Surface and subsurface analysis of TC18 titanium alloy subject to longitudinal-torsional ultrasonic vibration-assisted end milling

Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains uncle...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 929; p. 167259
Main Authors Xie, Weibo, Wang, Xikui, Zhao, Bo, Li, Guangxi, Xie, Zhijiang
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.12.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0925-8388
1873-4669
DOI10.1016/j.jallcom.2022.167259

Cover

Abstract Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains unclear. In this study, we examined the effects of the ultrasonic amplitude, feed rate, and cutting speed on the machined surface morphology, roughness, surface residual stress, and subsurface microstructure in the longitudinal-torsional ultrasonic vibration-assisted end-milling process. According to the results, longitudinal-torsional ultrasonic vibration-assisted end milling can help form more obvious surface microtextures with a more distinct surface texture regularity at large amplitude, small feed rate, and high cutting speed. Compared with conventional milling, longitudinal-torsional ultrasonic vibration-assisted milling generates a larger roughness and surface residual stress and a deeper plastic deformation layer of the subsurface in the case of an obvious highly perturbed layer. In addition, the surface residual stress becomes greater and the plastic deformation layer gets deeper at a larger amplitude. When the amplitude was 5 µm, the surface residual stress was − 450.625 MPa and the depth of the deformation layer was 5.4 µm. The stress and depth increased by 21.55 % and 134.78 %, respectively, compared with those of conventional milling. The increase in the feed rate enhanced the roughness, decreased the surface residual stress, and did not significantly alter the depth of the plastic deformation layer. When the feed rate was 0.01 mm/z, the roughness was 0.383 µm and the surface residual stress was − 479.1 MPa. The feed rate and roughness increased by 42.63 % and 20.62 %, respectively, compared with those of conventional milling. With the increase in the cutting speed, the roughness increased, and the surface residual stress and the depth of the plastic deformation layer decreased. When the cutting speed was 15 m/min, the roughness was 0.31 µm, the surface residual stress value was − 454.7 MPa, and the depth of the plastic deformation layer was 5.7 µm. These three parameters increased by 17.8 %, 18.79 %, and 92.5 %, respectively, compared with those of conventional milling. This research has certain application prospect in surface machining of titanium alloy and quality control of machined surface. [Display omitted] •Low feed and high cutting speed could form more regular surface texture.•Ultrasonic milling may increase the surface residual compressive stress.•Ultrasonic milling can produce strong plastic deformation in the subsurface
AbstractList Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains unclear. In this study, we examined the effects of the ultrasonic amplitude, feed rate, and cutting speed on the machined surface morphology, roughness, surface residual stress, and subsurface microstructure in the longitudinal-torsional ultrasonic vibration-assisted end-milling process. According to the results, longitudinal-torsional ultrasonic vibration-assisted end milling can help form more obvious surface microtextures with a more distinct surface texture regularity at large amplitude, small feed rate, and high cutting speed. Compared with conventional milling, longitudinal-torsional ultrasonic vibration-assisted milling generates a larger roughness and surface residual stress and a deeper plastic deformation layer of the subsurface in the case of an obvious highly perturbed layer. In addition, the surface residual stress becomes greater and the plastic deformation layer gets deeper at a larger amplitude. When the amplitude was 5 µm, the surface residual stress was − 450.625 MPa and the depth of the deformation layer was 5.4 µm. The stress and depth increased by 21.55 % and 134.78 %, respectively, compared with those of conventional milling. The increase in the feed rate enhanced the roughness, decreased the surface residual stress, and did not significantly alter the depth of the plastic deformation layer. When the feed rate was 0.01 mm/z, the roughness was 0.383 µm and the surface residual stress was − 479.1 MPa. The feed rate and roughness increased by 42.63 % and 20.62 %, respectively, compared with those of conventional milling. With the increase in the cutting speed, the roughness increased, and the surface residual stress and the depth of the plastic deformation layer decreased. When the cutting speed was 15 m/min, the roughness was 0.31 µm, the surface residual stress value was − 454.7 MPa, and the depth of the plastic deformation layer was 5.7 µm. These three parameters increased by 17.8 %, 18.79 %, and 92.5 %, respectively, compared with those of conventional milling. This research has certain application prospect in surface machining of titanium alloy and quality control of machined surface.
Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains unclear. In this study, we examined the effects of the ultrasonic amplitude, feed rate, and cutting speed on the machined surface morphology, roughness, surface residual stress, and subsurface microstructure in the longitudinal-torsional ultrasonic vibration-assisted end-milling process. According to the results, longitudinal-torsional ultrasonic vibration-assisted end milling can help form more obvious surface microtextures with a more distinct surface texture regularity at large amplitude, small feed rate, and high cutting speed. Compared with conventional milling, longitudinal-torsional ultrasonic vibration-assisted milling generates a larger roughness and surface residual stress and a deeper plastic deformation layer of the subsurface in the case of an obvious highly perturbed layer. In addition, the surface residual stress becomes greater and the plastic deformation layer gets deeper at a larger amplitude. When the amplitude was 5 µm, the surface residual stress was − 450.625 MPa and the depth of the deformation layer was 5.4 µm. The stress and depth increased by 21.55 % and 134.78 %, respectively, compared with those of conventional milling. The increase in the feed rate enhanced the roughness, decreased the surface residual stress, and did not significantly alter the depth of the plastic deformation layer. When the feed rate was 0.01 mm/z, the roughness was 0.383 µm and the surface residual stress was − 479.1 MPa. The feed rate and roughness increased by 42.63 % and 20.62 %, respectively, compared with those of conventional milling. With the increase in the cutting speed, the roughness increased, and the surface residual stress and the depth of the plastic deformation layer decreased. When the cutting speed was 15 m/min, the roughness was 0.31 µm, the surface residual stress value was − 454.7 MPa, and the depth of the plastic deformation layer was 5.7 µm. These three parameters increased by 17.8 %, 18.79 %, and 92.5 %, respectively, compared with those of conventional milling. This research has certain application prospect in surface machining of titanium alloy and quality control of machined surface. [Display omitted] •Low feed and high cutting speed could form more regular surface texture.•Ultrasonic milling may increase the surface residual compressive stress.•Ultrasonic milling can produce strong plastic deformation in the subsurface
ArticleNumber 167259
Author Wang, Xikui
Xie, Zhijiang
Zhao, Bo
Li, Guangxi
Xie, Weibo
Author_xml – sequence: 1
  givenname: Weibo
  surname: Xie
  fullname: Xie, Weibo
  organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Xikui
  surname: Wang
  fullname: Wang, Xikui
  organization: Henan Engineering Research Center for Ultrasonic Technology and Application, Pingdingshan University, Pingdingshan 467000, China
– sequence: 3
  givenname: Bo
  surname: Zhao
  fullname: Zhao, Bo
  organization: Henan Engineering Research Center for Ultrasonic Technology and Application, Pingdingshan University, Pingdingshan 467000, China
– sequence: 4
  givenname: Guangxi
  surname: Li
  fullname: Li, Guangxi
  organization: Henan Engineering Research Center for Ultrasonic Technology and Application, Pingdingshan University, Pingdingshan 467000, China
– sequence: 5
  givenname: Zhijiang
  surname: Xie
  fullname: Xie, Zhijiang
  email: 20180701045@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
BookMark eNqFkEtLAzEUhYNUsK3-BCHgemoeTSaDC5HiCwourOuQyWRKhnRSk0yhW3-5KS0u3HSV3Ms55977TcCo970B4BajGUaY33ezTjmn_WZGECEzzEvCqgswxqKkxZzzagTGqCKsEFSIKzCJsUMI4YriMfj5HEKrtIGqb2Ac6vhXKrePNkLfwtUCC5hsUr0dNjCP8vuDtDM6weSh8_3apqGx2VIkH6L1-QcHl4KKvrca7mwdVMrtQsWcmUwDTR63sc7Zfn0NLlvlork5vVPw9fK8WrwVy4_X98XTstCUlqlguNSNKJtWEEqEQSUXrFJct4zWlNWaknmrMca0JrwljDVU1KRSlM01wyKXU3B3zN0G_z2YmGTnh5BXjZKUPJNjrOJZ9XBU6eBjDKaVOl9-WD6fY53ESB6gy06eoMsDdHmEnt3sn3sb7EaF_Vnf49FnMoCdNUFGbU2vTWNDxiwbb88k_AKurKNQ
CitedBy_id crossref_primary_10_1016_j_cja_2024_05_034
crossref_primary_10_1016_j_matchemphys_2024_129734
crossref_primary_10_3390_coatings14060719
crossref_primary_10_1016_j_mtcomm_2024_111257
crossref_primary_10_1016_j_compositesa_2024_108702
crossref_primary_10_1007_s00170_023_11291_7
crossref_primary_10_1088_2631_7990_ad16d6
crossref_primary_10_1007_s00170_024_13765_8
crossref_primary_10_1007_s12541_024_01180_8
crossref_primary_10_1007_s00170_023_11109_6
crossref_primary_10_1007_s11837_024_06978_5
crossref_primary_10_1016_j_jallcom_2024_176337
crossref_primary_10_1016_j_mtcomm_2024_108975
crossref_primary_10_1016_j_precisioneng_2024_01_025
crossref_primary_10_1016_j_jmrt_2024_06_116
crossref_primary_10_1016_j_jmapro_2023_10_025
crossref_primary_10_1016_j_jallcom_2023_172573
crossref_primary_10_1007_s40436_023_00473_x
Cites_doi 10.3901/JME.2019.11.215
10.1016/j.jmatprotec.2019.116386
10.1016/j.surfcoat.2018.05.056
10.1016/j.msea.2009.12.018
10.1016/j.ultras.2019.106052
10.1016/j.ultras.2017.03.005
10.1016/j.ijmecsci.2021.106681
10.1016/j.jmatprotec.2008.09.022
10.1016/j.matdes.2014.12.021
10.1016/j.ijmachtools.2021.103718
10.1016/j.cja.2021.06.006
10.1007/s00170-018-2847-3
10.1520/JTE20170083
10.1016/j.ultras.2018.07.004
10.1016/j.wear.2006.11.010
10.3390/met10010044
10.1016/j.jmapro.2020.01.040
10.1016/j.ijmecsci.2022.107375
10.1016/j.precisioneng.2019.04.010
10.3901/JME.2019.13.224
10.1016/j.measurement.2020.108554
10.1016/j.jmapro.2018.10.010
10.3901/JME.2018.17.133
10.1007/s11665-016-2343-6
10.1016/j.jallcom.2019.04.315
10.1016/j.jmatprotec.2021.117265
10.1016/j.msea.2017.03.114
10.1016/j.jallcom.2019.153266
10.1016/j.procir.2022.04.071
10.1016/j.measurement.2021.110324
10.1016/j.matdes.2020.108658
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Dec 25, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 25, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2022.167259
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2022_167259
S0925838822036507
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
T9H
WUQ
~HD
8BQ
8FD
JG9
ID FETCH-LOGICAL-c337t-517cd87df82328e076859a6cf53b35bc324fc1113b26f255d38b29a354c5185d3
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Sun Oct 05 00:28:13 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Thu Oct 16 04:45:20 EDT 2025
Fri Feb 23 02:39:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TC18 titanium alloy
Plastic deformation layer
Surface morphology
Longitudinal-torsional ultrasonic vibration-assisted milling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-517cd87df82328e076859a6cf53b35bc324fc1113b26f255d38b29a354c5185d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2760225596
PQPubID 2045454
ParticipantIDs proquest_journals_2760225596
crossref_citationtrail_10_1016_j_jallcom_2022_167259
crossref_primary_10_1016_j_jallcom_2022_167259
elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_167259
PublicationCentury 2000
PublicationDate 2022-12-25
PublicationDateYYYYMMDD 2022-12-25
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Bai, Sun, Leopold, Silberschmidt (bib8) 2017; 78
Uludağ, Yazman, Gemi, Bakircioğlu, Erzi, Dispinar (bib9) 2018; 46
Monaca, Murray, Liao, Speidel, Robles-Linares, Axinte, Hardy, Clare (bib10) 2021; 164
Tao (bib37) 2015
Suárez, Veiga, de Lacalle, Polvorosa, Lutze, Wretland (bib13) 2016; 25
He, Wu, Li, Zou, Cheng (bib27) 2018; 54
Verma, Pandey (bib33) 2019; 94
Wang, Zhang (bib29) 2019; 43
Zhang, Zhang, Geng, Shao, Liu, Jiang (bib38) 2020; 821
Li, Yang, Lu, Zhang, Zhang, Jiang (bib12) 2020; 275
Sivalingam, Sun, Yang, Liu, Raju (bib31) 2018; 36
Qin, Zhu, Wiercigroch, Ren, Hao, Ning, Zhao (bib25) 2022; 227
Sun, Guo (bib32) 2009; 209
Y. Zhao, J. Zhang, X. Shen, D. Xing, Experimental Study on Surface Roughness by Ultrasonic Vibration Assisted Milling 2A12, Modular Machine Tool & Automatic Manufacturing Technique. (2011) 22–25. https://doi.org/10.3969/j.issn.1001–2265.2011.01.006.
Niu, Jiao, Zhao, Tong (bib19) 2019; 48
Liu, Jiang, Gao, Zhang, Zhang (bib15) 2019; 55
Zhao, Li, Zhao, Wang (bib18) 2020; 102
Xu, Feng, Feng, Zha, Liang (bib22) 2021; 297
Sun, Liao, Zheng, Tiao, Liu, Feng (bib24) 2022; 35
Zhao, Li, Zhang, Wang (bib17) 2020; 41
Namlu, Yilmaz, Lotfisadigh, Kilic (bib16) 2022; 108
Zhang, Zhang, Geng, Liu, Shao, Jiang (bib1) 2020; 191
Velásquez, Tidu, Bolle, Chevrier, Fundenberger (bib11) 2010; 527
Qu, Zhou, Zhang, Wang, Zhou (bib4) 2015; 69
Liu, Jiang, Han, Gao, Zhang (bib26) 2019; 101
Zhang, Mu, Wang, Zhang (bib6) 2020; 10
Tao, Liu (bib7) 2007; 2
Niu, Jiao, Zhao, Wang (bib20) 2019; 55
Ma, Luo, Liao, Zhang, Huang, Lu (bib30) 2021; 173
Lu, Zhu, Yang, Yan, Hao, Qin (bib14) 2021; 208
Zhu, Ni, Yang, Liu (bib35) 2019; 57
Shao, Shan, Wang, Zhang, Zhao (bib3) 2019; 797
Pratap, Patra (bib34) 2018; 349
Chen, Tong, Zhao, Zhang, Zhao (bib23) 2020; 53
Han, Kang, Zhang, Dong, Bao (bib28) 2021; 41
Venugopal, Paul, Chattopadhyay (bib2) 2007; 262
Ran, Chen, Li, Zhang (bib5) 2017; 694
Gao, Ma, Zhu, Yang (bib21) 2022; 187
Chen (10.1016/j.jallcom.2022.167259_bib23) 2020; 53
Shao (10.1016/j.jallcom.2022.167259_bib3) 2019; 797
Sun (10.1016/j.jallcom.2022.167259_bib24) 2022; 35
Han (10.1016/j.jallcom.2022.167259_bib28) 2021; 41
Tao (10.1016/j.jallcom.2022.167259_bib37) 2015
Monaca (10.1016/j.jallcom.2022.167259_bib10) 2021; 164
Namlu (10.1016/j.jallcom.2022.167259_bib16) 2022; 108
Zhu (10.1016/j.jallcom.2022.167259_bib35) 2019; 57
Zhao (10.1016/j.jallcom.2022.167259_bib18) 2020; 102
Qu (10.1016/j.jallcom.2022.167259_bib4) 2015; 69
Zhao (10.1016/j.jallcom.2022.167259_bib17) 2020; 41
Qin (10.1016/j.jallcom.2022.167259_bib25) 2022; 227
Gao (10.1016/j.jallcom.2022.167259_bib21) 2022; 187
Velásquez (10.1016/j.jallcom.2022.167259_bib11) 2010; 527
Xu (10.1016/j.jallcom.2022.167259_bib22) 2021; 297
Li (10.1016/j.jallcom.2022.167259_bib12) 2020; 275
Niu (10.1016/j.jallcom.2022.167259_bib20) 2019; 55
Liu (10.1016/j.jallcom.2022.167259_bib26) 2019; 101
Verma (10.1016/j.jallcom.2022.167259_bib33) 2019; 94
Zhang (10.1016/j.jallcom.2022.167259_bib38) 2020; 821
Ran (10.1016/j.jallcom.2022.167259_bib5) 2017; 694
Zhang (10.1016/j.jallcom.2022.167259_bib1) 2020; 191
Zhang (10.1016/j.jallcom.2022.167259_bib6) 2020; 10
Uludağ (10.1016/j.jallcom.2022.167259_bib9) 2018; 46
Pratap (10.1016/j.jallcom.2022.167259_bib34) 2018; 349
Wang (10.1016/j.jallcom.2022.167259_bib29) 2019; 43
Venugopal (10.1016/j.jallcom.2022.167259_bib2) 2007; 262
Sun (10.1016/j.jallcom.2022.167259_bib32) 2009; 209
Liu (10.1016/j.jallcom.2022.167259_bib15) 2019; 55
Niu (10.1016/j.jallcom.2022.167259_bib19) 2019; 48
Lu (10.1016/j.jallcom.2022.167259_bib14) 2021; 208
Ma (10.1016/j.jallcom.2022.167259_bib30) 2021; 173
10.1016/j.jallcom.2022.167259_bib36
Tao (10.1016/j.jallcom.2022.167259_bib7) 2007; 2
Suárez (10.1016/j.jallcom.2022.167259_bib13) 2016; 25
He (10.1016/j.jallcom.2022.167259_bib27) 2018; 54
Sivalingam (10.1016/j.jallcom.2022.167259_bib31) 2018; 36
Bai (10.1016/j.jallcom.2022.167259_bib8) 2017; 78
References_xml – volume: 10
  start-page: 44
  year: 2020
  ident: bib6
  article-title: Study on dynamic mechanical properties and constitutive model construction of TC18 titanium alloy
  publication-title: Metals
– volume: 694
  start-page: 41
  year: 2017
  end-page: 47
  ident: bib5
  article-title: Dynamic shear deformation and failure of Ti-5Al-5Mo-
  publication-title: Mater. Sci. Eng.: A
– reference: Y. Zhao, J. Zhang, X. Shen, D. Xing, Experimental Study on Surface Roughness by Ultrasonic Vibration Assisted Milling 2A12, Modular Machine Tool & Automatic Manufacturing Technique. (2011) 22–25. https://doi.org/10.3969/j.issn.1001–2265.2011.01.006.
– volume: 797
  start-page: 10
  year: 2019
  end-page: 17
  ident: bib3
  article-title: Massive α precipitation selectivity and tensile fracture behavior of TC18 alloy
  publication-title: J. Alloy Compd.
– volume: 69
  start-page: 153
  year: 2015
  end-page: 162
  ident: bib4
  article-title: Research on hot deformation behavior of Ti-5Al-5Mo-
  publication-title: Mater. Des.
– volume: 25
  start-page: 5076
  year: 2016
  end-page: 5086
  ident: bib13
  article-title: Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718
  publication-title: J. Mater. Eng. Perform.
– volume: 275
  year: 2020
  ident: bib12
  article-title: Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens
  publication-title: J. Mater. Process Technol.
– volume: 297
  year: 2021
  ident: bib22
  article-title: Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling
  publication-title: J. Mater. Process Technol.
– volume: 101
  start-page: 1451
  year: 2019
  end-page: 1465
  ident: bib26
  article-title: Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 46
  start-page: 20170083
  year: 2018
  ident: bib9
  article-title: Relationship between machinability, microstructure, and mechanical properties of Al-7Si alloy
  publication-title: J. Test. Eval.
– volume: 527
  start-page: 2572
  year: 2010
  end-page: 2578
  ident: bib11
  article-title: Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy
  publication-title: Mater. Sci. Eng.: A
– volume: 48
  start-page: 41
  year: 2019
  end-page: 51
  ident: bib19
  article-title: Experiment of machining induced residual stress in longitudinal torsional ultrasonic assisted milling of Ti-6Al-4V
  publication-title: Surf. Technol.
– volume: 78
  start-page: 70
  year: 2017
  end-page: 82
  ident: bib8
  article-title: Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: numerical modelling and experimental analysis
  publication-title: Ultrasonics
– volume: 164
  year: 2021
  ident: bib10
  article-title: Surface integrity in metal machining - Part II: functional performance
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 187
  year: 2022
  ident: bib21
  article-title: Enhancement of machinability and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted milling under dry conditions
  publication-title: Measurement
– volume: 2
  start-page: 14
  year: 2007
  end-page: 20
  ident: bib7
  article-title: Safety evaluation on materials and technics of aviation engine
  publication-title: Fail. Anal. Prev.
– volume: 57
  start-page: 229
  year: 2019
  end-page: 243
  ident: bib35
  article-title: Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti-6Al-4V
  publication-title: Precis. Eng.
– volume: 94
  start-page: 350
  year: 2019
  end-page: 363
  ident: bib33
  article-title: Machining forces in ultrasonic-vibration assisted end milling
  publication-title: Ultrasonics
– volume: 53
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib23
  article-title: A study ofthe surface microstructure and tool wear of titanium alloys after ultrasonic longitudinal-torsional milling
  publication-title: J. Manuf. Process.
– volume: 35
  start-page: 249
  year: 2022
  end-page: 264
  ident: bib24
  article-title: Stability analysis of robotic longitudinal-torsional composite ultrasonic milling
  publication-title: Chin. J. Aeronaut.
– volume: 108
  start-page: 311
  year: 2022
  end-page: 316
  ident: bib16
  article-title: An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication
  publication-title: Procedia CIRP
– volume: 173
  year: 2021
  ident: bib30
  article-title: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning
  publication-title: Measurement
– year: 2015
  ident: bib37
  article-title: Theory and Methods of Surface Integrity in Machining
  publication-title: Bei Jing
– volume: 821
  year: 2020
  ident: bib38
  article-title: Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V
  publication-title: J. Alloy Compd.
– volume: 41
  year: 2020
  ident: bib17
  article-title: Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy
  publication-title: Acta Aeronaut. ET Astronaut. Sin.
– volume: 54
  start-page: 133
  year: 2018
  end-page: 141
  ident: bib27
  article-title: Study on the formation mechanism of phase transformation and the influencing factors of cutting layer of the typical titanium alloy
  publication-title: J. Mech. Eng.
– volume: 227
  year: 2022
  ident: bib25
  article-title: Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling
  publication-title: Int. J. Mech. Sci.
– volume: 209
  start-page: 4036
  year: 2009
  end-page: 4042
  ident: bib32
  article-title: A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V
  publication-title: J. Mater. Process Technol.
– volume: 191
  year: 2020
  ident: bib1
  article-title: Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V
  publication-title: Mater. Des.
– volume: 208
  year: 2021
  ident: bib14
  article-title: Research on the generation mechanism and interference of surface texturein ultrasonic vibration assisted milling
  publication-title: Int. J. Mech. Sci.
– volume: 41
  start-page: 46
  year: 2021
  end-page: 51
  ident: bib28
  article-title: Research on surface integrity of GH4169 machined by ultrasonic assisted grinding
  publication-title: Diam. Abras. Eng.
– volume: 262
  start-page: 1071
  year: 2007
  end-page: 1078
  ident: bib2
  article-title: Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling
  publication-title: Wear
– volume: 55
  start-page: 224
  year: 2019
  end-page: 232
  ident: bib20
  article-title: 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling
  publication-title: J. Mech. Eng.
– volume: 43
  start-page: 69
  year: 2019
  end-page: 73
  ident: bib29
  article-title: Cutting force and surface roughness of turning on TC18 titanium alloy
  publication-title: Mater. Mech. Eng.
– volume: 102
  year: 2020
  ident: bib18
  article-title: Fractal characterization of surface microtexture of Ti6Al4V subjected to ultrasonic vibration assisted milling
  publication-title: Ultrasonics
– volume: 349
  start-page: 71
  year: 2018
  end-page: 81
  ident: bib34
  article-title: Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances
  publication-title: Surf. Coat. Technol.
– volume: 55
  start-page: 215
  year: 2019
  end-page: 223
  ident: bib15
  article-title: Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V
  publication-title: J. Mech. Eng.
– volume: 36
  start-page: 188
  year: 2018
  end-page: 196
  ident: bib31
  article-title: Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy
  publication-title: J. Manuf. Process
– volume: 55
  start-page: 215
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib15
  article-title: Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.11.215
– volume: 275
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib12
  article-title: Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2019.116386
– volume: 48
  start-page: 41
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib19
  article-title: Experiment of machining induced residual stress in longitudinal torsional ultrasonic assisted milling of Ti-6Al-4V
  publication-title: Surf. Technol.
– volume: 349
  start-page: 71
  year: 2018
  ident: 10.1016/j.jallcom.2022.167259_bib34
  article-title: Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.05.056
– volume: 527
  start-page: 2572
  issue: 10–11
  year: 2010
  ident: 10.1016/j.jallcom.2022.167259_bib11
  article-title: Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2009.12.018
– volume: 102
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib18
  article-title: Fractal characterization of surface microtexture of Ti6Al4V subjected to ultrasonic vibration assisted milling
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2019.106052
– volume: 41
  start-page: 46
  issue: 05
  year: 2021
  ident: 10.1016/j.jallcom.2022.167259_bib28
  article-title: Research on surface integrity of GH4169 machined by ultrasonic assisted grinding
  publication-title: Diam. Abras. Eng.
– volume: 78
  start-page: 70
  year: 2017
  ident: 10.1016/j.jallcom.2022.167259_bib8
  article-title: Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: numerical modelling and experimental analysis
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.03.005
– volume: 2
  start-page: 14
  year: 2007
  ident: 10.1016/j.jallcom.2022.167259_bib7
  article-title: Safety evaluation on materials and technics of aviation engine
  publication-title: Fail. Anal. Prev.
– volume: 208
  year: 2021
  ident: 10.1016/j.jallcom.2022.167259_bib14
  article-title: Research on the generation mechanism and interference of surface texturein ultrasonic vibration assisted milling
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106681
– ident: 10.1016/j.jallcom.2022.167259_bib36
– volume: 209
  start-page: 4036
  issue: 8
  year: 2009
  ident: 10.1016/j.jallcom.2022.167259_bib32
  article-title: A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2008.09.022
– volume: 69
  start-page: 153
  year: 2015
  ident: 10.1016/j.jallcom.2022.167259_bib4
  article-title: Research on hot deformation behavior of Ti-5Al-5Mo-5V–1Cr-1Fe alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.12.021
– volume: 164
  year: 2021
  ident: 10.1016/j.jallcom.2022.167259_bib10
  article-title: Surface integrity in metal machining - Part II: functional performance
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2021.103718
– volume: 35
  start-page: 249
  issue: 8
  year: 2022
  ident: 10.1016/j.jallcom.2022.167259_bib24
  article-title: Stability analysis of robotic longitudinal-torsional composite ultrasonic milling
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2021.06.006
– volume: 101
  start-page: 1451
  issue: 5-8
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib26
  article-title: Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2847-3
– volume: 46
  start-page: 20170083
  issue: 6
  year: 2018
  ident: 10.1016/j.jallcom.2022.167259_bib9
  article-title: Relationship between machinability, microstructure, and mechanical properties of Al-7Si alloy
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE20170083
– volume: 94
  start-page: 350
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib33
  article-title: Machining forces in ultrasonic-vibration assisted end milling
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2018.07.004
– year: 2015
  ident: 10.1016/j.jallcom.2022.167259_bib37
  article-title: Theory and Methods of Surface Integrity in Machining
– volume: 262
  start-page: 1071
  issue: 9
  year: 2007
  ident: 10.1016/j.jallcom.2022.167259_bib2
  article-title: Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling
  publication-title: Wear
  doi: 10.1016/j.wear.2006.11.010
– volume: 10
  start-page: 44
  issue: 1
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib6
  article-title: Study on dynamic mechanical properties and constitutive model construction of TC18 titanium alloy
  publication-title: Metals
  doi: 10.3390/met10010044
– volume: 53
  start-page: 1
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib23
  article-title: A study ofthe surface microstructure and tool wear of titanium alloys after ultrasonic longitudinal-torsional milling
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.01.040
– volume: 227
  year: 2022
  ident: 10.1016/j.jallcom.2022.167259_bib25
  article-title: Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107375
– volume: 57
  start-page: 229
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib35
  article-title: Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti-6Al-4V
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2019.04.010
– volume: 55
  start-page: 224
  issue: 13
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib20
  article-title: 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.13.224
– volume: 173
  year: 2021
  ident: 10.1016/j.jallcom.2022.167259_bib30
  article-title: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108554
– volume: 36
  start-page: 188
  year: 2018
  ident: 10.1016/j.jallcom.2022.167259_bib31
  article-title: Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy
  publication-title: J. Manuf. Process
  doi: 10.1016/j.jmapro.2018.10.010
– volume: 54
  start-page: 133
  issue: 17
  year: 2018
  ident: 10.1016/j.jallcom.2022.167259_bib27
  article-title: Study on the formation mechanism of phase transformation and the influencing factors of cutting layer of the typical titanium alloy
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2018.17.133
– volume: 25
  start-page: 5076
  year: 2016
  ident: 10.1016/j.jallcom.2022.167259_bib13
  article-title: Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-016-2343-6
– volume: 43
  start-page: 69
  issue: 07
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib29
  article-title: Cutting force and surface roughness of turning on TC18 titanium alloy
  publication-title: Mater. Mech. Eng.
– volume: 41
  issue: 2
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib17
  article-title: Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy
  publication-title: Acta Aeronaut. ET Astronaut. Sin.
– volume: 797
  start-page: 10
  year: 2019
  ident: 10.1016/j.jallcom.2022.167259_bib3
  article-title: Massive α precipitation selectivity and tensile fracture behavior of TC18 alloy
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2019.04.315
– volume: 297
  year: 2021
  ident: 10.1016/j.jallcom.2022.167259_bib22
  article-title: Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2021.117265
– volume: 694
  start-page: 41
  year: 2017
  ident: 10.1016/j.jallcom.2022.167259_bib5
  article-title: Dynamic shear deformation and failure of Ti-5Al-5Mo-5V–1Cr-1Fe titanium alloy
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2017.03.114
– volume: 821
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib38
  article-title: Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2019.153266
– volume: 108
  start-page: 311
  year: 2022
  ident: 10.1016/j.jallcom.2022.167259_bib16
  article-title: An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2022.04.071
– volume: 187
  year: 2022
  ident: 10.1016/j.jallcom.2022.167259_bib21
  article-title: Enhancement of machinability and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted milling under dry conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110324
– volume: 191
  year: 2020
  ident: 10.1016/j.jallcom.2022.167259_bib1
  article-title: Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108658
SSID ssj0001931
Score 2.506152
Snippet Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167259
SubjectTerms Amplitudes
Cutting parameters
Cutting speed
End milling
Feed rate
Longitudinal-torsional ultrasonic vibration-assisted milling
Machine tools
Plastic deformation
Plastic deformation layer
Quality control
Residual stress
Roughness
Surface layers
Surface morphology
TC18 titanium alloy
Titanium alloys
Titanium base alloys
Ultrasonic vibration
Vibration analysis
Title Surface and subsurface analysis of TC18 titanium alloy subject to longitudinal-torsional ultrasonic vibration-assisted end milling
URI https://dx.doi.org/10.1016/j.jallcom.2022.167259
https://www.proquest.com/docview/2760225596
Volume 929
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4669
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001931
  issn: 0925-8388
  databaseCode: AKRWK
  dateStart: 19930111
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSkl7KO2mJWmToEOu2rVlS7aPYWnYtDSXJJCbkPWAXVxv2LUDvfTQX94ZP5KmFAI9yoxsoU-eGUkz8wGcFoksCycKjr605Kn3GS-9j3gUIhNwe1BGkvKdv12qxU365Vbe7sB8zIWhsMpB9_c6vdPWw5PZMJuzu-VydhUVgu780MKhFpZdRnmaZsRiMP35GOaBDkrHmofCnKQfs3hmq-nKVBUFjQi0ZNNYZYJKlv7bPv2lqTvzc_4W3gx-Izvrh_YOdnw9gb35SNc2gdd_VBacwMsustNu9-HXVbsJxnpmase2qCYemn01ErYO7Hoe54yyzepl-53RVfwPEqUjGtasWbUmUqPWEYEWJ3ae7viQtVWzMVsqrcvuadNNEHP0xWnhOObxc0RphMN5Dzfnn6_nCz4QL3CbJFnDZZxZl2cu5Ohv5Z4u62RhlA0yKRFbi05YsMRRXwoVcE_ikrwUhUlkaiXaf5d8gN16XfsDYCKLjHImiMKj42WiIlcIiIqtCMIlLj6EdJxubYeq5ESOUekx_GylB5Q0oaR7lA5h-tDtri_L8VyHfMRSP1lfGk3Hc12PRuz18INvtcgUSuB2TH38_zd_glfUougYIY9gt9m0_hh9nKY86RbxCbw4u_i6uPwN8qX86A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRahwQLCAKBTwgat3Eyd2kiNaUS3Q9tKt1Jvl-CHtKs1WuwkSlx76y5nJowWEVIljEjuxPM7MN_bMfACfikSWhRMFRywteep9xkvvIx6FyAR0D8pIUr7z6ZlaXKTfLuXlHszHXBgKqxx0f6_TO2093JkNszm7Xq1m51Eh6MwPLRxqYUkZ5Y9SKTLywKY393EeiFA62jxszan5fRrPbD1dm6qiqBGBpmwaq0xQzdJ_G6i_VHVnf46fw7MBOLLP_dhewJ6vJ3AwH_naJvD0t9KCE3jchXba3Uu4PW-3wVjPTO3YDvXE3WVfjoRtAlvO45xRulm9aq8YncX_pKa0R8OaDas2xGrUOmLQ4kTP0-0fsrZqtmZHtXXZD_K6ScYcwTitHMc8fo44jXA4r-Di-MtyvuAD8wK3SZI1XMaZdXnmQo6AK_d0WicLo2yQSYnCtYjCgiWS-lKogE6JS_JSFCaRqZUIAFzyGvbrTe3fABNZZJQzQRQekZeJilyhQFRsRRAucfEhpON0azuUJSd2jEqP8WdrPUhJk5R0L6VDmN51u-7rcjzUIR9lqf9YYBptx0Ndj0bZ6-EP32mRKWyB_ph6-_9v_ggHi-XpiT75evb9HTyhJxQqI-QR7Dfb1r9HwNOUH7oF_QvCGv59
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+and+subsurface+analysis+of+TC18+titanium+alloy+subject+to+longitudinal-torsional+ultrasonic+vibration-assisted+end+milling&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Xie%2C+Weibo&rft.au=Wang%2C+Xikui&rft.au=Zhao%2C+Bo&rft.au=Li%2C+Guangxi&rft.date=2022-12-25&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=929&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2022.167259&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon