Structural variation of transition metal-organic frameworks using deep eutectic solvents with different hydrogen bond donors
Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 48; no. 27; pp. 1199 - 129 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/c9dt01050e |
Cover
Abstract | Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH
4
][Zn(BTC)(NH
3
)
2
]·H
2
O (
1
), [Cu(PDC)(NH
3
)] (
2
), [Co(H
2
BTC)
2
(e-urea)
2
]·(e-urea)·1/4H
2
O (
3
), K
0.63
(NH
4
)
0.37
[Mn(PZDC)] (
4
), [NH
4
][Mn(BTC)(H
2
O)] (
5
), [CH
3
NH
3
][Mn
3
(HBTC)
2
(BTC)·3H
2
O (
6
), and [Co
3
(BTC)
2
(urea)
2
]·2H
2
O (
7
), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H
3
BTC = 1,3,5-benzenetricarboxylic acid; H
2
PDC = 2,6-pyridinedicarboxylic acid; H
2
PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea =
N
,
N
-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound
7
exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks.
Seven transition metal-organic frameworks with structures ranging from one-dimensional chains to three-dimensional networks have been synthesized in deep eutectic solvents. |
---|---|
AbstractList | Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal–organic frameworks, namely [NH
4
][Zn(BTC)(NH
3
)
2
]·H
2
O (
1
), [Cu(PDC)(NH
3
)] (
2
), [Co(H
2
BTC)
2
(e-urea)
2
]·(e-urea)·1/4H
2
O (
3
), K
0.63
(NH
4
)
0.37
[Mn(PZDC)] (
4
), [NH
4
][Mn(BTC)(H
2
O)] (
5
), [CH
3
NH
3
][Mn
3
(HBTC)
2
(BTC)·3H
2
O (
6
), and [Co
3
(BTC)
2
(urea)
2
]·2H
2
O (
7
), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H
3
BTC = 1,3,5-benzenetricarboxylic acid; H
2
PDC = 2,6-pyridinedicarboxylic acid; H
2
PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea =
N
,
N
-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound
7
exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal–organic frameworks. Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks.Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks. Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH 4 ][Zn(BTC)(NH 3 ) 2 ]·H 2 O ( 1 ), [Cu(PDC)(NH 3 )] ( 2 ), [Co(H 2 BTC) 2 (e-urea) 2 ]·(e-urea)·1/4H 2 O ( 3 ), K 0.63 (NH 4 ) 0.37 [Mn(PZDC)] ( 4 ), [NH 4 ][Mn(BTC)(H 2 O)] ( 5 ), [CH 3 NH 3 ][Mn 3 (HBTC) 2 (BTC)·3H 2 O ( 6 ), and [Co 3 (BTC) 2 (urea) 2 ]·2H 2 O ( 7 ), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H 3 BTC = 1,3,5-benzenetricarboxylic acid; H 2 PDC = 2,6-pyridinedicarboxylic acid; H 2 PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N , N -dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks. Seven transition metal-organic frameworks with structures ranging from one-dimensional chains to three-dimensional networks have been synthesized in deep eutectic solvents. Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal–organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal–organic frameworks. Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH ][Zn(BTC)(NH ) ]·H O (1), [Cu(PDC)(NH )] (2), [Co(H BTC) (e-urea) ]·(e-urea)·1/4H O (3), K (NH ) [Mn(PZDC)] (4), [NH ][Mn(BTC)(H O)] (5), [CH NH ][Mn (HBTC) (BTC)·3H O (6), and [Co (BTC) (urea) ]·2H O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H BTC = 1,3,5-benzenetricarboxylic acid; H PDC = 2,6-pyridinedicarboxylic acid; H PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks. |
Author | Cai, Ting Zhu, Jian-Nan Li, Wei Cheng, Fang-Fang Zhao, Ming-Yu Li, Peng Xiong, Wei-Wei |
AuthorAffiliation | School of Pharmacy Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech) Nanjing University of Chinese Medicine Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) |
AuthorAffiliation_xml | – sequence: 0 name: Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) – sequence: 0 name: Nanjing Tech University (NanjingTech) – sequence: 0 name: School of Pharmacy – sequence: 0 name: Nanjing University of Chinese Medicine – sequence: 0 name: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) |
Author_xml | – sequence: 1 givenname: Ming-Yu surname: Zhao fullname: Zhao, Ming-Yu – sequence: 2 givenname: Jian-Nan surname: Zhu fullname: Zhu, Jian-Nan – sequence: 3 givenname: Peng surname: Li fullname: Li, Peng – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei – sequence: 5 givenname: Ting surname: Cai fullname: Cai, Ting – sequence: 6 givenname: Fang-Fang surname: Cheng fullname: Cheng, Fang-Fang – sequence: 7 givenname: Wei-Wei surname: Xiong fullname: Xiong, Wei-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31192327$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0s1rFTEQAPAgFfuhF-9KwIsIq_nYbF6O8qwfUPBgPS-zyexr6m7yTLItBf940_faCsVTMsxvhjCTY3IQYkBCXnL2njNpPljjCuNMMXxCjnirdWOEbA8e7qI7JMc5XzImBFPiGTmUnFci9BH586OkxZYlwUSvIHkoPgYaR1oShOx30YwFpiamDQRv6ZhgxuuYfmW6ZB821CFuKS4FbanpHKcrDCXTa18uqPPjiKnG9OLGpbjBQIcYHHUxxJSfk6cjTBlf3J0n5Ofn0_P11-bs-5dv649njZVSl0atbAfMaFDYatAAuhuQ1ZQbWGtUx8xKCd2xoQWzah3rOi4sQ8OVA7viIE_I233fbYq_F8yln322OE0QMC65F0K1irVK8UrfPKKXcUmhvu5WSa10p2VVr-_UMszo-m3yM6Sb_n6uFbA9sCnmnHDsrS-72da5-qnnrL9dXb82n853qzutJe8eldx3_S9-tccp2wf37x_Iv7jyo_I |
CitedBy_id | crossref_primary_10_1016_j_jssc_2022_123378 crossref_primary_10_1016_j_talanta_2020_121010 crossref_primary_10_1016_j_jssc_2019_120929 crossref_primary_10_1016_j_jssc_2020_121313 crossref_primary_10_1016_j_jssc_2020_121674 crossref_primary_10_1016_j_jssc_2020_121673 crossref_primary_10_1016_j_jssc_2021_122367 crossref_primary_10_1016_j_jssc_2020_121635 crossref_primary_10_1016_j_jssc_2019_120967 crossref_primary_10_1016_j_jssc_2019_121052 crossref_primary_10_1016_j_jssc_2019_121053 crossref_primary_10_1016_j_trac_2023_116923 crossref_primary_10_2139_ssrn_4111178 crossref_primary_10_1016_j_jiec_2022_11_066 crossref_primary_10_1016_j_jssc_2019_120913 crossref_primary_10_1016_j_jssc_2020_121445 crossref_primary_10_1016_j_jssc_2019_121125 crossref_primary_10_1016_j_jssc_2020_121685 crossref_primary_10_1016_j_jssc_2020_121404 crossref_primary_10_1016_j_jssc_2020_121921 crossref_primary_10_1016_j_jssc_2020_121524 crossref_primary_10_1016_j_jssc_2020_121204 crossref_primary_10_1016_j_jssc_2020_121248 crossref_primary_10_1016_j_jssc_2020_121688 crossref_primary_10_1016_j_jssc_2019_121085 crossref_primary_10_1021_acs_cgd_0c00827 crossref_primary_10_1016_j_jssc_2020_121638 crossref_primary_10_1016_j_jssc_2020_121836 crossref_primary_10_1016_j_jssc_2019_121086 crossref_primary_10_1016_j_ijhydene_2021_12_087 crossref_primary_10_1016_j_jssc_2019_121166 crossref_primary_10_1039_D1CE00714A crossref_primary_10_1016_j_jssc_2020_121173 crossref_primary_10_1016_j_jssc_2019_120904 crossref_primary_10_1016_j_jssc_2020_121771 crossref_primary_10_1016_j_jssc_2020_121252 crossref_primary_10_1016_j_jssc_2020_121532 crossref_primary_10_1039_D2GC03264C crossref_primary_10_1007_s11694_024_03034_3 crossref_primary_10_1016_j_jssc_2020_121336 crossref_primary_10_1016_j_jssc_2020_121897 crossref_primary_10_1016_j_jssc_2020_121409 crossref_primary_10_3390_molecules27238445 crossref_primary_10_1016_j_jssc_2020_121580 crossref_primary_10_1016_j_jssc_2020_121340 crossref_primary_10_1016_j_jssc_2020_121582 crossref_primary_10_1016_j_jssc_2020_121742 crossref_primary_10_1016_j_jmrt_2022_06_131 crossref_primary_10_1016_j_jssc_2020_121224 crossref_primary_10_1016_j_jssc_2020_121421 crossref_primary_10_1016_j_jssc_2020_121623 crossref_primary_10_1016_j_jssc_2020_121700 crossref_primary_10_3390_nano13071164 crossref_primary_10_1016_j_jssc_2019_121020 crossref_primary_10_1016_j_jssc_2020_121219 crossref_primary_10_1002_open_202100137 crossref_primary_10_3390_molecules27154701 crossref_primary_10_1016_j_cogsc_2022_100723 |
Cites_doi | 10.1021/ic501013x 10.1021/ar100023y 10.1021/cr200256v 10.1039/c3dt51479j 10.1021/ja3079219 10.1126/science.1230444 10.1107/S2053229614024218 10.1038/46248 10.1002/chem.201402682 10.1021/ja502643p 10.1021/ja052431t 10.1016/j.apcata.2004.09.001 10.1021/cg0504197 10.1021/ja0570032 10.1039/c2gc36005e 10.1016/j.molcata.2007.03.074 10.1039/C4CS00010B 10.1039/c2cs35178a 10.1002/anie.201502277 10.1039/C4TA01297F 10.1039/C7CS00041C 10.1039/C6CS00930A 10.1021/ar700025k 10.1006/jcat.1998.2145 10.1039/C3DT53013B 10.1021/ja407778a 10.1016/j.inoche.2012.12.019 10.1021/ic201986m 10.1039/C8DT04863K 10.1039/b820248f 10.1039/C8QI00543E 10.1021/ja0700395 10.1002/anie.200601878 10.1039/B403001J 10.1039/b807080f 10.1039/C4CS00094C 10.1039/c2cc18127d 10.1021/ja302110d 10.1039/b802426j 10.1016/j.solidstatesciences.2012.07.011 10.1021/acs.cgd.8b00495 10.1039/B511962F 10.1002/anie.200600290 10.1021/ic402194c 10.1039/c2dt12069k 10.1021/ja209327q 10.1107/S1600536809005212 10.1039/C6DT03930H 10.1126/science.1234071 10.1039/c3dt32846e 10.1021/cr200179u 10.1021/cg0342415 10.1002/anie.200900134 10.1016/j.molcata.2014.06.040 10.1039/c2jm32661b 10.1039/b209937n 10.1039/b922750d 10.1039/c2ee22989g 10.1039/C8DT00524A 10.1021/jacs.6b09113 10.1021/cr200304e 10.1039/C5DT01065A 10.1039/b902611h 10.1038/nature02860 10.1039/c3dt51816g 10.1002/anie.200703934 10.1039/C2CE26242H 10.1038/nchem.1956 10.1107/S1600536806035197 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c9dt01050e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 129 |
ExternalDocumentID | 31192327 10_1039_C9DT01050E c9dt01050e |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 2WC 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-58c6a097a5e47a7aa76be0337db0495609852760b4a984d06612c0e915dac81a3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 07:14:30 EDT 2025 Mon Jun 30 11:56:10 EDT 2025 Wed Feb 19 02:33:50 EST 2025 Thu Apr 24 22:58:39 EDT 2025 Tue Jul 01 03:01:35 EDT 2025 Tue Dec 17 21:00:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-58c6a097a5e47a7aa76be0337db0495609852760b4a984d06612c0e915dac81a3 |
Notes | For ESI and crystallographic data in CIF or other electronic format see DOI Electronic supplementary information (ESI) available: Crystallographic data in CIF format, PXRD patterns, and TGA curves. CCDC 1901745-1901751 10.1039/c9dt01050e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8777-5754 0000-0001-6854-8089 |
PMID | 31192327 |
PQID | 2253757673 |
PQPubID | 2047498 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_C9DT01050E crossref_primary_10_1039_C9DT01050E proquest_journals_2253757673 rsc_primary_c9dt01050e proquest_miscellaneous_2254504551 pubmed_primary_31192327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-21 |
PublicationDateYYYYMMDD | 2019-07-21 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wanderley (C9DT01050E-(cit25)/*[position()=1]) 2012; 134 Russ (C9DT01050E-(cit58)/*[position()=1]) 2012; 14 Kim (C9DT01050E-(cit21)/*[position()=1]) 2012; 134 Yang (C9DT01050E-(cit52)/*[position()=1]) 2018; 18 Shustova (C9DT01050E-(cit28)/*[position()=1]) 2013; 135 Lee (C9DT01050E-(cit9)/*[position()=1]) 2009; 38 Li (C9DT01050E-(cit51)/*[position()=1]) 2018; 5 Yang (C9DT01050E-(cit53)/*[position()=1]) 2018; 47 Brozek (C9DT01050E-(cit23)/*[position()=1]) 2014; 20 Yonemitsu (C9DT01050E-(cit67)/*[position()=1]) 1998; 178 Stock (C9DT01050E-(cit37)/*[position()=1]) 2012; 112 Kitao (C9DT01050E-(cit35)/*[position()=1]) 2017; 46 Mahata (C9DT01050E-(cit64)/*[position()=1]) 2009; 11 Hou (C9DT01050E-(cit56)/*[position()=1]) 2013; 29 Cohen (C9DT01050E-(cit38)/*[position()=1]) 2012; 112 Lustig (C9DT01050E-(cit17)/*[position()=1]) 2017; 46 Jiang (C9DT01050E-(cit55)/*[position()=1]) 2013; 15 Liu (C9DT01050E-(cit10)/*[position()=1]) 2014; 43 Sheldrick (C9DT01050E-(cit61)/*[position()=1]) 2015; 71 Zhang (C9DT01050E-(cit27)/*[position()=1]) 2014; 136 Zhang (C9DT01050E-(cit69)/*[position()=1]) 2012; 48 Trivedi (C9DT01050E-(cit63)/*[position()=1]) 2009; 65 Xiong (C9DT01050E-(cit50)/*[position()=1]) 2015; 54 Furukawa (C9DT01050E-(cit34)/*[position()=1]) 2013; 341 Herm (C9DT01050E-(cit6)/*[position()=1]) 2013; 340 He (C9DT01050E-(cit19)/*[position()=1]) 2014; 43 Du (C9DT01050E-(cit36)/*[position()=1]) 2019; 48 Shen (C9DT01050E-(cit13)/*[position()=1]) 2013; 42 Cheng (C9DT01050E-(cit66)/*[position()=1]) 2004; 4 Jin (C9DT01050E-(cit39)/*[position()=1]) 2002; 23 Maurya (C9DT01050E-(cit70)/*[position()=1]) 2007; 273 Horcajada (C9DT01050E-(cit31)/*[position()=1]) 2006; 45 Mueller (C9DT01050E-(cit30)/*[position()=1]) 2006; 16 Liao (C9DT01050E-(cit11)/*[position()=1]) 2015; 6 Zhang (C9DT01050E-(cit46)/*[position()=1]) 2009; 48 Allan (C9DT01050E-(cit7)/*[position()=1]) 2012; 41 Hulea (C9DT01050E-(cit71)/*[position()=1]) 2004; 277 Nadeem (C9DT01050E-(cit65)/*[position()=1]) 2010; 39 Morris (C9DT01050E-(cit44)/*[position()=1]) 2009; 21 Xiao (C9DT01050E-(cit14)/*[position()=1]) 2014; 6 Shustova (C9DT01050E-(cit18)/*[position()=1]) 2011; 133 Parnham (C9DT01050E-(cit49)/*[position()=1]) 2006; 45 Zhang (C9DT01050E-(cit29)/*[position()=1]) 2015; 44 Meng (C9DT01050E-(cit48)/*[position()=1]) 2014; 53 Morozan (C9DT01050E-(cit32)/*[position()=1]) 2012; 5 Zhou (C9DT01050E-(cit22)/*[position()=1]) 2014; 2 Liu (C9DT01050E-(cit26)/*[position()=1]) 2014; 53 Bauer (C9DT01050E-(cit15)/*[position()=1]) 2007; 129 Morris (C9DT01050E-(cit3)/*[position()=1]) 2008; 47 Li (C9DT01050E-(cit4)/*[position()=1]) 2009; 38 Chen (C9DT01050E-(cit5)/*[position()=1]) 2010; 43 Deria (C9DT01050E-(cit12)/*[position()=1]) 2016; 138 Hu (C9DT01050E-(cit16)/*[position()=1]) 2014; 43 Li (C9DT01050E-(cit1)/*[position()=1]) 1999; 402 Wang (C9DT01050E-(cit62)/*[position()=1]) 2006; 62 Zhan (C9DT01050E-(cit59)/*[position()=1]) 2012; 51 Cooper (C9DT01050E-(cit41)/*[position()=1]) 2004; 430 Fischer (C9DT01050E-(cit45)/*[position()=1]) 2016; 45 Millward (C9DT01050E-(cit2)/*[position()=1]) 2005; 127 Wu (C9DT01050E-(cit8)/*[position()=1]) 2005; 127 Dybtsev (C9DT01050E-(cit40)/*[position()=1]) 2004; 14 Meng (C9DT01050E-(cit47)/*[position()=1]) 2013; 42 Yao (C9DT01050E-(cit68)/*[position()=1]) 2014; 394 Liao (C9DT01050E-(cit42)/*[position()=1]) 2006; 6 Parnham (C9DT01050E-(cit60)/*[position()=1]) 2006; 45 Wang (C9DT01050E-(cit54)/*[position()=1]) 2012; 14 Zhang (C9DT01050E-(cit57)/*[position()=1]) 2012; 41 Horcajada (C9DT01050E-(cit33)/*[position()=1]) 2012; 112 Dang (C9DT01050E-(cit20)/*[position()=1]) 2012; 22 Akhbari (C9DT01050E-(cit24)/*[position()=1]) 2013; 42 Parnham (C9DT01050E-(cit43)/*[position()=1]) 2007; 40 |
References_xml | – volume: 53 start-page: 9052 year: 2014 ident: C9DT01050E-(cit48)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic501013x – volume: 43 start-page: 1115 year: 2010 ident: C9DT01050E-(cit5)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar100023y – volume: 112 start-page: 1232 year: 2012 ident: C9DT01050E-(cit33)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200256v – volume: 42 start-page: 13649 year: 2013 ident: C9DT01050E-(cit13)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt51479j – volume: 134 start-page: 18082 year: 2012 ident: C9DT01050E-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3079219 – volume: 341 start-page: 974 year: 2013 ident: C9DT01050E-(cit34)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 71 start-page: 3 year: 2015 ident: C9DT01050E-(cit61)/*[position()=1] publication-title: Acta Crystallogr., Sect. C: Struct. Chem. doi: 10.1107/S2053229614024218 – volume: 402 start-page: 276 year: 1999 ident: C9DT01050E-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/46248 – volume: 20 start-page: 6871 year: 2014 ident: C9DT01050E-(cit23)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201402682 – volume: 136 start-page: 7241 year: 2014 ident: C9DT01050E-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502643p – volume: 127 start-page: 8940 year: 2005 ident: C9DT01050E-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052431t – volume: 277 start-page: 99 year: 2004 ident: C9DT01050E-(cit71)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2004.09.001 – volume: 6 start-page: 1062 year: 2006 ident: C9DT01050E-(cit42)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg0504197 – volume: 127 start-page: 17998 year: 2005 ident: C9DT01050E-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0570032 – volume: 14 start-page: 2969 year: 2012 ident: C9DT01050E-(cit58)/*[position()=1] publication-title: Green Chem. doi: 10.1039/c2gc36005e – volume: 273 start-page: 133 year: 2007 ident: C9DT01050E-(cit70)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2007.03.074 – volume: 43 start-page: 5815 year: 2014 ident: C9DT01050E-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00010B – volume: 6 start-page: 8 year: 2015 ident: C9DT01050E-(cit11)/*[position()=1] publication-title: Nat. Commun. – volume: 41 start-page: 7108 year: 2012 ident: C9DT01050E-(cit57)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35178a – volume: 54 start-page: 11616 year: 2015 ident: C9DT01050E-(cit50)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502277 – volume: 2 start-page: 13691 year: 2014 ident: C9DT01050E-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01297F – volume: 46 start-page: 3108 year: 2017 ident: C9DT01050E-(cit35)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00041C – volume: 46 start-page: 3242 year: 2017 ident: C9DT01050E-(cit17)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00930A – volume: 40 start-page: 1005 year: 2007 ident: C9DT01050E-(cit43)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar700025k – volume: 178 start-page: 207 year: 1998 ident: C9DT01050E-(cit67)/*[position()=1] publication-title: J. Catal. doi: 10.1006/jcat.1998.2145 – volume: 43 start-page: 3716 year: 2014 ident: C9DT01050E-(cit19)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C3DT53013B – volume: 135 start-page: 13326 year: 2013 ident: C9DT01050E-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407778a – volume: 29 start-page: 148 year: 2013 ident: C9DT01050E-(cit56)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2012.12.019 – volume: 51 start-page: 523 year: 2012 ident: C9DT01050E-(cit59)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic201986m – volume: 48 start-page: 2013 year: 2019 ident: C9DT01050E-(cit36)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT04863K – volume: 11 start-page: 560 year: 2009 ident: C9DT01050E-(cit64)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/b820248f – volume: 5 start-page: 2693 year: 2018 ident: C9DT01050E-(cit51)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00543E – volume: 129 start-page: 7136 year: 2007 ident: C9DT01050E-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0700395 – volume: 45 start-page: 5974 year: 2006 ident: C9DT01050E-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601878 – volume: 14 start-page: 1594 year: 2004 ident: C9DT01050E-(cit40)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/B403001J – volume: 38 start-page: 1450 year: 2009 ident: C9DT01050E-(cit9)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 43 start-page: 6011 year: 2014 ident: C9DT01050E-(cit10)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00094C – volume: 48 start-page: 6541 year: 2012 ident: C9DT01050E-(cit69)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc18127d – volume: 134 start-page: 9050 year: 2012 ident: C9DT01050E-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302110d – volume: 38 start-page: 1477 year: 2009 ident: C9DT01050E-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 14 start-page: 1263 year: 2012 ident: C9DT01050E-(cit54)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2012.07.011 – volume: 18 start-page: 3255 year: 2018 ident: C9DT01050E-(cit52)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00495 – volume: 16 start-page: 626 year: 2006 ident: C9DT01050E-(cit30)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B511962F – volume: 45 start-page: 4962 year: 2006 ident: C9DT01050E-(cit49)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600290 – volume: 53 start-page: 1916 year: 2014 ident: C9DT01050E-(cit26)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic402194c – volume: 41 start-page: 4060 year: 2012 ident: C9DT01050E-(cit7)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt12069k – volume: 133 start-page: 20126 year: 2011 ident: C9DT01050E-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209327q – volume: 65 start-page: 303 year: 2009 ident: C9DT01050E-(cit63)/*[position()=1] publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online doi: 10.1107/S1600536809005212 – volume: 45 start-page: 18443 year: 2016 ident: C9DT01050E-(cit45)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03930H – volume: 340 start-page: 960 year: 2013 ident: C9DT01050E-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1234071 – volume: 42 start-page: 4786 year: 2013 ident: C9DT01050E-(cit24)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt32846e – volume: 112 start-page: 970 year: 2012 ident: C9DT01050E-(cit38)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200179u – volume: 4 start-page: 599 year: 2004 ident: C9DT01050E-(cit66)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg0342415 – volume: 48 start-page: 3486 year: 2009 ident: C9DT01050E-(cit46)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900134 – volume: 394 start-page: 57 year: 2014 ident: C9DT01050E-(cit68)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2014.06.040 – volume: 22 start-page: 16920 year: 2012 ident: C9DT01050E-(cit20)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm32661b – volume: 23 start-page: 2872 year: 2002 ident: C9DT01050E-(cit39)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b209937n – volume: 45 start-page: 4962 year: 2006 ident: C9DT01050E-(cit60)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600290 – volume: 39 start-page: 4358 year: 2010 ident: C9DT01050E-(cit65)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/b922750d – volume: 5 start-page: 9269 year: 2012 ident: C9DT01050E-(cit32)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22989g – volume: 47 start-page: 5977 year: 2018 ident: C9DT01050E-(cit53)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT00524A – volume: 138 start-page: 14449 year: 2016 ident: C9DT01050E-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09113 – volume: 112 start-page: 933 year: 2012 ident: C9DT01050E-(cit37)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200304e – volume: 44 start-page: 13340 year: 2015 ident: C9DT01050E-(cit29)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT01065A – volume: 21 start-page: 2990 year: 2009 ident: C9DT01050E-(cit44)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b902611h – volume: 430 start-page: 1012 year: 2004 ident: C9DT01050E-(cit41)/*[position()=1] publication-title: Nature doi: 10.1038/nature02860 – volume: 42 start-page: 12853 year: 2013 ident: C9DT01050E-(cit47)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt51816g – volume: 47 start-page: 4966 year: 2008 ident: C9DT01050E-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703934 – volume: 15 start-page: 315 year: 2013 ident: C9DT01050E-(cit55)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C2CE26242H – volume: 6 start-page: 590 year: 2014 ident: C9DT01050E-(cit14)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1956 – volume: 62 start-page: 2496 year: 2006 ident: C9DT01050E-(cit62)/*[position()=1] publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online doi: 10.1107/S1600536806035197 |
SSID | ssj0022052 |
Score | 2.512203 |
Snippet | Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1199 |
SubjectTerms | Ammonia Catalysis Catalytic activity Chemical properties Choline Crystallography Donors (electronic) Eutectics Format Hydrogen bonds Ionic liquids Metal-organic frameworks Organic chemistry Oxidation Solvents Transition metals Urea Zinc |
Title | Structural variation of transition metal-organic frameworks using deep eutectic solvents with different hydrogen bond donors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31192327 https://www.proquest.com/docview/2253757673 https://www.proquest.com/docview/2254504551 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1477-9234 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022052 issn: 1477-9226 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QEuiFdhoSAjuKCVIYmdODlW20UFQS9sRTmtnNiBSlVSdZNKIH4OP5TxM1m1SMAlWtnexPL3JZ4ZzwOhl4rWOqs5I0wWEQFSMCJKqQjIyqkA_OPcJHH9eJQdHrP3J-nJZPJr5LXUd-Xr6se1cSX_gyq0Aa46SvYfkA03hQb4DfjCFRCG619h_MkkfzWJMy5B5w3SX6c3IOOLpStEizNiazdV89q7Ym3mvTESSKXO56rXJwnQDbO9HCLefO2Ubv7tu7xoYRbzUke7yLZp3RmQk2oPhK5NbR9rAyU2xtQgGpOOYrA4buWp8JOqfM25kRG7tS79zVfypR-ae8M5IDQ5GrkSnVo_Y7cFh5bP6nRs0jBRVMTGSbuvMNPnyknicmSP25zl0326WT6iqM0x4D7EcWzrLrlNPbZmlSv7RUR1utWqkJ2uFBqpYVcMvopD5w20k_AsS6ZoZ3-5evchKPZJZCo7hWn7NLi0eDP8e1vwuaLNgGxz4WvOGNlmdQfddkoJ3rcMu4smqrmHbi48LvfRz4FpODANtzUemIa3mIYHpmHDNKyZhj3TsGca1kzDgWnYMw1rpmHLtAfo-O1ytTgkrm4HqSjlHUnzKhNRwUWqGBdcCJ6VKoIuWUZGHy_yFBYyKpkociZB6I2TKlJFnEpR5bGgu2jatI16hHDMasr18uVSMpBGdV2trJaqAsGWwy1m6JVf1HXlktrr2ipna-NcQYv1ojhYGQCWM_QijD23qVyuHbXnsVm7l2Kzhk2PctDMOZ2h56EbMNCna6JRbW_GsBQUpDSeoYcW0_AYGmtFKuEztAsgh-aBHI__1PEE3RrekD00BbTVUxCDu_KZY-FvmgK4tA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+variation+of+transition+metal-organic+frameworks+using+deep+eutectic+solvents+with+different+hydrogen+bond+donors&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Zhao%2C+Ming-Yu&rft.au=Zhu%2C+Jian-Nan&rft.au=Li%2C+Peng&rft.au=Li%2C+Wei&rft.date=2019-07-21&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=48&rft.issue=27&rft.spage=1199&rft.epage=129&rft_id=info:doi/10.1039%2Fc9dt01050e&rft.externalDocID=c9dt01050e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |