Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metal-organic framework

It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a hi...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 6; no. 27; pp. 3669 - 3672
Main Authors Zhang, Meng-Di, Huang, Jia-Run, Liao, Pei-Qin, Chen, Xiao-Ming
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.03.2024
Subjects
Online AccessGet full text
ISSN1359-7345
1364-548X
1364-548X
DOI10.1039/d3cc05821b

Cover

Abstract It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a high yield rate of 1.46 g h −1 g cat −1 with a current density of 44.2 mA cm −1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. A hexagonal 2D Cu-based MOF with planar CuO 4 nodes, denoted as Cu-HATNA , was developed and employed as an electrocatalyst for direct electrosynthesis of urea from CO 2 and NO 3 − .
AbstractList It is important and challenging to utilise CO and NO as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO active sites, as an efficient electrocatalyst for coupling CO and NO into urea, achieving a high yield rate of 1.46 g h g with a current density of 44.2 mA cm at -0.6 V RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.
It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a high yield rate of 1.46 g h −1 g cat −1 with a current density of 44.2 mA cm −1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis. A hexagonal 2D Cu-based MOF with planar CuO 4 nodes, denoted as Cu-HATNA , was developed and employed as an electrocatalyst for direct electrosynthesis of urea from CO 2 and NO 3 − .
It is important and challenging to utilise CO2 and NO3− as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3− into urea, achieving a high yield rate of 1.46 g h−1 gcat−1 with a current density of 44.2 mA cm−1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.
It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework (MOF) Cu-HATNA, possessing planar CuO 4 active sites, as an efficient electrocatalyst for coupling CO 2 and NO 3 − into urea, achieving a high yield rate of 1.46 g h −1 g cat −1 with a current density of 44.2 mA cm −1 at −0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.
It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3- into urea, achieving a high yield rate of 1.46 g h-1 gcat-1 with a current density of 44.2 mA cm-1 at -0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3- into urea, achieving a high yield rate of 1.46 g h-1 gcat-1 with a current density of 44.2 mA cm-1 at -0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.
Author Chen, Xiao-Ming
Liao, Pei-Qin
Zhang, Meng-Di
Huang, Jia-Run
AuthorAffiliation Chemistry and Chemical Engineering Guangdong Laboratory
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University
AuthorAffiliation_xml – sequence: 0
  name: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University
– sequence: 0
  name: Chemistry and Chemical Engineering Guangdong Laboratory
Author_xml – sequence: 1
  givenname: Meng-Di
  surname: Zhang
  fullname: Zhang, Meng-Di
– sequence: 2
  givenname: Jia-Run
  surname: Huang
  fullname: Huang, Jia-Run
– sequence: 3
  givenname: Pei-Qin
  surname: Liao
  fullname: Liao, Pei-Qin
– sequence: 4
  givenname: Xiao-Ming
  surname: Chen
  fullname: Chen, Xiao-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38456336$$D View this record in MEDLINE/PubMed
BookMark eNptkctrFzEUhYNU7EM37pWAGxFGk7mZzGRZxycU3FhwN-RxY9POTGqSofa_N-2vVSjezb2L7xwu5xySvTWuSMhzzt5yBuqdA2tZN7TcPCIHHKRoOjH82Lu5O9X0ILp9cpjzOavDu-EJ2YdBdBJAHpCL0xLmkHUJcaXRU6uTqZcL8XdwSPXq6BpK0gWpj4luCTXFGW1JMV-v5QxzyPQqlDOq6bg1Rmd0dMGi5yamn3oNlvqkF7yK6eIpeez1nPHZ3T4ip58-fh-_NCffPn8dj08aC9CXRhjRa-OFtGgUOO5lr6XsnOLMgHCMczs49OC887xVCg30XErdSiUG8AKOyOud72WKvzbMZVpCtjjPesW45alVneh7CQNU9NUD9Dxuaa3fTcAYDApa3lfq5R21mQXddJnCotP1dB9jBdgOsDWWnNBPNpTbTGt0YZ44m26amj7AON429b5K3jyQ3Lv-F36xg1O2f7l_tcMfaoqdQA
CitedBy_id crossref_primary_10_1002_adfm_202423683
crossref_primary_10_1002_cjoc_202400442
crossref_primary_10_1039_D4EE00561A
crossref_primary_10_1002_ece2_72
crossref_primary_10_1039_D5CE00139K
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1021_acs_jpcc_4c07971
Cites_doi 10.1021/acs.chemrev.9b00766
10.1016/j.esci.2023.100116
10.1002/adma.201703663
10.1002/adma.201601133
10.1002/anie.202307123
10.1038/s41467-022-33066-6
10.1002/anie.202106259
10.1038/s41560-020-0654-1
10.1002/anie.202111136
10.1021/acscatal.2c02002
10.1021/acssuschemeng.2c05110
10.1021/jacs.9b13347
10.1021/jacs.2c04670
10.1021/acsnano.2c11046
10.1039/D2EY00038E
10.1002/anie.202301957
10.1021/acsnano.2c09168
10.1021/jacs.3c00334
10.1002/anie.201915992
10.1038/s41893-021-00741-3
10.1002/anie.202202556
10.1002/anie.202210958
10.1038/s41467-023-40273-2
10.1002/aenm.202201500
10.1021/acsnano.2c01956
10.1039/D1CC05376K
10.1002/anie.202105966
10.1039/c3ee40507a
10.1016/j.apcatb.2022.121618
10.1021/jacs.2c03452
10.1021/acscatal.6b02382
10.1021/jacs.1c01466
10.1038/s41557-020-0481-9
10.1038/s41570-022-00379-5
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cc05821b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 3672
ExternalDocumentID 38456336
10_1039_D3CC05821B
d3cc05821b
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-4b47abf46ceb93d1f67a665d910b34d011c8def3dfdf1299eb37166a269483f43
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 10:18:35 EDT 2025
Mon Jun 30 11:56:08 EDT 2025
Wed Feb 19 02:08:28 EST 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 04:23:16 EDT 2025
Tue Dec 17 20:58:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-4b47abf46ceb93d1f67a665d910b34d011c8def3dfdf1299eb37166a269483f43
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3cc05821b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5888-1283
0000-0002-3353-7918
PMID 38456336
PQID 3003893217
PQPubID 2047502
PageCount 4
ParticipantIDs crossref_citationtrail_10_1039_D3CC05821B
proquest_miscellaneous_2954776383
crossref_primary_10_1039_D3CC05821B
rsc_primary_d3cc05821b
pubmed_primary_38456336
proquest_journals_3003893217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-28
PublicationDateYYYYMMDD 2024-03-28
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D3CC05821B/cit26/1) 2020; 142
Zhao (D3CC05821B/cit8/1) 2023; 62
Liu (D3CC05821B/cit22/1) 2022; 61
Li (D3CC05821B/cit23/1) 2023; 145
Sun (D3CC05821B/cit15/1) 2023; 62
Jiao (D3CC05821B/cit27/1) 2018; 30
Jiang (D3CC05821B/cit1/1) 2023; 17
Lv (D3CC05821B/cit12/1) 2021; 4
Qin (D3CC05821B/cit7/1) 2022; 10
Li (D3CC05821B/cit30/1) 2013; 6
Wang (D3CC05821B/cit24/1) 2020; 59
Zhang (D3CC05821B/cit5/1) 2023; 1
Zhao (D3CC05821B/cit21/1) 2022; 12
Zhu (D3CC05821B/cit20/1) 2022; 144
Li (D3CC05821B/cit31/1) 2016; 28
Lv (D3CC05821B/cit3/1) 2022; 16
Chen (D3CC05821B/cit25/1) 2020; 5
Liu (D3CC05821B/cit32/1) 2021; 60
Zhang (D3CC05821B/cit19/1) 2023; 3
Chen (D3CC05821B/cit34/1) 2020; 12
Liu (D3CC05821B/cit13/1) 2022; 16
Qiu (D3CC05821B/cit16/1) 2021; 143
Firet (D3CC05821B/cit33/1) 2017; 7
Leverett (D3CC05821B/cit2/1) 2022; 12
Geng (D3CC05821B/cit4/1) 2023; 62
Meng (D3CC05821B/cit17/1) 2021; 60
Li (D3CC05821B/cit14/1) 2022; 6
Zhang (D3CC05821B/cit11/1) 2022; 13
Freund (D3CC05821B/cit29/1) 2021; 60
Zhao (D3CC05821B/cit6/1) 2023; 14
Zhao (D3CC05821B/cit18/1) 2021; 57
Wei (D3CC05821B/cit10/1) 2022; 144
Liu (D3CC05821B/cit9/1) 2022; 316
Xie (D3CC05821B/cit28/1) 2020; 120
References_xml – volume: 120
  start-page: 8536
  year: 2020
  ident: D3CC05821B/cit28/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00766
– volume: 3
  start-page: 100116
  year: 2023
  ident: D3CC05821B/cit19/1
  publication-title: eScience
  doi: 10.1016/j.esci.2023.100116
– volume: 30
  start-page: 1703663
  year: 2018
  ident: D3CC05821B/cit27/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703663
– volume: 28
  start-page: 8819
  year: 2016
  ident: D3CC05821B/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601133
– volume: 62
  start-page: e202307123
  year: 2023
  ident: D3CC05821B/cit8/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202307123
– volume: 13
  start-page: 5337
  year: 2022
  ident: D3CC05821B/cit11/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33066-6
– volume: 60
  start-page: 23975
  year: 2021
  ident: D3CC05821B/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106259
– volume: 5
  start-page: 605
  year: 2020
  ident: D3CC05821B/cit25/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 60
  start-page: 25485
  year: 2021
  ident: D3CC05821B/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202111136
– volume: 12
  start-page: 7986
  year: 2022
  ident: D3CC05821B/cit21/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02002
– volume: 10
  start-page: 15869
  year: 2022
  ident: D3CC05821B/cit7/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c05110
– volume: 142
  start-page: 5702
  year: 2020
  ident: D3CC05821B/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 144
  start-page: 13319
  year: 2022
  ident: D3CC05821B/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c04670
– volume: 17
  start-page: 3209
  year: 2023
  ident: D3CC05821B/cit1/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11046
– volume: 1
  start-page: 45
  year: 2023
  ident: D3CC05821B/cit5/1
  publication-title: EES Catal.
  doi: 10.1039/D2EY00038E
– volume: 62
  start-page: e202301957
  year: 2023
  ident: D3CC05821B/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202301957
– volume: 16
  start-page: 17911
  year: 2022
  ident: D3CC05821B/cit13/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09168
– volume: 145
  start-page: 6471
  year: 2023
  ident: D3CC05821B/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00334
– volume: 59
  start-page: 5350
  year: 2020
  ident: D3CC05821B/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 4
  start-page: 868
  year: 2021
  ident: D3CC05821B/cit12/1
  publication-title: Nat. Sustainability
  doi: 10.1038/s41893-021-00741-3
– volume: 61
  start-page: e202202556
  year: 2022
  ident: D3CC05821B/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202202556
– volume: 62
  start-page: e202210958
  year: 2023
  ident: D3CC05821B/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202210958
– volume: 14
  start-page: 4491
  year: 2023
  ident: D3CC05821B/cit6/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40273-2
– volume: 12
  start-page: 2201500
  year: 2022
  ident: D3CC05821B/cit2/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201500
– volume: 16
  start-page: 8213
  year: 2022
  ident: D3CC05821B/cit3/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01956
– volume: 57
  start-page: 12764
  year: 2021
  ident: D3CC05821B/cit18/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC05376K
– volume: 60
  start-page: 16409
  year: 2021
  ident: D3CC05821B/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202105966
– volume: 6
  start-page: 1656
  year: 2013
  ident: D3CC05821B/cit30/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40507a
– volume: 316
  start-page: 121618
  year: 2022
  ident: D3CC05821B/cit9/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121618
– volume: 144
  start-page: 11530
  year: 2022
  ident: D3CC05821B/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03452
– volume: 7
  start-page: 606
  year: 2017
  ident: D3CC05821B/cit33/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02382
– volume: 143
  start-page: 7242
  year: 2021
  ident: D3CC05821B/cit16/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01466
– volume: 12
  start-page: 717
  year: 2020
  ident: D3CC05821B/cit34/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0481-9
– volume: 6
  start-page: 303
  year: 2022
  ident: D3CC05821B/cit14/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00379-5
SSID ssj0000158
Score 2.5124278
Snippet It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework...
It is important and challenging to utilise CO 2 and NO 3 − as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework...
It is important and challenging to utilise CO and NO as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF)...
It is important and challenging to utilise CO2 and NO3− as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal–organic framework...
It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3669
SubjectTerms Carbon dioxide
Copper
Electrocatalysts
Metal-organic frameworks
Urea
Title Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metal-organic framework
URI https://www.ncbi.nlm.nih.gov/pubmed/38456336
https://www.proquest.com/docview/3003893217
https://www.proquest.com/docview/2954776383
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAviNtYYSAjeEGVx7rjOM3j6DqNqRsCtVLfIseOpUglRb1IwBP_gR_D_-GXcHzJBTYh4CWK3KSJfL74HNvfOR8hL9BtCMV5zDQ6O8ZlJJkc6JxJYdAbisxETgzm4lKczfj5PJp3Ot9brKXtJjtQX67NK_kfq2Ib2tVmyf6DZes_xQY8R_viES2Mx7-y8WxTLAIdx9HD5SrDM10sPxXabwvgB2trQTgyoeWf94PszfpziZGfLUbik9v6oy2zDk1bSWm5qCgQ4EWfVN9UHK52MFsXG1DtLBO3jFungrmx1guFtBYdLJeWnTgigVuxbsAVlq_PC8neb8tm4C7Yu6LsTwq5rNrmeM4ugiQLvkrZXsA44pbBFRLCPfPJLpNUHFXHQQlKd61hGaKExeALTx7koU1whvOteXss99oEAbO-6EAYmUF4SZjg5UF4xaArHuQQbAFWDUod2hzirPGTFTfg8m16OptM0ul4Pr1Bdo7ieBB1yc7xePpm0qpc5qRh6xevKuNC8qr5719joSsTHAx3VpUMjQt3pnfI7TBPoccedHdJJy_vkZt1p90nH1rgo0tDPfhoAB9Fe9MAPorgoxZ89HfwUQs-KmkFPurA9-PrtwA7WsPuAZmdjqejMxa0O5gCiDeMZzyWmeFC5VkCemBELIWINEanGXCNXkUNdW5AG20w5EzyDHDmLqRNrB6C4bBLuuWyzPcIjfEOLRM9xHt4pkxmFMatVklhYJTipkdeVr2YqlDY3uqrLFJHsIAkPYHRyPX46x55Xl_70Zdzufaq_coYafjc1ynYTXSc7QziHnlW_4ydbnfYZJkvt-vUbprH6LGH0CMPvRHrx8AQ5yoAokd20ap1c4OGR39-6mNyq_l69kl3s9rmTzAg3mRPA_h-AqnfukI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilisation+of+carbon+dioxide+and+nitrate+for+urea+electrosynthesis+with+a+Cu-based+metal%E2%80%93organic+framework&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Meng-Di%2C+Zhang&rft.au=Huang%2C+Jia-Run&rft.au=Pei-Qin+Liao&rft.au=Xiao-Ming%2C+Chen&rft.date=2024-03-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=60&rft.issue=27&rft.spage=3669&rft.epage=3672&rft_id=info:doi/10.1039%2Fd3cc05821b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon