Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metal-organic framework
It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a hi...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 6; no. 27; pp. 3669 - 3672 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-7345 1364-548X 1364-548X |
DOI | 10.1039/d3cc05821b |
Cover
Abstract | It is important and challenging to utilise CO
2
and NO
3
−
as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO
4
active sites, as an efficient electrocatalyst for coupling CO
2
and NO
3
−
into urea, achieving a high yield rate of 1.46 g h
−1
g
cat
−1
with a current density of 44.2 mA cm
−1
at −0.6 V
vs.
RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.
A hexagonal 2D Cu-based MOF with planar CuO
4
nodes, denoted as
Cu-HATNA
, was developed and employed as an electrocatalyst for direct electrosynthesis of urea from CO
2
and NO
3
−
. |
---|---|
AbstractList | It is important and challenging to utilise CO
and NO
as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO
active sites, as an efficient electrocatalyst for coupling CO
and NO
into urea, achieving a high yield rate of 1.46 g h
g
with a current density of 44.2 mA cm
at -0.6 V
RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a high yield rate of 1.46 g h −1 g cat −1 with a current density of 44.2 mA cm −1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. A hexagonal 2D Cu-based MOF with planar CuO 4 nodes, denoted as Cu-HATNA , was developed and employed as an electrocatalyst for direct electrosynthesis of urea from CO 2 and NO 3 − . It is important and challenging to utilise CO2 and NO3− as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3− into urea, achieving a high yield rate of 1.46 g h−1 gcat−1 with a current density of 44.2 mA cm−1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a high yield rate of 1.46 g h −1 g cat −1 with a current density of 44.2 mA cm −1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3- into urea, achieving a high yield rate of 1.46 g h-1 gcat-1 with a current density of 44.2 mA cm-1 at -0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3- into urea, achieving a high yield rate of 1.46 g h-1 gcat-1 with a current density of 44.2 mA cm-1 at -0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. |
Author | Chen, Xiao-Ming Liao, Pei-Qin Zhang, Meng-Di Huang, Jia-Run |
AuthorAffiliation | Chemistry and Chemical Engineering Guangdong Laboratory MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University |
AuthorAffiliation_xml | – sequence: 0 name: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University – sequence: 0 name: Chemistry and Chemical Engineering Guangdong Laboratory |
Author_xml | – sequence: 1 givenname: Meng-Di surname: Zhang fullname: Zhang, Meng-Di – sequence: 2 givenname: Jia-Run surname: Huang fullname: Huang, Jia-Run – sequence: 3 givenname: Pei-Qin surname: Liao fullname: Liao, Pei-Qin – sequence: 4 givenname: Xiao-Ming surname: Chen fullname: Chen, Xiao-Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38456336$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctrFzEUhYNU7EM37pWAGxFGk7mZzGRZxycU3FhwN-RxY9POTGqSofa_N-2vVSjezb2L7xwu5xySvTWuSMhzzt5yBuqdA2tZN7TcPCIHHKRoOjH82Lu5O9X0ILp9cpjzOavDu-EJ2YdBdBJAHpCL0xLmkHUJcaXRU6uTqZcL8XdwSPXq6BpK0gWpj4luCTXFGW1JMV-v5QxzyPQqlDOq6bg1Rmd0dMGi5yamn3oNlvqkF7yK6eIpeez1nPHZ3T4ip58-fh-_NCffPn8dj08aC9CXRhjRa-OFtGgUOO5lr6XsnOLMgHCMczs49OC887xVCg30XErdSiUG8AKOyOud72WKvzbMZVpCtjjPesW45alVneh7CQNU9NUD9Dxuaa3fTcAYDApa3lfq5R21mQXddJnCotP1dB9jBdgOsDWWnNBPNpTbTGt0YZ44m26amj7AON429b5K3jyQ3Lv-F36xg1O2f7l_tcMfaoqdQA |
CitedBy_id | crossref_primary_10_1002_adfm_202423683 crossref_primary_10_1002_cjoc_202400442 crossref_primary_10_1039_D4EE00561A crossref_primary_10_1002_ece2_72 crossref_primary_10_1039_D5CE00139K crossref_primary_10_1002_adma_202412031 crossref_primary_10_1021_acs_jpcc_4c07971 |
Cites_doi | 10.1021/acs.chemrev.9b00766 10.1016/j.esci.2023.100116 10.1002/adma.201703663 10.1002/adma.201601133 10.1002/anie.202307123 10.1038/s41467-022-33066-6 10.1002/anie.202106259 10.1038/s41560-020-0654-1 10.1002/anie.202111136 10.1021/acscatal.2c02002 10.1021/acssuschemeng.2c05110 10.1021/jacs.9b13347 10.1021/jacs.2c04670 10.1021/acsnano.2c11046 10.1039/D2EY00038E 10.1002/anie.202301957 10.1021/acsnano.2c09168 10.1021/jacs.3c00334 10.1002/anie.201915992 10.1038/s41893-021-00741-3 10.1002/anie.202202556 10.1002/anie.202210958 10.1038/s41467-023-40273-2 10.1002/aenm.202201500 10.1021/acsnano.2c01956 10.1039/D1CC05376K 10.1002/anie.202105966 10.1039/c3ee40507a 10.1016/j.apcatb.2022.121618 10.1021/jacs.2c03452 10.1021/acscatal.6b02382 10.1021/jacs.1c01466 10.1038/s41557-020-0481-9 10.1038/s41570-022-00379-5 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cc05821b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 3672 |
ExternalDocumentID | 38456336 10_1039_D3CC05821B d3cc05821b |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-4b47abf46ceb93d1f67a665d910b34d011c8def3dfdf1299eb37166a269483f43 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 10:18:35 EDT 2025 Mon Jun 30 11:56:08 EDT 2025 Wed Feb 19 02:08:28 EST 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 04:23:16 EDT 2025 Tue Dec 17 20:58:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-4b47abf46ceb93d1f67a665d910b34d011c8def3dfdf1299eb37166a269483f43 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3cc05821b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5888-1283 0000-0002-3353-7918 |
PMID | 38456336 |
PQID | 3003893217 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1039_D3CC05821B proquest_miscellaneous_2954776383 crossref_primary_10_1039_D3CC05821B rsc_primary_d3cc05821b pubmed_primary_38456336 proquest_journals_3003893217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-28 |
PublicationDateYYYYMMDD | 2024-03-28 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D3CC05821B/cit26/1) 2020; 142 Zhao (D3CC05821B/cit8/1) 2023; 62 Liu (D3CC05821B/cit22/1) 2022; 61 Li (D3CC05821B/cit23/1) 2023; 145 Sun (D3CC05821B/cit15/1) 2023; 62 Jiao (D3CC05821B/cit27/1) 2018; 30 Jiang (D3CC05821B/cit1/1) 2023; 17 Lv (D3CC05821B/cit12/1) 2021; 4 Qin (D3CC05821B/cit7/1) 2022; 10 Li (D3CC05821B/cit30/1) 2013; 6 Wang (D3CC05821B/cit24/1) 2020; 59 Zhang (D3CC05821B/cit5/1) 2023; 1 Zhao (D3CC05821B/cit21/1) 2022; 12 Zhu (D3CC05821B/cit20/1) 2022; 144 Li (D3CC05821B/cit31/1) 2016; 28 Lv (D3CC05821B/cit3/1) 2022; 16 Chen (D3CC05821B/cit25/1) 2020; 5 Liu (D3CC05821B/cit32/1) 2021; 60 Zhang (D3CC05821B/cit19/1) 2023; 3 Chen (D3CC05821B/cit34/1) 2020; 12 Liu (D3CC05821B/cit13/1) 2022; 16 Qiu (D3CC05821B/cit16/1) 2021; 143 Firet (D3CC05821B/cit33/1) 2017; 7 Leverett (D3CC05821B/cit2/1) 2022; 12 Geng (D3CC05821B/cit4/1) 2023; 62 Meng (D3CC05821B/cit17/1) 2021; 60 Li (D3CC05821B/cit14/1) 2022; 6 Zhang (D3CC05821B/cit11/1) 2022; 13 Freund (D3CC05821B/cit29/1) 2021; 60 Zhao (D3CC05821B/cit6/1) 2023; 14 Zhao (D3CC05821B/cit18/1) 2021; 57 Wei (D3CC05821B/cit10/1) 2022; 144 Liu (D3CC05821B/cit9/1) 2022; 316 Xie (D3CC05821B/cit28/1) 2020; 120 |
References_xml | – volume: 120 start-page: 8536 year: 2020 ident: D3CC05821B/cit28/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00766 – volume: 3 start-page: 100116 year: 2023 ident: D3CC05821B/cit19/1 publication-title: eScience doi: 10.1016/j.esci.2023.100116 – volume: 30 start-page: 1703663 year: 2018 ident: D3CC05821B/cit27/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703663 – volume: 28 start-page: 8819 year: 2016 ident: D3CC05821B/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.201601133 – volume: 62 start-page: e202307123 year: 2023 ident: D3CC05821B/cit8/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202307123 – volume: 13 start-page: 5337 year: 2022 ident: D3CC05821B/cit11/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33066-6 – volume: 60 start-page: 23975 year: 2021 ident: D3CC05821B/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106259 – volume: 5 start-page: 605 year: 2020 ident: D3CC05821B/cit25/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 60 start-page: 25485 year: 2021 ident: D3CC05821B/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202111136 – volume: 12 start-page: 7986 year: 2022 ident: D3CC05821B/cit21/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02002 – volume: 10 start-page: 15869 year: 2022 ident: D3CC05821B/cit7/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c05110 – volume: 142 start-page: 5702 year: 2020 ident: D3CC05821B/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 144 start-page: 13319 year: 2022 ident: D3CC05821B/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c04670 – volume: 17 start-page: 3209 year: 2023 ident: D3CC05821B/cit1/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c11046 – volume: 1 start-page: 45 year: 2023 ident: D3CC05821B/cit5/1 publication-title: EES Catal. doi: 10.1039/D2EY00038E – volume: 62 start-page: e202301957 year: 2023 ident: D3CC05821B/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202301957 – volume: 16 start-page: 17911 year: 2022 ident: D3CC05821B/cit13/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c09168 – volume: 145 start-page: 6471 year: 2023 ident: D3CC05821B/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00334 – volume: 59 start-page: 5350 year: 2020 ident: D3CC05821B/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915992 – volume: 4 start-page: 868 year: 2021 ident: D3CC05821B/cit12/1 publication-title: Nat. Sustainability doi: 10.1038/s41893-021-00741-3 – volume: 61 start-page: e202202556 year: 2022 ident: D3CC05821B/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202202556 – volume: 62 start-page: e202210958 year: 2023 ident: D3CC05821B/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202210958 – volume: 14 start-page: 4491 year: 2023 ident: D3CC05821B/cit6/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40273-2 – volume: 12 start-page: 2201500 year: 2022 ident: D3CC05821B/cit2/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201500 – volume: 16 start-page: 8213 year: 2022 ident: D3CC05821B/cit3/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c01956 – volume: 57 start-page: 12764 year: 2021 ident: D3CC05821B/cit18/1 publication-title: Chem. Commun. doi: 10.1039/D1CC05376K – volume: 60 start-page: 16409 year: 2021 ident: D3CC05821B/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202105966 – volume: 6 start-page: 1656 year: 2013 ident: D3CC05821B/cit30/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40507a – volume: 316 start-page: 121618 year: 2022 ident: D3CC05821B/cit9/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121618 – volume: 144 start-page: 11530 year: 2022 ident: D3CC05821B/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03452 – volume: 7 start-page: 606 year: 2017 ident: D3CC05821B/cit33/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02382 – volume: 143 start-page: 7242 year: 2021 ident: D3CC05821B/cit16/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01466 – volume: 12 start-page: 717 year: 2020 ident: D3CC05821B/cit34/1 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0481-9 – volume: 6 start-page: 303 year: 2022 ident: D3CC05821B/cit14/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00379-5 |
SSID | ssj0000158 |
Score | 2.5124278 |
Snippet | It is important and challenging to utilise CO
2
and NO
3
−
as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework... It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework... It is important and challenging to utilise CO and NO as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF)... It is important and challenging to utilise CO2 and NO3− as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework... It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3669 |
SubjectTerms | Carbon dioxide Copper Electrocatalysts Metal-organic frameworks Urea |
Title | Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metal-organic framework |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38456336 https://www.proquest.com/docview/3003893217 https://www.proquest.com/docview/2954776383 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAviNtYYSAjeEGVx7rjOM3j6DqNqRsCtVLfIseOpUglRb1IwBP_gR_D_-GXcHzJBTYh4CWK3KSJfL74HNvfOR8hL9BtCMV5zDQ6O8ZlJJkc6JxJYdAbisxETgzm4lKczfj5PJp3Ot9brKXtJjtQX67NK_kfq2Ib2tVmyf6DZes_xQY8R_viES2Mx7-y8WxTLAIdx9HD5SrDM10sPxXabwvgB2trQTgyoeWf94PszfpziZGfLUbik9v6oy2zDk1bSWm5qCgQ4EWfVN9UHK52MFsXG1DtLBO3jFungrmx1guFtBYdLJeWnTgigVuxbsAVlq_PC8neb8tm4C7Yu6LsTwq5rNrmeM4ugiQLvkrZXsA44pbBFRLCPfPJLpNUHFXHQQlKd61hGaKExeALTx7koU1whvOteXss99oEAbO-6EAYmUF4SZjg5UF4xaArHuQQbAFWDUod2hzirPGTFTfg8m16OptM0ul4Pr1Bdo7ieBB1yc7xePpm0qpc5qRh6xevKuNC8qr5719joSsTHAx3VpUMjQt3pnfI7TBPoccedHdJJy_vkZt1p90nH1rgo0tDPfhoAB9Fe9MAPorgoxZ89HfwUQs-KmkFPurA9-PrtwA7WsPuAZmdjqejMxa0O5gCiDeMZzyWmeFC5VkCemBELIWINEanGXCNXkUNdW5AG20w5EzyDHDmLqRNrB6C4bBLuuWyzPcIjfEOLRM9xHt4pkxmFMatVklhYJTipkdeVr2YqlDY3uqrLFJHsIAkPYHRyPX46x55Xl_70Zdzufaq_coYafjc1ynYTXSc7QziHnlW_4ydbnfYZJkvt-vUbprH6LGH0CMPvRHrx8AQ5yoAokd20ap1c4OGR39-6mNyq_l69kl3s9rmTzAg3mRPA_h-AqnfukI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilisation+of+carbon+dioxide+and+nitrate+for+urea+electrosynthesis+with+a+Cu-based+metal%E2%80%93organic+framework&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Meng-Di%2C+Zhang&rft.au=Huang%2C+Jia-Run&rft.au=Pei-Qin+Liao&rft.au=Xiao-Ming%2C+Chen&rft.date=2024-03-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=60&rft.issue=27&rft.spage=3669&rft.epage=3672&rft_id=info:doi/10.1039%2Fd3cc05821b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |