Structural variation of transition metal-organic frameworks using deep eutectic solvents with different hydrogen bond donors

Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 48; no. 27; pp. 1199 - 129
Main Authors Zhao, Ming-Yu, Zhu, Jian-Nan, Li, Peng, Li, Wei, Cai, Ting, Cheng, Fang-Fang, Xiong, Wei-Wei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.07.2019
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/c9dt01050e

Cover

Abstract Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH 4 ][Zn(BTC)(NH 3 ) 2 ]·H 2 O ( 1 ), [Cu(PDC)(NH 3 )] ( 2 ), [Co(H 2 BTC) 2 (e-urea) 2 ]·(e-urea)·1/4H 2 O ( 3 ), K 0.63 (NH 4 ) 0.37 [Mn(PZDC)] ( 4 ), [NH 4 ][Mn(BTC)(H 2 O)] ( 5 ), [CH 3 NH 3 ][Mn 3 (HBTC) 2 (BTC)·3H 2 O ( 6 ), and [Co 3 (BTC) 2 (urea) 2 ]·2H 2 O ( 7 ), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H 3 BTC = 1,3,5-benzenetricarboxylic acid; H 2 PDC = 2,6-pyridinedicarboxylic acid; H 2 PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N , N -dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks. Seven transition metal-organic frameworks with structures ranging from one-dimensional chains to three-dimensional networks have been synthesized in deep eutectic solvents.
AbstractList Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal–organic frameworks, namely [NH 4 ][Zn(BTC)(NH 3 ) 2 ]·H 2 O ( 1 ), [Cu(PDC)(NH 3 )] ( 2 ), [Co(H 2 BTC) 2 (e-urea) 2 ]·(e-urea)·1/4H 2 O ( 3 ), K 0.63 (NH 4 ) 0.37 [Mn(PZDC)] ( 4 ), [NH 4 ][Mn(BTC)(H 2 O)] ( 5 ), [CH 3 NH 3 ][Mn 3 (HBTC) 2 (BTC)·3H 2 O ( 6 ), and [Co 3 (BTC) 2 (urea) 2 ]·2H 2 O ( 7 ), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H 3 BTC = 1,3,5-benzenetricarboxylic acid; H 2 PDC = 2,6-pyridinedicarboxylic acid; H 2 PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N , N -dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal–organic frameworks.
Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks.Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks.
Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH 4 ][Zn(BTC)(NH 3 ) 2 ]·H 2 O ( 1 ), [Cu(PDC)(NH 3 )] ( 2 ), [Co(H 2 BTC) 2 (e-urea) 2 ]·(e-urea)·1/4H 2 O ( 3 ), K 0.63 (NH 4 ) 0.37 [Mn(PZDC)] ( 4 ), [NH 4 ][Mn(BTC)(H 2 O)] ( 5 ), [CH 3 NH 3 ][Mn 3 (HBTC) 2 (BTC)·3H 2 O ( 6 ), and [Co 3 (BTC) 2 (urea) 2 ]·2H 2 O ( 7 ), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H 3 BTC = 1,3,5-benzenetricarboxylic acid; H 2 PDC = 2,6-pyridinedicarboxylic acid; H 2 PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N , N -dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks. Seven transition metal-organic frameworks with structures ranging from one-dimensional chains to three-dimensional networks have been synthesized in deep eutectic solvents.
Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal–organic frameworks, namely [NH4][Zn(BTC)(NH3)2]·H2O (1), [Cu(PDC)(NH3)] (2), [Co(H2BTC)2(e-urea)2]·(e-urea)·1/4H2O (3), K0.63(NH4)0.37[Mn(PZDC)] (4), [NH4][Mn(BTC)(H2O)] (5), [CH3NH3][Mn3(HBTC)2(BTC)·3H2O (6), and [Co3(BTC)2(urea)2]·2H2O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H3BTC = 1,3,5-benzenetricarboxylic acid; H2PDC = 2,6-pyridinedicarboxylic acid; H2PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal–organic frameworks.
Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical properties to the traditional ionic liquids (ILs) while being much cheaper and more environmentally friendly. Herein, seven transition metal-organic frameworks, namely [NH ][Zn(BTC)(NH ) ]·H O (1), [Cu(PDC)(NH )] (2), [Co(H BTC) (e-urea) ]·(e-urea)·1/4H O (3), K (NH ) [Mn(PZDC)] (4), [NH ][Mn(BTC)(H O)] (5), [CH NH ][Mn (HBTC) (BTC)·3H O (6), and [Co (BTC) (urea) ]·2H O (7), were synthesized in deep eutectic solvents of choline chloride and urea/e-urea/m-urea (H BTC = 1,3,5-benzenetricarboxylic acid; H PDC = 2,6-pyridinedicarboxylic acid; H PZDC = 3,5-pyrazoledicarboxylic acid; e-urea = ethylene urea; m-urea = N,N-dimethylurea). Of particular interest is the fact that the utilization of different hydrogen bond donors in DES mixtures can lead to the formation of different frameworks. The multiple roles of hydrogen bond donors in the reactions were discussed. Furthermore, compound 7 exhibited catalytic activity for the oxidation of styrene, and thus it can be used as a heterogeneous catalyst due to its good stability. These results promote the understanding of the application of DESs in synthesizing novel transition metal-organic frameworks.
Author Cai, Ting
Zhu, Jian-Nan
Li, Wei
Cheng, Fang-Fang
Zhao, Ming-Yu
Li, Peng
Xiong, Wei-Wei
AuthorAffiliation School of Pharmacy
Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
Nanjing Tech University (NanjingTech)
Nanjing University of Chinese Medicine
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
AuthorAffiliation_xml – sequence: 0
  name: Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
– sequence: 0
  name: Nanjing Tech University (NanjingTech)
– sequence: 0
  name: School of Pharmacy
– sequence: 0
  name: Nanjing University of Chinese Medicine
– sequence: 0
  name: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
Author_xml – sequence: 1
  givenname: Ming-Yu
  surname: Zhao
  fullname: Zhao, Ming-Yu
– sequence: 2
  givenname: Jian-Nan
  surname: Zhu
  fullname: Zhu, Jian-Nan
– sequence: 3
  givenname: Peng
  surname: Li
  fullname: Li, Peng
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 5
  givenname: Ting
  surname: Cai
  fullname: Cai, Ting
– sequence: 6
  givenname: Fang-Fang
  surname: Cheng
  fullname: Cheng, Fang-Fang
– sequence: 7
  givenname: Wei-Wei
  surname: Xiong
  fullname: Xiong, Wei-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31192327$$D View this record in MEDLINE/PubMed
BookMark eNpt0s1rFTEQAPAgFfuhF-9KwIsIq_nYbF6O8qwfUPBgPS-zyexr6m7yTLItBf940_faCsVTMsxvhjCTY3IQYkBCXnL2njNpPljjCuNMMXxCjnirdWOEbA8e7qI7JMc5XzImBFPiGTmUnFci9BH586OkxZYlwUSvIHkoPgYaR1oShOx30YwFpiamDQRv6ZhgxuuYfmW6ZB821CFuKS4FbanpHKcrDCXTa18uqPPjiKnG9OLGpbjBQIcYHHUxxJSfk6cjTBlf3J0n5Ofn0_P11-bs-5dv649njZVSl0atbAfMaFDYatAAuhuQ1ZQbWGtUx8xKCd2xoQWzah3rOi4sQ8OVA7viIE_I233fbYq_F8yln322OE0QMC65F0K1irVK8UrfPKKXcUmhvu5WSa10p2VVr-_UMszo-m3yM6Sb_n6uFbA9sCnmnHDsrS-72da5-qnnrL9dXb82n853qzutJe8eldx3_S9-tccp2wf37x_Iv7jyo_I
CitedBy_id crossref_primary_10_1016_j_jssc_2022_123378
crossref_primary_10_1016_j_talanta_2020_121010
crossref_primary_10_1016_j_jssc_2019_120929
crossref_primary_10_1016_j_jssc_2020_121313
crossref_primary_10_1016_j_jssc_2020_121674
crossref_primary_10_1016_j_jssc_2020_121673
crossref_primary_10_1016_j_jssc_2021_122367
crossref_primary_10_1016_j_jssc_2020_121635
crossref_primary_10_1016_j_jssc_2019_120967
crossref_primary_10_1016_j_jssc_2019_121052
crossref_primary_10_1016_j_jssc_2019_121053
crossref_primary_10_1016_j_trac_2023_116923
crossref_primary_10_2139_ssrn_4111178
crossref_primary_10_1016_j_jiec_2022_11_066
crossref_primary_10_1016_j_jssc_2019_120913
crossref_primary_10_1016_j_jssc_2020_121445
crossref_primary_10_1016_j_jssc_2019_121125
crossref_primary_10_1016_j_jssc_2020_121685
crossref_primary_10_1016_j_jssc_2020_121404
crossref_primary_10_1016_j_jssc_2020_121921
crossref_primary_10_1016_j_jssc_2020_121524
crossref_primary_10_1016_j_jssc_2020_121204
crossref_primary_10_1016_j_jssc_2020_121248
crossref_primary_10_1016_j_jssc_2020_121688
crossref_primary_10_1016_j_jssc_2019_121085
crossref_primary_10_1021_acs_cgd_0c00827
crossref_primary_10_1016_j_jssc_2020_121638
crossref_primary_10_1016_j_jssc_2020_121836
crossref_primary_10_1016_j_jssc_2019_121086
crossref_primary_10_1016_j_ijhydene_2021_12_087
crossref_primary_10_1016_j_jssc_2019_121166
crossref_primary_10_1039_D1CE00714A
crossref_primary_10_1016_j_jssc_2020_121173
crossref_primary_10_1016_j_jssc_2019_120904
crossref_primary_10_1016_j_jssc_2020_121771
crossref_primary_10_1016_j_jssc_2020_121252
crossref_primary_10_1016_j_jssc_2020_121532
crossref_primary_10_1039_D2GC03264C
crossref_primary_10_1007_s11694_024_03034_3
crossref_primary_10_1016_j_jssc_2020_121336
crossref_primary_10_1016_j_jssc_2020_121897
crossref_primary_10_1016_j_jssc_2020_121409
crossref_primary_10_3390_molecules27238445
crossref_primary_10_1016_j_jssc_2020_121580
crossref_primary_10_1016_j_jssc_2020_121340
crossref_primary_10_1016_j_jssc_2020_121582
crossref_primary_10_1016_j_jssc_2020_121742
crossref_primary_10_1016_j_jmrt_2022_06_131
crossref_primary_10_1016_j_jssc_2020_121224
crossref_primary_10_1016_j_jssc_2020_121421
crossref_primary_10_1016_j_jssc_2020_121623
crossref_primary_10_1016_j_jssc_2020_121700
crossref_primary_10_3390_nano13071164
crossref_primary_10_1016_j_jssc_2019_121020
crossref_primary_10_1016_j_jssc_2020_121219
crossref_primary_10_1002_open_202100137
crossref_primary_10_3390_molecules27154701
crossref_primary_10_1016_j_cogsc_2022_100723
Cites_doi 10.1021/ic501013x
10.1021/ar100023y
10.1021/cr200256v
10.1039/c3dt51479j
10.1021/ja3079219
10.1126/science.1230444
10.1107/S2053229614024218
10.1038/46248
10.1002/chem.201402682
10.1021/ja502643p
10.1021/ja052431t
10.1016/j.apcata.2004.09.001
10.1021/cg0504197
10.1021/ja0570032
10.1039/c2gc36005e
10.1016/j.molcata.2007.03.074
10.1039/C4CS00010B
10.1039/c2cs35178a
10.1002/anie.201502277
10.1039/C4TA01297F
10.1039/C7CS00041C
10.1039/C6CS00930A
10.1021/ar700025k
10.1006/jcat.1998.2145
10.1039/C3DT53013B
10.1021/ja407778a
10.1016/j.inoche.2012.12.019
10.1021/ic201986m
10.1039/C8DT04863K
10.1039/b820248f
10.1039/C8QI00543E
10.1021/ja0700395
10.1002/anie.200601878
10.1039/B403001J
10.1039/b807080f
10.1039/C4CS00094C
10.1039/c2cc18127d
10.1021/ja302110d
10.1039/b802426j
10.1016/j.solidstatesciences.2012.07.011
10.1021/acs.cgd.8b00495
10.1039/B511962F
10.1002/anie.200600290
10.1021/ic402194c
10.1039/c2dt12069k
10.1021/ja209327q
10.1107/S1600536809005212
10.1039/C6DT03930H
10.1126/science.1234071
10.1039/c3dt32846e
10.1021/cr200179u
10.1021/cg0342415
10.1002/anie.200900134
10.1016/j.molcata.2014.06.040
10.1039/c2jm32661b
10.1039/b209937n
10.1039/b922750d
10.1039/c2ee22989g
10.1039/C8DT00524A
10.1021/jacs.6b09113
10.1021/cr200304e
10.1039/C5DT01065A
10.1039/b902611h
10.1038/nature02860
10.1039/c3dt51816g
10.1002/anie.200703934
10.1039/C2CE26242H
10.1038/nchem.1956
10.1107/S1600536806035197
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c9dt01050e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 129
ExternalDocumentID 31192327
10_1039_C9DT01050E
c9dt01050e
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
2WC
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-58c6a097a5e47a7aa76be0337db0495609852760b4a984d06612c0e915dac81a3
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 07:14:30 EDT 2025
Mon Jun 30 11:56:10 EDT 2025
Wed Feb 19 02:33:50 EST 2025
Thu Apr 24 22:58:39 EDT 2025
Tue Jul 01 03:01:35 EDT 2025
Tue Dec 17 21:00:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-58c6a097a5e47a7aa76be0337db0495609852760b4a984d06612c0e915dac81a3
Notes For ESI and crystallographic data in CIF or other electronic format see DOI
Electronic supplementary information (ESI) available: Crystallographic data in CIF format, PXRD patterns, and TGA curves. CCDC
1901745-1901751
10.1039/c9dt01050e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8777-5754
0000-0001-6854-8089
PMID 31192327
PQID 2253757673
PQPubID 2047498
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_C9DT01050E
crossref_primary_10_1039_C9DT01050E
proquest_journals_2253757673
rsc_primary_c9dt01050e
proquest_miscellaneous_2254504551
pubmed_primary_31192327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-21
PublicationDateYYYYMMDD 2019-07-21
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wanderley (C9DT01050E-(cit25)/*[position()=1]) 2012; 134
Russ (C9DT01050E-(cit58)/*[position()=1]) 2012; 14
Kim (C9DT01050E-(cit21)/*[position()=1]) 2012; 134
Yang (C9DT01050E-(cit52)/*[position()=1]) 2018; 18
Shustova (C9DT01050E-(cit28)/*[position()=1]) 2013; 135
Lee (C9DT01050E-(cit9)/*[position()=1]) 2009; 38
Li (C9DT01050E-(cit51)/*[position()=1]) 2018; 5
Yang (C9DT01050E-(cit53)/*[position()=1]) 2018; 47
Brozek (C9DT01050E-(cit23)/*[position()=1]) 2014; 20
Yonemitsu (C9DT01050E-(cit67)/*[position()=1]) 1998; 178
Stock (C9DT01050E-(cit37)/*[position()=1]) 2012; 112
Kitao (C9DT01050E-(cit35)/*[position()=1]) 2017; 46
Mahata (C9DT01050E-(cit64)/*[position()=1]) 2009; 11
Hou (C9DT01050E-(cit56)/*[position()=1]) 2013; 29
Cohen (C9DT01050E-(cit38)/*[position()=1]) 2012; 112
Lustig (C9DT01050E-(cit17)/*[position()=1]) 2017; 46
Jiang (C9DT01050E-(cit55)/*[position()=1]) 2013; 15
Liu (C9DT01050E-(cit10)/*[position()=1]) 2014; 43
Sheldrick (C9DT01050E-(cit61)/*[position()=1]) 2015; 71
Zhang (C9DT01050E-(cit27)/*[position()=1]) 2014; 136
Zhang (C9DT01050E-(cit69)/*[position()=1]) 2012; 48
Trivedi (C9DT01050E-(cit63)/*[position()=1]) 2009; 65
Xiong (C9DT01050E-(cit50)/*[position()=1]) 2015; 54
Furukawa (C9DT01050E-(cit34)/*[position()=1]) 2013; 341
Herm (C9DT01050E-(cit6)/*[position()=1]) 2013; 340
He (C9DT01050E-(cit19)/*[position()=1]) 2014; 43
Du (C9DT01050E-(cit36)/*[position()=1]) 2019; 48
Shen (C9DT01050E-(cit13)/*[position()=1]) 2013; 42
Cheng (C9DT01050E-(cit66)/*[position()=1]) 2004; 4
Jin (C9DT01050E-(cit39)/*[position()=1]) 2002; 23
Maurya (C9DT01050E-(cit70)/*[position()=1]) 2007; 273
Horcajada (C9DT01050E-(cit31)/*[position()=1]) 2006; 45
Mueller (C9DT01050E-(cit30)/*[position()=1]) 2006; 16
Liao (C9DT01050E-(cit11)/*[position()=1]) 2015; 6
Zhang (C9DT01050E-(cit46)/*[position()=1]) 2009; 48
Allan (C9DT01050E-(cit7)/*[position()=1]) 2012; 41
Hulea (C9DT01050E-(cit71)/*[position()=1]) 2004; 277
Nadeem (C9DT01050E-(cit65)/*[position()=1]) 2010; 39
Morris (C9DT01050E-(cit44)/*[position()=1]) 2009; 21
Xiao (C9DT01050E-(cit14)/*[position()=1]) 2014; 6
Shustova (C9DT01050E-(cit18)/*[position()=1]) 2011; 133
Parnham (C9DT01050E-(cit49)/*[position()=1]) 2006; 45
Zhang (C9DT01050E-(cit29)/*[position()=1]) 2015; 44
Meng (C9DT01050E-(cit48)/*[position()=1]) 2014; 53
Morozan (C9DT01050E-(cit32)/*[position()=1]) 2012; 5
Zhou (C9DT01050E-(cit22)/*[position()=1]) 2014; 2
Liu (C9DT01050E-(cit26)/*[position()=1]) 2014; 53
Bauer (C9DT01050E-(cit15)/*[position()=1]) 2007; 129
Morris (C9DT01050E-(cit3)/*[position()=1]) 2008; 47
Li (C9DT01050E-(cit4)/*[position()=1]) 2009; 38
Chen (C9DT01050E-(cit5)/*[position()=1]) 2010; 43
Deria (C9DT01050E-(cit12)/*[position()=1]) 2016; 138
Hu (C9DT01050E-(cit16)/*[position()=1]) 2014; 43
Li (C9DT01050E-(cit1)/*[position()=1]) 1999; 402
Wang (C9DT01050E-(cit62)/*[position()=1]) 2006; 62
Zhan (C9DT01050E-(cit59)/*[position()=1]) 2012; 51
Cooper (C9DT01050E-(cit41)/*[position()=1]) 2004; 430
Fischer (C9DT01050E-(cit45)/*[position()=1]) 2016; 45
Millward (C9DT01050E-(cit2)/*[position()=1]) 2005; 127
Wu (C9DT01050E-(cit8)/*[position()=1]) 2005; 127
Dybtsev (C9DT01050E-(cit40)/*[position()=1]) 2004; 14
Meng (C9DT01050E-(cit47)/*[position()=1]) 2013; 42
Yao (C9DT01050E-(cit68)/*[position()=1]) 2014; 394
Liao (C9DT01050E-(cit42)/*[position()=1]) 2006; 6
Parnham (C9DT01050E-(cit60)/*[position()=1]) 2006; 45
Wang (C9DT01050E-(cit54)/*[position()=1]) 2012; 14
Zhang (C9DT01050E-(cit57)/*[position()=1]) 2012; 41
Horcajada (C9DT01050E-(cit33)/*[position()=1]) 2012; 112
Dang (C9DT01050E-(cit20)/*[position()=1]) 2012; 22
Akhbari (C9DT01050E-(cit24)/*[position()=1]) 2013; 42
Parnham (C9DT01050E-(cit43)/*[position()=1]) 2007; 40
References_xml – volume: 53
  start-page: 9052
  year: 2014
  ident: C9DT01050E-(cit48)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic501013x
– volume: 43
  start-page: 1115
  year: 2010
  ident: C9DT01050E-(cit5)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100023y
– volume: 112
  start-page: 1232
  year: 2012
  ident: C9DT01050E-(cit33)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200256v
– volume: 42
  start-page: 13649
  year: 2013
  ident: C9DT01050E-(cit13)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51479j
– volume: 134
  start-page: 18082
  year: 2012
  ident: C9DT01050E-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3079219
– volume: 341
  start-page: 974
  year: 2013
  ident: C9DT01050E-(cit34)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 71
  start-page: 3
  year: 2015
  ident: C9DT01050E-(cit61)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229614024218
– volume: 402
  start-page: 276
  year: 1999
  ident: C9DT01050E-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/46248
– volume: 20
  start-page: 6871
  year: 2014
  ident: C9DT01050E-(cit23)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201402682
– volume: 136
  start-page: 7241
  year: 2014
  ident: C9DT01050E-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502643p
– volume: 127
  start-page: 8940
  year: 2005
  ident: C9DT01050E-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052431t
– volume: 277
  start-page: 99
  year: 2004
  ident: C9DT01050E-(cit71)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2004.09.001
– volume: 6
  start-page: 1062
  year: 2006
  ident: C9DT01050E-(cit42)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg0504197
– volume: 127
  start-page: 17998
  year: 2005
  ident: C9DT01050E-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0570032
– volume: 14
  start-page: 2969
  year: 2012
  ident: C9DT01050E-(cit58)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/c2gc36005e
– volume: 273
  start-page: 133
  year: 2007
  ident: C9DT01050E-(cit70)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2007.03.074
– volume: 43
  start-page: 5815
  year: 2014
  ident: C9DT01050E-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00010B
– volume: 6
  start-page: 8
  year: 2015
  ident: C9DT01050E-(cit11)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 41
  start-page: 7108
  year: 2012
  ident: C9DT01050E-(cit57)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35178a
– volume: 54
  start-page: 11616
  year: 2015
  ident: C9DT01050E-(cit50)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502277
– volume: 2
  start-page: 13691
  year: 2014
  ident: C9DT01050E-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01297F
– volume: 46
  start-page: 3108
  year: 2017
  ident: C9DT01050E-(cit35)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00041C
– volume: 46
  start-page: 3242
  year: 2017
  ident: C9DT01050E-(cit17)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00930A
– volume: 40
  start-page: 1005
  year: 2007
  ident: C9DT01050E-(cit43)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700025k
– volume: 178
  start-page: 207
  year: 1998
  ident: C9DT01050E-(cit67)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1006/jcat.1998.2145
– volume: 43
  start-page: 3716
  year: 2014
  ident: C9DT01050E-(cit19)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C3DT53013B
– volume: 135
  start-page: 13326
  year: 2013
  ident: C9DT01050E-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407778a
– volume: 29
  start-page: 148
  year: 2013
  ident: C9DT01050E-(cit56)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2012.12.019
– volume: 51
  start-page: 523
  year: 2012
  ident: C9DT01050E-(cit59)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201986m
– volume: 48
  start-page: 2013
  year: 2019
  ident: C9DT01050E-(cit36)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04863K
– volume: 11
  start-page: 560
  year: 2009
  ident: C9DT01050E-(cit64)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/b820248f
– volume: 5
  start-page: 2693
  year: 2018
  ident: C9DT01050E-(cit51)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00543E
– volume: 129
  start-page: 7136
  year: 2007
  ident: C9DT01050E-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0700395
– volume: 45
  start-page: 5974
  year: 2006
  ident: C9DT01050E-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200601878
– volume: 14
  start-page: 1594
  year: 2004
  ident: C9DT01050E-(cit40)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B403001J
– volume: 38
  start-page: 1450
  year: 2009
  ident: C9DT01050E-(cit9)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 43
  start-page: 6011
  year: 2014
  ident: C9DT01050E-(cit10)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00094C
– volume: 48
  start-page: 6541
  year: 2012
  ident: C9DT01050E-(cit69)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc18127d
– volume: 134
  start-page: 9050
  year: 2012
  ident: C9DT01050E-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302110d
– volume: 38
  start-page: 1477
  year: 2009
  ident: C9DT01050E-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 14
  start-page: 1263
  year: 2012
  ident: C9DT01050E-(cit54)/*[position()=1]
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2012.07.011
– volume: 18
  start-page: 3255
  year: 2018
  ident: C9DT01050E-(cit52)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00495
– volume: 16
  start-page: 626
  year: 2006
  ident: C9DT01050E-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B511962F
– volume: 45
  start-page: 4962
  year: 2006
  ident: C9DT01050E-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600290
– volume: 53
  start-page: 1916
  year: 2014
  ident: C9DT01050E-(cit26)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402194c
– volume: 41
  start-page: 4060
  year: 2012
  ident: C9DT01050E-(cit7)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt12069k
– volume: 133
  start-page: 20126
  year: 2011
  ident: C9DT01050E-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209327q
– volume: 65
  start-page: 303
  year: 2009
  ident: C9DT01050E-(cit63)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online
  doi: 10.1107/S1600536809005212
– volume: 45
  start-page: 18443
  year: 2016
  ident: C9DT01050E-(cit45)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT03930H
– volume: 340
  start-page: 960
  year: 2013
  ident: C9DT01050E-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1234071
– volume: 42
  start-page: 4786
  year: 2013
  ident: C9DT01050E-(cit24)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt32846e
– volume: 112
  start-page: 970
  year: 2012
  ident: C9DT01050E-(cit38)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200179u
– volume: 4
  start-page: 599
  year: 2004
  ident: C9DT01050E-(cit66)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg0342415
– volume: 48
  start-page: 3486
  year: 2009
  ident: C9DT01050E-(cit46)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900134
– volume: 394
  start-page: 57
  year: 2014
  ident: C9DT01050E-(cit68)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2014.06.040
– volume: 22
  start-page: 16920
  year: 2012
  ident: C9DT01050E-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32661b
– volume: 23
  start-page: 2872
  year: 2002
  ident: C9DT01050E-(cit39)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b209937n
– volume: 45
  start-page: 4962
  year: 2006
  ident: C9DT01050E-(cit60)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600290
– volume: 39
  start-page: 4358
  year: 2010
  ident: C9DT01050E-(cit65)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/b922750d
– volume: 5
  start-page: 9269
  year: 2012
  ident: C9DT01050E-(cit32)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22989g
– volume: 47
  start-page: 5977
  year: 2018
  ident: C9DT01050E-(cit53)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT00524A
– volume: 138
  start-page: 14449
  year: 2016
  ident: C9DT01050E-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09113
– volume: 112
  start-page: 933
  year: 2012
  ident: C9DT01050E-(cit37)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200304e
– volume: 44
  start-page: 13340
  year: 2015
  ident: C9DT01050E-(cit29)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01065A
– volume: 21
  start-page: 2990
  year: 2009
  ident: C9DT01050E-(cit44)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b902611h
– volume: 430
  start-page: 1012
  year: 2004
  ident: C9DT01050E-(cit41)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02860
– volume: 42
  start-page: 12853
  year: 2013
  ident: C9DT01050E-(cit47)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51816g
– volume: 47
  start-page: 4966
  year: 2008
  ident: C9DT01050E-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703934
– volume: 15
  start-page: 315
  year: 2013
  ident: C9DT01050E-(cit55)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C2CE26242H
– volume: 6
  start-page: 590
  year: 2014
  ident: C9DT01050E-(cit14)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1956
– volume: 62
  start-page: 2496
  year: 2006
  ident: C9DT01050E-(cit62)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online
  doi: 10.1107/S1600536806035197
SSID ssj0022052
Score 2.512203
Snippet Deep eutectic solvents (DESs) have attracted extensive attention in the field of material synthesis as green solvents. They have similar physical and chemical...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1199
SubjectTerms Ammonia
Catalysis
Catalytic activity
Chemical properties
Choline
Crystallography
Donors (electronic)
Eutectics
Format
Hydrogen bonds
Ionic liquids
Metal-organic frameworks
Organic chemistry
Oxidation
Solvents
Transition metals
Urea
Zinc
Title Structural variation of transition metal-organic frameworks using deep eutectic solvents with different hydrogen bond donors
URI https://www.ncbi.nlm.nih.gov/pubmed/31192327
https://www.proquest.com/docview/2253757673
https://www.proquest.com/docview/2254504551
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1477-9234
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022052
  issn: 1477-9226
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QEuiFdhoSAjuKCVIYmdODlW20UFQS9sRTmtnNiBSlVSdZNKIH4OP5TxM1m1SMAlWtnexPL3JZ4ZzwOhl4rWOqs5I0wWEQFSMCJKqQjIyqkA_OPcJHH9eJQdHrP3J-nJZPJr5LXUd-Xr6se1cSX_gyq0Aa46SvYfkA03hQb4DfjCFRCG619h_MkkfzWJMy5B5w3SX6c3IOOLpStEizNiazdV89q7Ym3mvTESSKXO56rXJwnQDbO9HCLefO2Ubv7tu7xoYRbzUke7yLZp3RmQk2oPhK5NbR9rAyU2xtQgGpOOYrA4buWp8JOqfM25kRG7tS79zVfypR-ae8M5IDQ5GrkSnVo_Y7cFh5bP6nRs0jBRVMTGSbuvMNPnyknicmSP25zl0326WT6iqM0x4D7EcWzrLrlNPbZmlSv7RUR1utWqkJ2uFBqpYVcMvopD5w20k_AsS6ZoZ3-5evchKPZJZCo7hWn7NLi0eDP8e1vwuaLNgGxz4WvOGNlmdQfddkoJ3rcMu4smqrmHbi48LvfRz4FpODANtzUemIa3mIYHpmHDNKyZhj3TsGca1kzDgWnYMw1rpmHLtAfo-O1ytTgkrm4HqSjlHUnzKhNRwUWqGBdcCJ6VKoIuWUZGHy_yFBYyKpkociZB6I2TKlJFnEpR5bGgu2jatI16hHDMasr18uVSMpBGdV2trJaqAsGWwy1m6JVf1HXlktrr2ipna-NcQYv1ojhYGQCWM_QijD23qVyuHbXnsVm7l2Kzhk2PctDMOZ2h56EbMNCna6JRbW_GsBQUpDSeoYcW0_AYGmtFKuEztAsgh-aBHI__1PEE3RrekD00BbTVUxCDu_KZY-FvmgK4tA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+variation+of+transition+metal-organic+frameworks+using+deep+eutectic+solvents+with+different+hydrogen+bond+donors&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Zhao%2C+Ming-Yu&rft.au=Zhu%2C+Jian-Nan&rft.au=Li%2C+Peng&rft.au=Li%2C+Wei&rft.date=2019-07-21&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=48&rft.issue=27&rft.spage=1199&rft.epage=129&rft_id=info:doi/10.1039%2Fc9dt01050e&rft.externalDocID=c9dt01050e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon