Surface and subsurface analysis of TC18 titanium alloy subject to longitudinal-torsional ultrasonic vibration-assisted end milling
Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains uncle...
Saved in:
| Published in | Journal of alloys and compounds Vol. 929; p. 167259 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Lausanne
Elsevier B.V
25.12.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-8388 1873-4669 |
| DOI | 10.1016/j.jallcom.2022.167259 |
Cover
| Abstract | Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains unclear. In this study, we examined the effects of the ultrasonic amplitude, feed rate, and cutting speed on the machined surface morphology, roughness, surface residual stress, and subsurface microstructure in the longitudinal-torsional ultrasonic vibration-assisted end-milling process. According to the results, longitudinal-torsional ultrasonic vibration-assisted end milling can help form more obvious surface microtextures with a more distinct surface texture regularity at large amplitude, small feed rate, and high cutting speed. Compared with conventional milling, longitudinal-torsional ultrasonic vibration-assisted milling generates a larger roughness and surface residual stress and a deeper plastic deformation layer of the subsurface in the case of an obvious highly perturbed layer. In addition, the surface residual stress becomes greater and the plastic deformation layer gets deeper at a larger amplitude. When the amplitude was 5 µm, the surface residual stress was − 450.625 MPa and the depth of the deformation layer was 5.4 µm. The stress and depth increased by 21.55 % and 134.78 %, respectively, compared with those of conventional milling. The increase in the feed rate enhanced the roughness, decreased the surface residual stress, and did not significantly alter the depth of the plastic deformation layer. When the feed rate was 0.01 mm/z, the roughness was 0.383 µm and the surface residual stress was − 479.1 MPa. The feed rate and roughness increased by 42.63 % and 20.62 %, respectively, compared with those of conventional milling. With the increase in the cutting speed, the roughness increased, and the surface residual stress and the depth of the plastic deformation layer decreased. When the cutting speed was 15 m/min, the roughness was 0.31 µm, the surface residual stress value was − 454.7 MPa, and the depth of the plastic deformation layer was 5.7 µm. These three parameters increased by 17.8 %, 18.79 %, and 92.5 %, respectively, compared with those of conventional milling. This research has certain application prospect in surface machining of titanium alloy and quality control of machined surface.
[Display omitted]
•Low feed and high cutting speed could form more regular surface texture.•Ultrasonic milling may increase the surface residual compressive stress.•Ultrasonic milling can produce strong plastic deformation in the subsurface |
|---|---|
| AbstractList | Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains unclear. In this study, we examined the effects of the ultrasonic amplitude, feed rate, and cutting speed on the machined surface morphology, roughness, surface residual stress, and subsurface microstructure in the longitudinal-torsional ultrasonic vibration-assisted end-milling process. According to the results, longitudinal-torsional ultrasonic vibration-assisted end milling can help form more obvious surface microtextures with a more distinct surface texture regularity at large amplitude, small feed rate, and high cutting speed. Compared with conventional milling, longitudinal-torsional ultrasonic vibration-assisted milling generates a larger roughness and surface residual stress and a deeper plastic deformation layer of the subsurface in the case of an obvious highly perturbed layer. In addition, the surface residual stress becomes greater and the plastic deformation layer gets deeper at a larger amplitude. When the amplitude was 5 µm, the surface residual stress was − 450.625 MPa and the depth of the deformation layer was 5.4 µm. The stress and depth increased by 21.55 % and 134.78 %, respectively, compared with those of conventional milling. The increase in the feed rate enhanced the roughness, decreased the surface residual stress, and did not significantly alter the depth of the plastic deformation layer. When the feed rate was 0.01 mm/z, the roughness was 0.383 µm and the surface residual stress was − 479.1 MPa. The feed rate and roughness increased by 42.63 % and 20.62 %, respectively, compared with those of conventional milling. With the increase in the cutting speed, the roughness increased, and the surface residual stress and the depth of the plastic deformation layer decreased. When the cutting speed was 15 m/min, the roughness was 0.31 µm, the surface residual stress value was − 454.7 MPa, and the depth of the plastic deformation layer was 5.7 µm. These three parameters increased by 17.8 %, 18.79 %, and 92.5 %, respectively, compared with those of conventional milling. This research has certain application prospect in surface machining of titanium alloy and quality control of machined surface. Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this method is used for the end milling of TC18 titanium alloy, however, the law of influence on the machined surface and subsurface remains unclear. In this study, we examined the effects of the ultrasonic amplitude, feed rate, and cutting speed on the machined surface morphology, roughness, surface residual stress, and subsurface microstructure in the longitudinal-torsional ultrasonic vibration-assisted end-milling process. According to the results, longitudinal-torsional ultrasonic vibration-assisted end milling can help form more obvious surface microtextures with a more distinct surface texture regularity at large amplitude, small feed rate, and high cutting speed. Compared with conventional milling, longitudinal-torsional ultrasonic vibration-assisted milling generates a larger roughness and surface residual stress and a deeper plastic deformation layer of the subsurface in the case of an obvious highly perturbed layer. In addition, the surface residual stress becomes greater and the plastic deformation layer gets deeper at a larger amplitude. When the amplitude was 5 µm, the surface residual stress was − 450.625 MPa and the depth of the deformation layer was 5.4 µm. The stress and depth increased by 21.55 % and 134.78 %, respectively, compared with those of conventional milling. The increase in the feed rate enhanced the roughness, decreased the surface residual stress, and did not significantly alter the depth of the plastic deformation layer. When the feed rate was 0.01 mm/z, the roughness was 0.383 µm and the surface residual stress was − 479.1 MPa. The feed rate and roughness increased by 42.63 % and 20.62 %, respectively, compared with those of conventional milling. With the increase in the cutting speed, the roughness increased, and the surface residual stress and the depth of the plastic deformation layer decreased. When the cutting speed was 15 m/min, the roughness was 0.31 µm, the surface residual stress value was − 454.7 MPa, and the depth of the plastic deformation layer was 5.7 µm. These three parameters increased by 17.8 %, 18.79 %, and 92.5 %, respectively, compared with those of conventional milling. This research has certain application prospect in surface machining of titanium alloy and quality control of machined surface. [Display omitted] •Low feed and high cutting speed could form more regular surface texture.•Ultrasonic milling may increase the surface residual compressive stress.•Ultrasonic milling can produce strong plastic deformation in the subsurface |
| ArticleNumber | 167259 |
| Author | Wang, Xikui Xie, Zhijiang Zhao, Bo Li, Guangxi Xie, Weibo |
| Author_xml | – sequence: 1 givenname: Weibo surname: Xie fullname: Xie, Weibo organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Xikui surname: Wang fullname: Wang, Xikui organization: Henan Engineering Research Center for Ultrasonic Technology and Application, Pingdingshan University, Pingdingshan 467000, China – sequence: 3 givenname: Bo surname: Zhao fullname: Zhao, Bo organization: Henan Engineering Research Center for Ultrasonic Technology and Application, Pingdingshan University, Pingdingshan 467000, China – sequence: 4 givenname: Guangxi surname: Li fullname: Li, Guangxi organization: Henan Engineering Research Center for Ultrasonic Technology and Application, Pingdingshan University, Pingdingshan 467000, China – sequence: 5 givenname: Zhijiang surname: Xie fullname: Xie, Zhijiang email: 20180701045@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China |
| BookMark | eNqFkEtLAzEUhYNUsK3-BCHgemoeTSaDC5HiCwourOuQyWRKhnRSk0yhW3-5KS0u3HSV3Ms55977TcCo970B4BajGUaY33ezTjmn_WZGECEzzEvCqgswxqKkxZzzagTGqCKsEFSIKzCJsUMI4YriMfj5HEKrtIGqb2Ac6vhXKrePNkLfwtUCC5hsUr0dNjCP8vuDtDM6weSh8_3apqGx2VIkH6L1-QcHl4KKvrca7mwdVMrtQsWcmUwDTR63sc7Zfn0NLlvlork5vVPw9fK8WrwVy4_X98XTstCUlqlguNSNKJtWEEqEQSUXrFJct4zWlNWaknmrMca0JrwljDVU1KRSlM01wyKXU3B3zN0G_z2YmGTnh5BXjZKUPJNjrOJZ9XBU6eBjDKaVOl9-WD6fY53ESB6gy06eoMsDdHmEnt3sn3sb7EaF_Vnf49FnMoCdNUFGbU2vTWNDxiwbb88k_AKurKNQ |
| CitedBy_id | crossref_primary_10_1016_j_cja_2024_05_034 crossref_primary_10_1016_j_matchemphys_2024_129734 crossref_primary_10_3390_coatings14060719 crossref_primary_10_1016_j_mtcomm_2024_111257 crossref_primary_10_1016_j_compositesa_2024_108702 crossref_primary_10_1007_s00170_023_11291_7 crossref_primary_10_1088_2631_7990_ad16d6 crossref_primary_10_1007_s00170_024_13765_8 crossref_primary_10_1007_s12541_024_01180_8 crossref_primary_10_1007_s00170_023_11109_6 crossref_primary_10_1007_s11837_024_06978_5 crossref_primary_10_1016_j_jallcom_2024_176337 crossref_primary_10_1016_j_mtcomm_2024_108975 crossref_primary_10_1016_j_precisioneng_2024_01_025 crossref_primary_10_1016_j_jmrt_2024_06_116 crossref_primary_10_1016_j_jmapro_2023_10_025 crossref_primary_10_1016_j_jallcom_2023_172573 crossref_primary_10_1007_s40436_023_00473_x |
| Cites_doi | 10.3901/JME.2019.11.215 10.1016/j.jmatprotec.2019.116386 10.1016/j.surfcoat.2018.05.056 10.1016/j.msea.2009.12.018 10.1016/j.ultras.2019.106052 10.1016/j.ultras.2017.03.005 10.1016/j.ijmecsci.2021.106681 10.1016/j.jmatprotec.2008.09.022 10.1016/j.matdes.2014.12.021 10.1016/j.ijmachtools.2021.103718 10.1016/j.cja.2021.06.006 10.1007/s00170-018-2847-3 10.1520/JTE20170083 10.1016/j.ultras.2018.07.004 10.1016/j.wear.2006.11.010 10.3390/met10010044 10.1016/j.jmapro.2020.01.040 10.1016/j.ijmecsci.2022.107375 10.1016/j.precisioneng.2019.04.010 10.3901/JME.2019.13.224 10.1016/j.measurement.2020.108554 10.1016/j.jmapro.2018.10.010 10.3901/JME.2018.17.133 10.1007/s11665-016-2343-6 10.1016/j.jallcom.2019.04.315 10.1016/j.jmatprotec.2021.117265 10.1016/j.msea.2017.03.114 10.1016/j.jallcom.2019.153266 10.1016/j.procir.2022.04.071 10.1016/j.measurement.2021.110324 10.1016/j.matdes.2020.108658 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Dec 25, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Dec 25, 2022 |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1016/j.jallcom.2022.167259 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4669 |
| ExternalDocumentID | 10_1016_j_jallcom_2022_167259 S0925838822036507 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ ~HD 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c337t-517cd87df82328e076859a6cf53b35bc324fc1113b26f255d38b29a354c5185d3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-8388 |
| IngestDate | Sun Oct 05 00:28:13 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Thu Oct 16 04:45:20 EDT 2025 Fri Feb 23 02:39:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | TC18 titanium alloy Plastic deformation layer Surface morphology Longitudinal-torsional ultrasonic vibration-assisted milling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-517cd87df82328e076859a6cf53b35bc324fc1113b26f255d38b29a354c5185d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2760225596 |
| PQPubID | 2045454 |
| ParticipantIDs | proquest_journals_2760225596 crossref_citationtrail_10_1016_j_jallcom_2022_167259 crossref_primary_10_1016_j_jallcom_2022_167259 elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_167259 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-25 |
| PublicationDateYYYYMMDD | 2022-12-25 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of alloys and compounds |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Bai, Sun, Leopold, Silberschmidt (bib8) 2017; 78 Uludağ, Yazman, Gemi, Bakircioğlu, Erzi, Dispinar (bib9) 2018; 46 Monaca, Murray, Liao, Speidel, Robles-Linares, Axinte, Hardy, Clare (bib10) 2021; 164 Tao (bib37) 2015 Suárez, Veiga, de Lacalle, Polvorosa, Lutze, Wretland (bib13) 2016; 25 He, Wu, Li, Zou, Cheng (bib27) 2018; 54 Verma, Pandey (bib33) 2019; 94 Wang, Zhang (bib29) 2019; 43 Zhang, Zhang, Geng, Shao, Liu, Jiang (bib38) 2020; 821 Li, Yang, Lu, Zhang, Zhang, Jiang (bib12) 2020; 275 Sivalingam, Sun, Yang, Liu, Raju (bib31) 2018; 36 Qin, Zhu, Wiercigroch, Ren, Hao, Ning, Zhao (bib25) 2022; 227 Sun, Guo (bib32) 2009; 209 Y. Zhao, J. Zhang, X. Shen, D. Xing, Experimental Study on Surface Roughness by Ultrasonic Vibration Assisted Milling 2A12, Modular Machine Tool & Automatic Manufacturing Technique. (2011) 22–25. https://doi.org/10.3969/j.issn.1001–2265.2011.01.006. Niu, Jiao, Zhao, Tong (bib19) 2019; 48 Liu, Jiang, Gao, Zhang, Zhang (bib15) 2019; 55 Zhao, Li, Zhao, Wang (bib18) 2020; 102 Xu, Feng, Feng, Zha, Liang (bib22) 2021; 297 Sun, Liao, Zheng, Tiao, Liu, Feng (bib24) 2022; 35 Zhao, Li, Zhang, Wang (bib17) 2020; 41 Namlu, Yilmaz, Lotfisadigh, Kilic (bib16) 2022; 108 Zhang, Zhang, Geng, Liu, Shao, Jiang (bib1) 2020; 191 Velásquez, Tidu, Bolle, Chevrier, Fundenberger (bib11) 2010; 527 Qu, Zhou, Zhang, Wang, Zhou (bib4) 2015; 69 Liu, Jiang, Han, Gao, Zhang (bib26) 2019; 101 Zhang, Mu, Wang, Zhang (bib6) 2020; 10 Tao, Liu (bib7) 2007; 2 Niu, Jiao, Zhao, Wang (bib20) 2019; 55 Ma, Luo, Liao, Zhang, Huang, Lu (bib30) 2021; 173 Lu, Zhu, Yang, Yan, Hao, Qin (bib14) 2021; 208 Zhu, Ni, Yang, Liu (bib35) 2019; 57 Shao, Shan, Wang, Zhang, Zhao (bib3) 2019; 797 Pratap, Patra (bib34) 2018; 349 Chen, Tong, Zhao, Zhang, Zhao (bib23) 2020; 53 Han, Kang, Zhang, Dong, Bao (bib28) 2021; 41 Venugopal, Paul, Chattopadhyay (bib2) 2007; 262 Ran, Chen, Li, Zhang (bib5) 2017; 694 Gao, Ma, Zhu, Yang (bib21) 2022; 187 Chen (10.1016/j.jallcom.2022.167259_bib23) 2020; 53 Shao (10.1016/j.jallcom.2022.167259_bib3) 2019; 797 Sun (10.1016/j.jallcom.2022.167259_bib24) 2022; 35 Han (10.1016/j.jallcom.2022.167259_bib28) 2021; 41 Tao (10.1016/j.jallcom.2022.167259_bib37) 2015 Monaca (10.1016/j.jallcom.2022.167259_bib10) 2021; 164 Namlu (10.1016/j.jallcom.2022.167259_bib16) 2022; 108 Zhu (10.1016/j.jallcom.2022.167259_bib35) 2019; 57 Zhao (10.1016/j.jallcom.2022.167259_bib18) 2020; 102 Qu (10.1016/j.jallcom.2022.167259_bib4) 2015; 69 Zhao (10.1016/j.jallcom.2022.167259_bib17) 2020; 41 Qin (10.1016/j.jallcom.2022.167259_bib25) 2022; 227 Gao (10.1016/j.jallcom.2022.167259_bib21) 2022; 187 Velásquez (10.1016/j.jallcom.2022.167259_bib11) 2010; 527 Xu (10.1016/j.jallcom.2022.167259_bib22) 2021; 297 Li (10.1016/j.jallcom.2022.167259_bib12) 2020; 275 Niu (10.1016/j.jallcom.2022.167259_bib20) 2019; 55 Liu (10.1016/j.jallcom.2022.167259_bib26) 2019; 101 Verma (10.1016/j.jallcom.2022.167259_bib33) 2019; 94 Zhang (10.1016/j.jallcom.2022.167259_bib38) 2020; 821 Ran (10.1016/j.jallcom.2022.167259_bib5) 2017; 694 Zhang (10.1016/j.jallcom.2022.167259_bib1) 2020; 191 Zhang (10.1016/j.jallcom.2022.167259_bib6) 2020; 10 Uludağ (10.1016/j.jallcom.2022.167259_bib9) 2018; 46 Pratap (10.1016/j.jallcom.2022.167259_bib34) 2018; 349 Wang (10.1016/j.jallcom.2022.167259_bib29) 2019; 43 Venugopal (10.1016/j.jallcom.2022.167259_bib2) 2007; 262 Sun (10.1016/j.jallcom.2022.167259_bib32) 2009; 209 Liu (10.1016/j.jallcom.2022.167259_bib15) 2019; 55 Niu (10.1016/j.jallcom.2022.167259_bib19) 2019; 48 Lu (10.1016/j.jallcom.2022.167259_bib14) 2021; 208 Ma (10.1016/j.jallcom.2022.167259_bib30) 2021; 173 10.1016/j.jallcom.2022.167259_bib36 Tao (10.1016/j.jallcom.2022.167259_bib7) 2007; 2 Suárez (10.1016/j.jallcom.2022.167259_bib13) 2016; 25 He (10.1016/j.jallcom.2022.167259_bib27) 2018; 54 Sivalingam (10.1016/j.jallcom.2022.167259_bib31) 2018; 36 Bai (10.1016/j.jallcom.2022.167259_bib8) 2017; 78 |
| References_xml | – volume: 10 start-page: 44 year: 2020 ident: bib6 article-title: Study on dynamic mechanical properties and constitutive model construction of TC18 titanium alloy publication-title: Metals – volume: 694 start-page: 41 year: 2017 end-page: 47 ident: bib5 article-title: Dynamic shear deformation and failure of Ti-5Al-5Mo- publication-title: Mater. Sci. Eng.: A – reference: Y. Zhao, J. Zhang, X. Shen, D. Xing, Experimental Study on Surface Roughness by Ultrasonic Vibration Assisted Milling 2A12, Modular Machine Tool & Automatic Manufacturing Technique. (2011) 22–25. https://doi.org/10.3969/j.issn.1001–2265.2011.01.006. – volume: 797 start-page: 10 year: 2019 end-page: 17 ident: bib3 article-title: Massive α precipitation selectivity and tensile fracture behavior of TC18 alloy publication-title: J. Alloy Compd. – volume: 69 start-page: 153 year: 2015 end-page: 162 ident: bib4 article-title: Research on hot deformation behavior of Ti-5Al-5Mo- publication-title: Mater. Des. – volume: 25 start-page: 5076 year: 2016 end-page: 5086 ident: bib13 article-title: Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718 publication-title: J. Mater. Eng. Perform. – volume: 275 year: 2020 ident: bib12 article-title: Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens publication-title: J. Mater. Process Technol. – volume: 297 year: 2021 ident: bib22 article-title: Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling publication-title: J. Mater. Process Technol. – volume: 101 start-page: 1451 year: 2019 end-page: 1465 ident: bib26 article-title: Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V publication-title: Int. J. Adv. Manuf. Technol. – volume: 46 start-page: 20170083 year: 2018 ident: bib9 article-title: Relationship between machinability, microstructure, and mechanical properties of Al-7Si alloy publication-title: J. Test. Eval. – volume: 527 start-page: 2572 year: 2010 end-page: 2578 ident: bib11 article-title: Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy publication-title: Mater. Sci. Eng.: A – volume: 48 start-page: 41 year: 2019 end-page: 51 ident: bib19 article-title: Experiment of machining induced residual stress in longitudinal torsional ultrasonic assisted milling of Ti-6Al-4V publication-title: Surf. Technol. – volume: 78 start-page: 70 year: 2017 end-page: 82 ident: bib8 article-title: Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: numerical modelling and experimental analysis publication-title: Ultrasonics – volume: 164 year: 2021 ident: bib10 article-title: Surface integrity in metal machining - Part II: functional performance publication-title: Int. J. Mach. Tools Manuf. – volume: 187 year: 2022 ident: bib21 article-title: Enhancement of machinability and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted milling under dry conditions publication-title: Measurement – volume: 2 start-page: 14 year: 2007 end-page: 20 ident: bib7 article-title: Safety evaluation on materials and technics of aviation engine publication-title: Fail. Anal. Prev. – volume: 57 start-page: 229 year: 2019 end-page: 243 ident: bib35 article-title: Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti-6Al-4V publication-title: Precis. Eng. – volume: 94 start-page: 350 year: 2019 end-page: 363 ident: bib33 article-title: Machining forces in ultrasonic-vibration assisted end milling publication-title: Ultrasonics – volume: 53 start-page: 1 year: 2020 end-page: 11 ident: bib23 article-title: A study ofthe surface microstructure and tool wear of titanium alloys after ultrasonic longitudinal-torsional milling publication-title: J. Manuf. Process. – volume: 35 start-page: 249 year: 2022 end-page: 264 ident: bib24 article-title: Stability analysis of robotic longitudinal-torsional composite ultrasonic milling publication-title: Chin. J. Aeronaut. – volume: 108 start-page: 311 year: 2022 end-page: 316 ident: bib16 article-title: An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication publication-title: Procedia CIRP – volume: 173 year: 2021 ident: bib30 article-title: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning publication-title: Measurement – year: 2015 ident: bib37 article-title: Theory and Methods of Surface Integrity in Machining publication-title: Bei Jing – volume: 821 year: 2020 ident: bib38 article-title: Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V publication-title: J. Alloy Compd. – volume: 41 year: 2020 ident: bib17 article-title: Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy publication-title: Acta Aeronaut. ET Astronaut. Sin. – volume: 54 start-page: 133 year: 2018 end-page: 141 ident: bib27 article-title: Study on the formation mechanism of phase transformation and the influencing factors of cutting layer of the typical titanium alloy publication-title: J. Mech. Eng. – volume: 227 year: 2022 ident: bib25 article-title: Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling publication-title: Int. J. Mech. Sci. – volume: 209 start-page: 4036 year: 2009 end-page: 4042 ident: bib32 article-title: A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V publication-title: J. Mater. Process Technol. – volume: 191 year: 2020 ident: bib1 article-title: Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V publication-title: Mater. Des. – volume: 208 year: 2021 ident: bib14 article-title: Research on the generation mechanism and interference of surface texturein ultrasonic vibration assisted milling publication-title: Int. J. Mech. Sci. – volume: 41 start-page: 46 year: 2021 end-page: 51 ident: bib28 article-title: Research on surface integrity of GH4169 machined by ultrasonic assisted grinding publication-title: Diam. Abras. Eng. – volume: 262 start-page: 1071 year: 2007 end-page: 1078 ident: bib2 article-title: Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling publication-title: Wear – volume: 55 start-page: 224 year: 2019 end-page: 232 ident: bib20 article-title: 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling publication-title: J. Mech. Eng. – volume: 43 start-page: 69 year: 2019 end-page: 73 ident: bib29 article-title: Cutting force and surface roughness of turning on TC18 titanium alloy publication-title: Mater. Mech. Eng. – volume: 102 year: 2020 ident: bib18 article-title: Fractal characterization of surface microtexture of Ti6Al4V subjected to ultrasonic vibration assisted milling publication-title: Ultrasonics – volume: 349 start-page: 71 year: 2018 end-page: 81 ident: bib34 article-title: Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances publication-title: Surf. Coat. Technol. – volume: 55 start-page: 215 year: 2019 end-page: 223 ident: bib15 article-title: Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V publication-title: J. Mech. Eng. – volume: 36 start-page: 188 year: 2018 end-page: 196 ident: bib31 article-title: Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy publication-title: J. Manuf. Process – volume: 55 start-page: 215 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib15 article-title: Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.11.215 – volume: 275 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib12 article-title: Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2019.116386 – volume: 48 start-page: 41 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib19 article-title: Experiment of machining induced residual stress in longitudinal torsional ultrasonic assisted milling of Ti-6Al-4V publication-title: Surf. Technol. – volume: 349 start-page: 71 year: 2018 ident: 10.1016/j.jallcom.2022.167259_bib34 article-title: Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.05.056 – volume: 527 start-page: 2572 issue: 10–11 year: 2010 ident: 10.1016/j.jallcom.2022.167259_bib11 article-title: Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2009.12.018 – volume: 102 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib18 article-title: Fractal characterization of surface microtexture of Ti6Al4V subjected to ultrasonic vibration assisted milling publication-title: Ultrasonics doi: 10.1016/j.ultras.2019.106052 – volume: 41 start-page: 46 issue: 05 year: 2021 ident: 10.1016/j.jallcom.2022.167259_bib28 article-title: Research on surface integrity of GH4169 machined by ultrasonic assisted grinding publication-title: Diam. Abras. Eng. – volume: 78 start-page: 70 year: 2017 ident: 10.1016/j.jallcom.2022.167259_bib8 article-title: Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: numerical modelling and experimental analysis publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.03.005 – volume: 2 start-page: 14 year: 2007 ident: 10.1016/j.jallcom.2022.167259_bib7 article-title: Safety evaluation on materials and technics of aviation engine publication-title: Fail. Anal. Prev. – volume: 208 year: 2021 ident: 10.1016/j.jallcom.2022.167259_bib14 article-title: Research on the generation mechanism and interference of surface texturein ultrasonic vibration assisted milling publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106681 – ident: 10.1016/j.jallcom.2022.167259_bib36 – volume: 209 start-page: 4036 issue: 8 year: 2009 ident: 10.1016/j.jallcom.2022.167259_bib32 article-title: A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2008.09.022 – volume: 69 start-page: 153 year: 2015 ident: 10.1016/j.jallcom.2022.167259_bib4 article-title: Research on hot deformation behavior of Ti-5Al-5Mo-5V–1Cr-1Fe alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.12.021 – volume: 164 year: 2021 ident: 10.1016/j.jallcom.2022.167259_bib10 article-title: Surface integrity in metal machining - Part II: functional performance publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2021.103718 – volume: 35 start-page: 249 issue: 8 year: 2022 ident: 10.1016/j.jallcom.2022.167259_bib24 article-title: Stability analysis of robotic longitudinal-torsional composite ultrasonic milling publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.06.006 – volume: 101 start-page: 1451 issue: 5-8 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib26 article-title: Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2847-3 – volume: 46 start-page: 20170083 issue: 6 year: 2018 ident: 10.1016/j.jallcom.2022.167259_bib9 article-title: Relationship between machinability, microstructure, and mechanical properties of Al-7Si alloy publication-title: J. Test. Eval. doi: 10.1520/JTE20170083 – volume: 94 start-page: 350 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib33 article-title: Machining forces in ultrasonic-vibration assisted end milling publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.07.004 – year: 2015 ident: 10.1016/j.jallcom.2022.167259_bib37 article-title: Theory and Methods of Surface Integrity in Machining – volume: 262 start-page: 1071 issue: 9 year: 2007 ident: 10.1016/j.jallcom.2022.167259_bib2 article-title: Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling publication-title: Wear doi: 10.1016/j.wear.2006.11.010 – volume: 10 start-page: 44 issue: 1 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib6 article-title: Study on dynamic mechanical properties and constitutive model construction of TC18 titanium alloy publication-title: Metals doi: 10.3390/met10010044 – volume: 53 start-page: 1 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib23 article-title: A study ofthe surface microstructure and tool wear of titanium alloys after ultrasonic longitudinal-torsional milling publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.01.040 – volume: 227 year: 2022 ident: 10.1016/j.jallcom.2022.167259_bib25 article-title: Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107375 – volume: 57 start-page: 229 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib35 article-title: Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti-6Al-4V publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2019.04.010 – volume: 55 start-page: 224 issue: 13 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib20 article-title: 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.13.224 – volume: 173 year: 2021 ident: 10.1016/j.jallcom.2022.167259_bib30 article-title: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning publication-title: Measurement doi: 10.1016/j.measurement.2020.108554 – volume: 36 start-page: 188 year: 2018 ident: 10.1016/j.jallcom.2022.167259_bib31 article-title: Machining performance and tool wear analysis on cryogenic treated insert during end milling of Ti-6Al-4V alloy publication-title: J. Manuf. Process doi: 10.1016/j.jmapro.2018.10.010 – volume: 54 start-page: 133 issue: 17 year: 2018 ident: 10.1016/j.jallcom.2022.167259_bib27 article-title: Study on the formation mechanism of phase transformation and the influencing factors of cutting layer of the typical titanium alloy publication-title: J. Mech. Eng. doi: 10.3901/JME.2018.17.133 – volume: 25 start-page: 5076 year: 2016 ident: 10.1016/j.jallcom.2022.167259_bib13 article-title: Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-016-2343-6 – volume: 43 start-page: 69 issue: 07 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib29 article-title: Cutting force and surface roughness of turning on TC18 titanium alloy publication-title: Mater. Mech. Eng. – volume: 41 issue: 2 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib17 article-title: Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy publication-title: Acta Aeronaut. ET Astronaut. Sin. – volume: 797 start-page: 10 year: 2019 ident: 10.1016/j.jallcom.2022.167259_bib3 article-title: Massive α precipitation selectivity and tensile fracture behavior of TC18 alloy publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2019.04.315 – volume: 297 year: 2021 ident: 10.1016/j.jallcom.2022.167259_bib22 article-title: Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2021.117265 – volume: 694 start-page: 41 year: 2017 ident: 10.1016/j.jallcom.2022.167259_bib5 article-title: Dynamic shear deformation and failure of Ti-5Al-5Mo-5V–1Cr-1Fe titanium alloy publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2017.03.114 – volume: 821 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib38 article-title: Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2019.153266 – volume: 108 start-page: 311 year: 2022 ident: 10.1016/j.jallcom.2022.167259_bib16 article-title: An experimental study on surface quality of Al6061-T6 in ultrasonic vibration-assisted milling with minimum quantity lubrication publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.04.071 – volume: 187 year: 2022 ident: 10.1016/j.jallcom.2022.167259_bib21 article-title: Enhancement of machinability and surface quality of Ti-6Al-4V by longitudinal ultrasonic vibration-assisted milling under dry conditions publication-title: Measurement doi: 10.1016/j.measurement.2021.110324 – volume: 191 year: 2020 ident: 10.1016/j.jallcom.2022.167259_bib1 article-title: Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108658 |
| SSID | ssj0001931 |
| Score | 2.506152 |
| Snippet | Longitudinal-torsional ultrasonic vibration-assisted milling is a machining method that can effectively improve the quality of the machined surface. When this... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 167259 |
| SubjectTerms | Amplitudes Cutting parameters Cutting speed End milling Feed rate Longitudinal-torsional ultrasonic vibration-assisted milling Machine tools Plastic deformation Plastic deformation layer Quality control Residual stress Roughness Surface layers Surface morphology TC18 titanium alloy Titanium alloys Titanium base alloys Ultrasonic vibration Vibration analysis |
| Title | Surface and subsurface analysis of TC18 titanium alloy subject to longitudinal-torsional ultrasonic vibration-assisted end milling |
| URI | https://dx.doi.org/10.1016/j.jallcom.2022.167259 https://www.proquest.com/docview/2760225596 |
| Volume | 929 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AKRWK dateStart: 19930111 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSkl7KO2mJWmToEOu2rVlS7aPYWnYtDSXJJCbkPWAXVxv2LUDvfTQX94ZP5KmFAI9yoxsoU-eGUkz8wGcFoksCycKjr605Kn3GS-9j3gUIhNwe1BGkvKdv12qxU365Vbe7sB8zIWhsMpB9_c6vdPWw5PZMJuzu-VydhUVgu780MKhFpZdRnmaZsRiMP35GOaBDkrHmofCnKQfs3hmq-nKVBUFjQi0ZNNYZYJKlv7bPv2lqTvzc_4W3gx-Izvrh_YOdnw9gb35SNc2gdd_VBacwMsustNu9-HXVbsJxnpmase2qCYemn01ErYO7Hoe54yyzepl-53RVfwPEqUjGtasWbUmUqPWEYEWJ3ae7viQtVWzMVsqrcvuadNNEHP0xWnhOObxc0RphMN5Dzfnn6_nCz4QL3CbJFnDZZxZl2cu5Ohv5Z4u62RhlA0yKRFbi05YsMRRXwoVcE_ikrwUhUlkaiXaf5d8gN16XfsDYCKLjHImiMKj42WiIlcIiIqtCMIlLj6EdJxubYeq5ESOUekx_GylB5Q0oaR7lA5h-tDtri_L8VyHfMRSP1lfGk3Hc12PRuz18INvtcgUSuB2TH38_zd_glfUougYIY9gt9m0_hh9nKY86RbxCbw4u_i6uPwN8qX86A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRahwQLCAKBTwgat3Eyd2kiNaUS3Q9tKt1Jvl-CHtKs1WuwkSlx76y5nJowWEVIljEjuxPM7MN_bMfACfikSWhRMFRywteep9xkvvIx6FyAR0D8pIUr7z6ZlaXKTfLuXlHszHXBgKqxx0f6_TO2093JkNszm7Xq1m51Eh6MwPLRxqYUkZ5Y9SKTLywKY393EeiFA62jxszan5fRrPbD1dm6qiqBGBpmwaq0xQzdJ_G6i_VHVnf46fw7MBOLLP_dhewJ6vJ3AwH_naJvD0t9KCE3jchXba3Uu4PW-3wVjPTO3YDvXE3WVfjoRtAlvO45xRulm9aq8YncX_pKa0R8OaDas2xGrUOmLQ4kTP0-0fsrZqtmZHtXXZD_K6ScYcwTitHMc8fo44jXA4r-Di-MtyvuAD8wK3SZI1XMaZdXnmQo6AK_d0WicLo2yQSYnCtYjCgiWS-lKogE6JS_JSFCaRqZUIAFzyGvbrTe3fABNZZJQzQRQekZeJilyhQFRsRRAucfEhpON0azuUJSd2jEqP8WdrPUhJk5R0L6VDmN51u-7rcjzUIR9lqf9YYBptx0Ndj0bZ6-EP32mRKWyB_ph6-_9v_ggHi-XpiT75evb9HTyhJxQqI-QR7Dfb1r9HwNOUH7oF_QvCGv59 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+and+subsurface+analysis+of+TC18+titanium+alloy+subject+to+longitudinal-torsional+ultrasonic+vibration-assisted+end+milling&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Xie%2C+Weibo&rft.au=Wang%2C+Xikui&rft.au=Zhao%2C+Bo&rft.au=Li%2C+Guangxi&rft.date=2022-12-25&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=929&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2022.167259&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |