Symmetry-Based Fusion Algorithm for Bone Age Detection with YOLOv5 and ResNet34

Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the extent of human growth and development. The prevalent viewpoint and research development direction now favor the employment of deep learning-base...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 15; no. 7; p. 1377
Main Authors Sheng, Wenshun, Shen, Jiahui, Huang, Qiming, Liu, Zhixuan, Lin, Jiayan, Zhu, Qi, Zhou, Lan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym15071377

Cover

Abstract Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the extent of human growth and development. The prevalent viewpoint and research development direction now favor the employment of deep learning-based bone age detection algorithms to determine bone age. Although bone age detection accuracy has increased when compared to more established methods, more work needs to be conducted to raise it because bone age detection is primarily used in clinical medicine, forensic identification, and other critical and rigorous fields. Due to the symmetry of human hand bones, bone age detection can be performed on either the left hand or the right hand, and the results are the same. In other words, the bone age detection results of both hands are universal. In this regard, the left hand is chosen as the target of bone age detection in this paper. To accomplish this, the You Only Look Once-v5 (YOLOv5) and Residual Network-34 (ResNet34) integration techniques are combined in this paper to create an innovative bone age detection model (YARN), which is then combined with the RUS-CHN scoring method that applies to Chinese adolescent children to comprehensively assess bone age at multiple levels. In this study, the images in the hand bone dataset are first preprocessed with number enhancement, then YOLOv5 is used to train the hand bone dataset to identify and filter out the main 13 joints in the hand bone, and finally, ResNet34 is used to complete the classification of local joints and achieve the determination of the developmental level of the detected region, followed by the calculation of the bone age by combining with the RUS-CHN method. The bone age detection model based on YOLOv5 and ResNet34 can significantly improve the accuracy and efficiency of bone age detection, and the model has significant advantages in the deep feature extraction of key regions of hand bone joints, which can efficiently complete the task of bone age detection. This was discovered through experiments on the public dataset of Flying Paddle AI Studio.
AbstractList Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the extent of human growth and development. The prevalent viewpoint and research development direction now favor the employment of deep learning-based bone age detection algorithms to determine bone age. Although bone age detection accuracy has increased when compared to more established methods, more work needs to be conducted to raise it because bone age detection is primarily used in clinical medicine, forensic identification, and other critical and rigorous fields. Due to the symmetry of human hand bones, bone age detection can be performed on either the left hand or the right hand, and the results are the same. In other words, the bone age detection results of both hands are universal. In this regard, the left hand is chosen as the target of bone age detection in this paper. To accomplish this, the You Only Look Once-v5 (YOLOv5) and Residual Network-34 (ResNet34) integration techniques are combined in this paper to create an innovative bone age detection model (YARN), which is then combined with the RUS-CHN scoring method that applies to Chinese adolescent children to comprehensively assess bone age at multiple levels. In this study, the images in the hand bone dataset are first preprocessed with number enhancement, then YOLOv5 is used to train the hand bone dataset to identify and filter out the main 13 joints in the hand bone, and finally, ResNet34 is used to complete the classification of local joints and achieve the determination of the developmental level of the detected region, followed by the calculation of the bone age by combining with the RUS-CHN method. The bone age detection model based on YOLOv5 and ResNet34 can significantly improve the accuracy and efficiency of bone age detection, and the model has significant advantages in the deep feature extraction of key regions of hand bone joints, which can efficiently complete the task of bone age detection. This was discovered through experiments on the public dataset of Flying Paddle AI Studio.
Audience Academic
Author Shen, Jiahui
Liu, Zhixuan
Huang, Qiming
Lin, Jiayan
Zhu, Qi
Zhou, Lan
Sheng, Wenshun
Author_xml – sequence: 1
  givenname: Wenshun
  orcidid: 0000-0001-5393-2889
  surname: Sheng
  fullname: Sheng, Wenshun
– sequence: 2
  givenname: Jiahui
  surname: Shen
  fullname: Shen, Jiahui
– sequence: 3
  givenname: Qiming
  surname: Huang
  fullname: Huang, Qiming
– sequence: 4
  givenname: Zhixuan
  surname: Liu
  fullname: Liu, Zhixuan
– sequence: 5
  givenname: Jiayan
  surname: Lin
  fullname: Lin, Jiayan
– sequence: 6
  givenname: Qi
  surname: Zhu
  fullname: Zhu, Qi
– sequence: 7
  givenname: Lan
  surname: Zhou
  fullname: Zhou, Lan
BookMark eNp9kEtLAzEUhYMoWGtX_oGAS52amUxey7ZaFYoDPhauhjRN6pR51CRjmX9vyrgoguYukpt8J_dwzsBx3dQagIsYjTEW6MZ1VUwQizFjR2CQIIYjLkR6fHA-BSPnNigsgkhK0QBkL11VaW-7aCqdXsF564qmhpNy3djCf1TQNBZOwyA4WWt4q71Wfg_swiN8zxbZF4GyXsFn7Z60x-k5ODGydHr0sw_B2_zudfYQLbL7x9lkESmMmY_IEi8FTUjoUo6kodwwijBbxgmXSvAUY4I5VdzwRCCmlNTEaLrE2rBVygQeguv-37beym4nyzLf2qKStstjlO_zyA_yCPhlj29t89lq5_NN09o6OMyTMCyOBcU0UOOeWstS50VtGm-lCrXSVaFCCKYI9xNGRIJpgngQxL1A2cY5q02uCi_3AQVhUf5h5eqX5j_j38tqjZE
CitedBy_id crossref_primary_10_32604_cmc_2024_047377
crossref_primary_10_1016_j_displa_2024_102905
crossref_primary_10_3390_sym16040450
Cites_doi 10.1109/CVPR.2016.90
10.1186/s40537-020-00347-0
10.1007/978-3-642-32639-4_6
10.1007/s10278-017-9955-8
10.15377/2409-5761.2020.07.2
10.3390/s22020464
10.3348/kjr.2020.1468
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
DOI 10.3390/sym15071377
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10.3390/sym15071377
A759236208
10_3390_sym15071377
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c337t-5b3b9625c33480af68f76037b128ac984335386c8f82907ccae5fe6b3ef7d4793
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Sun Oct 26 05:54:42 EDT 2025
Fri Jul 25 11:56:14 EDT 2025
Mon Oct 20 17:18:49 EDT 2025
Thu Oct 16 04:26:22 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-5b3b9625c33480af68f76037b128ac984335386c8f82907ccae5fe6b3ef7d4793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5393-2889
OpenAccessLink https://www.proquest.com/docview/2843119636?pq-origsite=%requestingapplication%&accountid=15518
PQID 2843119636
PQPubID 2032326
ParticipantIDs unpaywall_primary_10_3390_sym15071377
proquest_journals_2843119636
gale_infotracacademiconefile_A759236208
crossref_citationtrail_10_3390_sym15071377
crossref_primary_10_3390_sym15071377
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_24) 2023; 13
Peng (ref_4) 2021; 18
Mao (ref_14) 2023; 45
Zhang (ref_10) 2021; 34
Zhang (ref_5) 2022; 11
Fang (ref_19) 2023; 7
Wibisono (ref_9) 2020; 7
ref_15
Tang (ref_16) 2021; 35
Li (ref_17) 2023; 44
Huang (ref_21) 2022; 45
Wang (ref_26) 2010; 43
Ning (ref_1) 2008; 4
Wu (ref_20) 2022; 43
Chen (ref_18) 2022; 30
Lee (ref_7) 2017; 4
ref_22
Sharkawy (ref_25) 2020; 7
ref_3
ref_2
Wang (ref_11) 2021; 47
Xu (ref_23) 2023; 53
Zhan (ref_8) 2019; 34
Ding (ref_12) 2021; 49
Lee (ref_13) 2021; 22
Davis (ref_6) 2012; 7435
References_xml – volume: 45
  start-page: 958
  year: 2023
  ident: ref_14
  article-title: A Study of the CHN Intelligent Bone Age Assessment Method concerning Atlas Developmental Indication
  publication-title: J. Electron. Inf. Technol.
– ident: ref_3
  doi: 10.1109/CVPR.2016.90
– volume: 18
  start-page: 113
  year: 2021
  ident: ref_4
  article-title: The value of novel artificial intelligence in the determination of bone age in regional population
  publication-title: China Med. Equip.
– volume: 11
  start-page: 26
  year: 2022
  ident: ref_5
  article-title: Baid Paddlepaddle: Independent AI based deep learning accelerates industrial upgrading
  publication-title: In-Depth Interview
– volume: 34
  start-page: 252
  year: 2021
  ident: ref_10
  article-title: Bone Age Assessment Method on X-ray Images of Pediatric Hand Bone Based on Deep Learning
  publication-title: Space Med. Med. Eng.
– volume: 45
  start-page: 225
  year: 2022
  ident: ref_21
  article-title: Design and Implementation of Batched GEMM for Deep Learning
  publication-title: Chin. J. Comput.
– volume: 7
  start-page: 67
  year: 2020
  ident: ref_9
  article-title: Multi Region-Based Feature Connected Layer (RB-FCL) of deep learning models for bone age assessment
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00347-0
– volume: 47
  start-page: 291
  year: 2021
  ident: ref_11
  article-title: Bone Age Assessment for X-ray Images of Hand Bone Based on Deep Learning
  publication-title: Comput. Eng.
– volume: 13
  start-page: 52
  year: 2023
  ident: ref_24
  article-title: Improved LFM-SGD collaborative filtering recommendation algorithm based on implicit data
  publication-title: Intell. Comput. Appl.
– volume: 7435
  start-page: 43
  year: 2012
  ident: ref_6
  article-title: Automated Bone Age Assessment Using Feature Extraction
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-642-32639-4_6
– volume: 4
  start-page: 427
  year: 2017
  ident: ref_7
  article-title: Fully Automated Deep Learning System for Bone Age Assessment
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9955-8
– volume: 43
  start-page: 194
  year: 2010
  ident: ref_26
  article-title: X-Ray Luggage Image Enhancement Based on CLAHE
  publication-title: J. Tianjin Univ.
– volume: 35
  start-page: 127
  year: 2021
  ident: ref_16
  article-title: Improved BP neural network with ADAM optimizer and the application of dynamic weighing
  publication-title: J. Electron. Meas. Instrum.
– volume: 7
  start-page: 8
  year: 2020
  ident: ref_25
  article-title: Principle of neural network and its main types
  publication-title: J. Adv. Appl. Comput. Math.
  doi: 10.15377/2409-5761.2020.07.2
– volume: 44
  start-page: 16
  year: 2023
  ident: ref_17
  article-title: Mask detection algorithm based on YOLOv5 integrating attention mechanism
  publication-title: J. Graph.
– volume: 43
  start-page: 791
  year: 2022
  ident: ref_20
  article-title: An object detection method of a falling person based on optimized YOLOv5s
  publication-title: J. Graph.
– volume: 7
  start-page: 111
  year: 2023
  ident: ref_19
  article-title: Optimization and Application of K-means Algorithm
  publication-title: Mod. Inf. Technol.
– volume: 4
  start-page: 16
  year: 2008
  ident: ref_1
  article-title: Diagnostic Test of TW System Bone Age of the Radius Ulna and Short of Bones in Chinese Girls With Idiopathic Precocious Puberty
  publication-title: Chin. J. Obs./Gyne Pediatr. (Electron. Version)
– volume: 30
  start-page: 188
  year: 2022
  ident: ref_18
  article-title: Logo Detection Based on Improved Mosaic Data Enhancement and Feature Fusion
  publication-title: Comput. Meas. Control
– ident: ref_15
– volume: 53
  start-page: 1
  year: 2023
  ident: ref_23
  article-title: Classification Method of Crystalline Silicon Wafer Based on Residual Network and Attention Mechanism
  publication-title: Math. Pract. Theory
– ident: ref_2
  doi: 10.3390/s22020464
– volume: 49
  start-page: 511
  year: 2021
  ident: ref_12
  article-title: Bone age assessment of the carpal region based on improved bilinear network
  publication-title: J. Zhe Jiang Univ. Technol.
– ident: ref_22
– volume: 34
  start-page: 427
  year: 2019
  ident: ref_8
  article-title: Automated bone age assessment of left hand and wrist in Sichuan Han adolescents based on deep learning
  publication-title: Chin. J. Forensic Med.
– volume: 22
  start-page: 2017
  year: 2021
  ident: ref_13
  article-title: Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2020.1468
SSID ssj0000505460
Score 2.2943215
Snippet Bone age is the chronological age of human bones, which serves as a key indicator of the maturity of bone development and can more objectively reflect the...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1377
SubjectTerms Accuracy
Age
Algorithms
Automation
Bones
Classification
Clinical medicine
Comparative analysis
Datasets
Deep learning
Feature extraction
Hand (anatomy)
Image enhancement
Joints (anatomy)
Machine learning
Neural networks
Object recognition
Symmetry
Target detection
X-rays
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8ATdA_DAGB-isCE_DPEhZUnq2E6epgyoJoRaBFTanjLbscdEm1VNOlR-_c6JO40JISTeL5eL7vtyHwC7CWMpjbQKVGZpkGgmgky2_U-KRjK2pZVtt8WIH06Sj0fsyN85rX1bJabiZ62RHqD8BZgQJGHMQhG65XjhvLT7F76UFHNUkTiijN-GDc4wGO_BxmT0OT92J-XWD3dTeRST-7BezdoACBH95oduWuN7cGdZzeXqp5xOr7mb4SacrAntukx-7C0btad_3djh-B9f8gDu-1CU5J3sbMEtUz2ELa_sNXntN1K_eQTjr6vZzDSLVXCATq8kw6VDR_Lp6fnirPk-Ixj5koPzypD81JD3pmn7uyriirzkePxpfMGIrEryxdQj09DkMUyGH769Owz8JYZAUyqagCmqMsyUtJvbjaTlqRU8okKhd5M6SxNK0XBynVr3X1agVBhmDVfUWFG62t0T6FVIxVMgA01VJFSmDeaWYsBTWUa0pDGVVvJYln14u-ZLof2acnctY1pguuKYWFxjYh92r4Dn3XaOP4O9cgwunM4iLi396AFS5LZfFblgGOfyQZT2YXstA4VX5rpAD05jZ6l4H15eycXfXvjsH-Gew113vr5r_92GXrNYmh0Mchr1wgvyJdkY8_U
  priority: 102
  providerName: Unpaywall
Title Symmetry-Based Fusion Algorithm for Bone Age Detection with YOLOv5 and ResNet34
URI https://www.proquest.com/docview/2843119636
https://www.mdpi.com/2073-8994/15/7/1377/pdf?version=1688710356
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ADMLS
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: AMVHM
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (via ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BOLQ9oNKHSHloD1R9SBZ21t61DxVyKAFVlYNoI4WTtU96SExKnFb595111ilUFceVVuv1zO68dmY-gKM4SVIaKhnIzNIgVgkPMtHkP0kaishqK5psi4JdjOIv42S8AUVbC-PSKluZ2AhqfatcjPwYxSiN3HFhJ7OfgUONcq-rLYSG8NAK-lPTYmwTtnquM1YHtvpnxeXVOuricNtiFq4K9Sj6-8fz5bSxiSjnD1TTvwL6GTxZVDOx_C0mk3saaPActr3pSPIVr3dgw1QvYMdfzjl57ztIf3gJw2_L6dTUd8ugj0pKk8HCxcRIPrnBP6p_TAlaqqR_WxmS3xjy2dRNPlZFXFCWXA-_Dn8lRFSaXJl5YWoav4LR4Oz76UXgkRMCRSmvg0RSmaFno1ydbSgsSy1nIeUStZFQGZKSoqBjKrXuHZUjF01iDZPUWK5drO01dCrcxS6QnqIy5DJTBn1B3mOp0CHVNKLCChYJ3YWPLdFK5duKO3SLSYnuhaNweY_CXThaT56tumn8f9o7R_3S3TFcSwlfKoA7ct2qypwnaJeyXph2Yb9lUOkv37z8e1S68HbNtMc--ObxZfbgqUOZX2Xp7kOnvluYA7RFankIm-ng_NAfMxydjyMcjYrL_PoPUMrfsA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IMpDpBTYQyseklXHY-_ahwoltFFKQ4JKK5WT2V2v20Pihtqh8p_jtzHrbEJBqLfeV_uYnZ3XzswHsB1GUYy-Vp5KcvRCHQkvkU3-k0JftvMsl022xZD3T8NPZ9HZCvxa1MLYtMqFTGwEdXapbYx8l8Qoti278A_TH55FjbK_qwsIDemgFbK9psWYK-w4MvU1uXDl3uE-3fdOEPQOTj72PYcy4GlEUXmRQpWQF6BtTaovcx7ngvsoFEluqRNaFkkocB3n9s9R0IlNlBuu0OQis3EpmvcerIUYJuT8rXUPhl-Ol1EeixMXcn9eGIiY-LtlPWlsMBTiL1X4r0J4AOuzYirrazke39B4vUfw0JmqrDPnrQ1YMcVj2HDCoGRvXcfqd09g9LWeTEx1VXtdUooZ681sDI51xudEwepiwsgyZt3LwrDOuWH7pmryvwpmg8Ds22gw-hkxWWTs2JRDU2H4FE7vhIbPYLWgXTwHFmhUvlCJNuR7ioDHMvMxwzbKXPK2zFrwfkG0VLs25hZNY5ySO2MpnN6gcAu2l4On8-4d_x_2xlI_tW-a5tLSlSbQjmx3rLQjIrKDeeDHLdhaXFDqHnuZ_mHNFuwsL-22BTdvn-Y1rPdPPg_SweHw6AXctwj38wzhLVitrmbmJdlBlXrlmI3B97vm799oThgc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWI5IMoiBgr40IpFiiYTJ3ZyQGjKMLS0mkFApfYUbMcuh5l0aDJU-Wv8Ot7LMhSEeuvd8vL8-W1-C8BWGEUx9432dOK4F5pIeomq458099XAZU7V0RYTsXsYfjyKjtbgV5cLQ2GVHU-sGXV2ashH3kc2ygcEF9F3bVjEp9H47eKHRx2k6Ke1a6fRQGTfVudovhVv9kZ419tBMH7_9d2u13YY8AznsvQizXWCFoChfFRfORE7KXwuNXJtZRJckiNDECZ29N8o8bQ2clZobp3MyCeF816D65KquFOW-vjDyr9DHeJC4TcpgZwnfr-o5rX2xaX8Swj-Kwpuw81lvlDVuZrNLsi68V240yqpbNigagPWbH4PNlo2ULCXba3qV_dh-qWaz215Vnk7KA4zNl6S940NZydIr_L7nKFOzHZOc8uGJ5aNbFlHfuWM3L_seHow_RkxlWfssy0mtuThAzi8Ego-hPUcd_EIWGC49qVOjEWrUwYiVpnPMz7gyikxUFkPXndES01bwJz6aMxSNGSIwukFCvdgazV40dTt-P-wF0T9lF4zzmVUm5SAO6K6WOlQRqgBi8CPe7DZXVDaPvMi_QPKHmyvLu2yBR9fPs1zuIGoTg_2JvtP4Ba1tm9CgzdhvTxb2qeoAJX6WY00Bt-uGtq_AbXoFbY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8ATdA_DAGB-isCE_DPEhZUnq2E6epgyoJoRaBFTanjLbscdEm1VNOlR-_c6JO40JISTeL5eL7vtyHwC7CWMpjbQKVGZpkGgmgky2_U-KRjK2pZVtt8WIH06Sj0fsyN85rX1bJabiZ62RHqD8BZgQJGHMQhG65XjhvLT7F76UFHNUkTiijN-GDc4wGO_BxmT0OT92J-XWD3dTeRST-7BezdoACBH95oduWuN7cGdZzeXqp5xOr7mb4SacrAntukx-7C0btad_3djh-B9f8gDu-1CU5J3sbMEtUz2ELa_sNXntN1K_eQTjr6vZzDSLVXCATq8kw6VDR_Lp6fnirPk-Ixj5koPzypD81JD3pmn7uyriirzkePxpfMGIrEryxdQj09DkMUyGH769Owz8JYZAUyqagCmqMsyUtJvbjaTlqRU8okKhd5M6SxNK0XBynVr3X1agVBhmDVfUWFG62t0T6FVIxVMgA01VJFSmDeaWYsBTWUa0pDGVVvJYln14u-ZLof2acnctY1pguuKYWFxjYh92r4Dn3XaOP4O9cgwunM4iLi396AFS5LZfFblgGOfyQZT2YXstA4VX5rpAD05jZ6l4H15eycXfXvjsH-Gew113vr5r_92GXrNYmh0Mchr1wgvyJdkY8_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetry-Based+Fusion+Algorithm+for+Bone+Age+Detection+with+YOLOv5+and+ResNet34&rft.jtitle=Symmetry+%28Basel%29&rft.au=Sheng%2C+Wenshun&rft.au=Shen%2C+Jiahui&rft.au=Huang%2C+Qiming&rft.au=Liu%2C+Zhixuan&rft.date=2023-07-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=15&rft.issue=7&rft.spage=1377&rft_id=info:doi/10.3390%2Fsym15071377&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon