywall |
| Title | Symmetry-Based Fusion Algorithm for Bone Age Detection with YOLOv5 and ResNet34 |
| URI | https://www.proquest.com/docview/2843119636 https://www.mdpi.com/2073-8994/15/7/1377/pdf?version=1688710356 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: ABDBF dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: ADMLS dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: AMVHM dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (via ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BOLQ9oNKHSHloD1R9SBZ21t61DxVyKAFVlYNoI4WTtU96SExKnFb595111ilUFceVVuv1zO68dmY-gKM4SVIaKhnIzNIgVgkPMtHkP0kaishqK5psi4JdjOIv42S8AUVbC-PSKluZ2AhqfatcjPwYxSiN3HFhJ7OfgUONcq-rLYSG8NAK-lPTYmwTtnquM1YHtvpnxeXVOuricNtiFq4K9Sj6-8fz5bSxiSjnD1TTvwL6GTxZVDOx_C0mk3saaPActr3pSPIVr3dgw1QvYMdfzjl57ztIf3gJw2_L6dTUd8ugj0pKk8HCxcRIPrnBP6p_TAlaqqR_WxmS3xjy2dRNPlZFXFCWXA-_Dn8lRFSaXJl5YWoav4LR4Oz76UXgkRMCRSmvg0RSmaFno1ydbSgsSy1nIeUStZFQGZKSoqBjKrXuHZUjF01iDZPUWK5drO01dCrcxS6QnqIy5DJTBn1B3mOp0CHVNKLCChYJ3YWPLdFK5duKO3SLSYnuhaNweY_CXThaT56tumn8f9o7R_3S3TFcSwlfKoA7ct2qypwnaJeyXph2Yb9lUOkv37z8e1S68HbNtMc--ObxZfbgqUOZX2Xp7kOnvluYA7RFankIm-ng_NAfMxydjyMcjYrL_PoPUMrfsA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IMpDpBTYQyseklXHY-_ahwoltFFKQ4JKK5WT2V2v20Pihtqh8p_jtzHrbEJBqLfeV_uYnZ3XzswHsB1GUYy-Vp5KcvRCHQkvkU3-k0JftvMsl022xZD3T8NPZ9HZCvxa1MLYtMqFTGwEdXapbYx8l8Qoti278A_TH55FjbK_qwsIDemgFbK9psWYK-w4MvU1uXDl3uE-3fdOEPQOTj72PYcy4GlEUXmRQpWQF6BtTaovcx7ngvsoFEluqRNaFkkocB3n9s9R0IlNlBuu0OQis3EpmvcerIUYJuT8rXUPhl-Ol1EeixMXcn9eGIiY-LtlPWlsMBTiL1X4r0J4AOuzYirrazke39B4vUfw0JmqrDPnrQ1YMcVj2HDCoGRvXcfqd09g9LWeTEx1VXtdUooZ681sDI51xudEwepiwsgyZt3LwrDOuWH7pmryvwpmg8Ds22gw-hkxWWTs2JRDU2H4FE7vhIbPYLWgXTwHFmhUvlCJNuR7ioDHMvMxwzbKXPK2zFrwfkG0VLs25hZNY5ySO2MpnN6gcAu2l4On8-4d_x_2xlI_tW-a5tLSlSbQjmx3rLQjIrKDeeDHLdhaXFDqHnuZ_mHNFuwsL-22BTdvn-Y1rPdPPg_SweHw6AXctwj38wzhLVitrmbmJdlBlXrlmI3B97vm799oThgc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWI5IMoiBgr40IpFiiYTJ3ZyQGjKMLS0mkFApfYUbMcuh5l0aDJU-Wv8Ot7LMhSEeuvd8vL8-W1-C8BWGEUx9432dOK4F5pIeomq458099XAZU7V0RYTsXsYfjyKjtbgV5cLQ2GVHU-sGXV2ashH3kc2ygcEF9F3bVjEp9H47eKHRx2k6Ke1a6fRQGTfVudovhVv9kZ419tBMH7_9d2u13YY8AznsvQizXWCFoChfFRfORE7KXwuNXJtZRJckiNDECZ29N8o8bQ2clZobp3MyCeF816D65KquFOW-vjDyr9DHeJC4TcpgZwnfr-o5rX2xaX8Swj-Kwpuw81lvlDVuZrNLsi68V240yqpbNigagPWbH4PNlo2ULCXba3qV_dh-qWaz215Vnk7KA4zNl6S940NZydIr_L7nKFOzHZOc8uGJ5aNbFlHfuWM3L_seHow_RkxlWfssy0mtuThAzi8Ego-hPUcd_EIWGC49qVOjEWrUwYiVpnPMz7gyikxUFkPXndES01bwJz6aMxSNGSIwukFCvdgazV40dTt-P-wF0T9lF4zzmVUm5SAO6K6WOlQRqgBi8CPe7DZXVDaPvMi_QPKHmyvLu2yBR9fPs1zuIGoTg_2JvtP4Ba1tm9CgzdhvTxb2qeoAJX6WY00Bt-uGtq_AbXoFbY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8ATdA_DAGB-isCE_DPEhZUnq2E6epgyoJoRaBFTanjLbscdEm1VNOlR-_c6JO40JISTeL5eL7vtyHwC7CWMpjbQKVGZpkGgmgky2_U-KRjK2pZVtt8WIH06Sj0fsyN85rX1bJabiZ62RHqD8BZgQJGHMQhG65XjhvLT7F76UFHNUkTiijN-GDc4wGO_BxmT0OT92J-XWD3dTeRST-7BezdoACBH95oduWuN7cGdZzeXqp5xOr7mb4SacrAntukx-7C0btad_3djh-B9f8gDu-1CU5J3sbMEtUz2ELa_sNXntN1K_eQTjr6vZzDSLVXCATq8kw6VDR_Lp6fnirPk-Ixj5koPzypD81JD3pmn7uyriirzkePxpfMGIrEryxdQj09DkMUyGH769Owz8JYZAUyqagCmqMsyUtJvbjaTlqRU8okKhd5M6SxNK0XBynVr3X1agVBhmDVfUWFG62t0T6FVIxVMgA01VJFSmDeaWYsBTWUa0pDGVVvJYln14u-ZLof2acnctY1pguuKYWFxjYh92r4Dn3XaOP4O9cgwunM4iLi396AFS5LZfFblgGOfyQZT2YXstA4VX5rpAD05jZ6l4H15eycXfXvjsH-Gew113vr5r_92GXrNYmh0Mchr1wgvyJdkY8_U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetry-Based+Fusion+Algorithm+for+Bone+Age+Detection+with+YOLOv5+and+ResNet34&rft.jtitle=Symmetry+%28Basel%29&rft.au=Sheng%2C+Wenshun&rft.au=Shen%2C+Jiahui&rft.au=Huang%2C+Qiming&rft.au=Liu%2C+Zhixuan&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=15&rft.issue=7&rft.spage=1377&rft_id=info:doi/10.3390%2Fsym15071377&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |