Ultrasonically assisted preparation of molybdenum sulfide/graphitic carbon nitride nanohybrid as counter electrode material for dye-sensitized solar cell
Graphitic carbon nitride (g-C3N4) has special semiconducting properties which make it candiate for several catalytic processes. The subject of using g-C3N4 for electrochemical studies such as energy storage and conversion is important aspect which may be considered for further investigations. In thi...
Saved in:
| Published in | Journal of alloys and compounds Vol. 929; p. 167220 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Lausanne
Elsevier B.V
25.12.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-8388 1873-4669 |
| DOI | 10.1016/j.jallcom.2022.167220 |
Cover
| Abstract | Graphitic carbon nitride (g-C3N4) has special semiconducting properties which make it candiate for several catalytic processes. The subject of using g-C3N4 for electrochemical studies such as energy storage and conversion is important aspect which may be considered for further investigations. In this research, nanostructured molybdenum sulfide (MoS2)/g-C3N4 was synthesized through sonochemical method and used as active material for the fabrication of counter electrode (CE) in dye-sensitized solar cell (DSSC). MoS2 was synthesized by hydrothermal method and g-C3N4 was prepared using thiourea precursor through condensation polymerization method. Then, two materials were combined under ultrasonic irradiation to obtain nanostructured MoS2/g-C3N4. For preparation of CE, the nanohybrid was coated onto fluorine doped tin oxide (FTO) glass. Structural characterization of MoS2 /g-C3N4 nanohybrid was perfoemed uisng X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The MoS2 /g-C3N4 CE displays higher current density and lower overpotentials for redox reactions of triiodide/iodide (I3-/I-) than MoS2 and g-C3N4 CEs and has high catalytic activity and low charge transfer resistance. The photoanode was prepared using a transparent layer of 20 nm sized TiO2 nanoparticles and a reflective layer of 300 nm sized TiO2 particles pasted on FTO and then sensitized with immersion in 0.4 mM N719 dye. The fabricated DSSC based on MoS2/g-C3N4 CE was investigated using J-V analysis under AM 1.5 irradiation (100 mW cm−2) and a maximum power conversion efficiency of 6.69% was obtained. The results showed that the idea of using g-C3N4 in the preparation of new hybrid materials for CEs can be considered to improve the performance of DSSC.
•The effect of g-C3N4 is investigated as active material for application in DSSC.•MoS2/g-C3N4 nanohybrid is prepared as counter electrode material for DSSC.•The nanohybrid can catalyze the redox reaction of I3-/I- species.•The DSSC exhibits the energy conversion efficiency of 6.69%. |
|---|---|
| AbstractList | Graphitic carbon nitride (g-C3N4) has special semiconducting properties which make it candiate for several catalytic processes. The subject of using g-C3N4 for electrochemical studies such as energy storage and conversion is important aspect which may be considered for further investigations. In this research, nanostructured molybdenum sulfide (MoS2)/g-C3N4 was synthesized through sonochemical method and used as active material for the fabrication of counter electrode (CE) in dye-sensitized solar cell (DSSC). MoS2 was synthesized by hydrothermal method and g-C3N4 was prepared using thiourea precursor through condensation polymerization method. Then, two materials were combined under ultrasonic irradiation to obtain nanostructured MoS2/g-C3N4. For preparation of CE, the nanohybrid was coated onto fluorine doped tin oxide (FTO) glass. Structural characterization of MoS2 /g-C3N4 nanohybrid was perfoemed uisng X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The MoS2 /g-C3N4 CE displays higher current density and lower overpotentials for redox reactions of triiodide/iodide (I3-/I-) than MoS2 and g-C3N4 CEs and has high catalytic activity and low charge transfer resistance. The photoanode was prepared using a transparent layer of 20 nm sized TiO2 nanoparticles and a reflective layer of 300 nm sized TiO2 particles pasted on FTO and then sensitized with immersion in 0.4 mM N719 dye. The fabricated DSSC based on MoS2/g-C3N4 CE was investigated using J-V analysis under AM 1.5 irradiation (100 mW cm−2) and a maximum power conversion efficiency of 6.69% was obtained. The results showed that the idea of using g-C3N4 in the preparation of new hybrid materials for CEs can be considered to improve the performance of DSSC.
•The effect of g-C3N4 is investigated as active material for application in DSSC.•MoS2/g-C3N4 nanohybrid is prepared as counter electrode material for DSSC.•The nanohybrid can catalyze the redox reaction of I3-/I- species.•The DSSC exhibits the energy conversion efficiency of 6.69%. Graphitic carbon nitride (g-C3N4) has special semiconducting properties which make it candiate for several catalytic processes. The subject of using g-C3N4 for electrochemical studies such as energy storage and conversion is important aspect which may be considered for further investigations. In this research, nanostructured molybdenum sulfide (MoS2)/g-C3N4 was synthesized through sonochemical method and used as active material for the fabrication of counter electrode (CE) in dye-sensitized solar cell (DSSC). MoS2 was synthesized by hydrothermal method and g-C3N4 was prepared using thiourea precursor through condensation polymerization method. Then, two materials were combined under ultrasonic irradiation to obtain nanostructured MoS2/g-C3N4. For preparation of CE, the nanohybrid was coated onto fluorine doped tin oxide (FTO) glass. Structural characterization of MoS2 /g-C3N4 nanohybrid was perfoemed uisng X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The MoS2 /g-C3N4 CE displays higher current density and lower overpotentials for redox reactions of triiodide/iodide (I3-/I-) than MoS2 and g-C3N4 CEs and has high catalytic activity and low charge transfer resistance. The photoanode was prepared using a transparent layer of 20 nm sized TiO2 nanoparticles and a reflective layer of 300 nm sized TiO2 particles pasted on FTO and then sensitized with immersion in 0.4 mM N719 dye. The fabricated DSSC based on MoS2/g-C3N4 CE was investigated using J-V analysis under AM 1.5 irradiation (100 mW cm−2) and a maximum power conversion efficiency of 6.69% was obtained. The results showed that the idea of using g-C3N4 in the preparation of new hybrid materials for CEs can be considered to improve the performance of DSSC. |
| ArticleNumber | 167220 |
| Author | Ghasemi, Shahram khorrambin, Sedigheh Hosseini, Sayed Reza |
| Author_xml | – sequence: 1 givenname: Sedigheh surname: khorrambin fullname: khorrambin, Sedigheh – sequence: 2 givenname: Shahram surname: Ghasemi fullname: Ghasemi, Shahram email: sghasemi@umz.ac.ir, sghasemimir@yahoo.com – sequence: 3 givenname: Sayed Reza surname: Hosseini fullname: Hosseini, Sayed Reza |
| BookMark | eNqFkc1q3TAQhUVJIDdpHyEg6No3-rFliS5KCU1bCHTTrIUsjxsZWXIlueC-Sd82Sm9W3WSlEXPON3DOJToLMQBC15QcKaHiZj7OxnsblyMjjB2p6Bkjb9CByp43rRDqDB2IYl0juZQX6DLnmRBCFacH9PfBl2RyDM5Wxo5Nzi4XGPGaYDXJFBcDjhNeot-HEcK24Lz5yY1w8zOZ9dEVZ7E1aaiy4EqqCxxMiI_7UOeKwzZuoUDC4MGWFOt-MfXvjMdTTHjcockQcgX9qWdz9CZhC96_ReeT8RnevbxX6OHu84_br8399y_fbj_dN5bzvjRtOwnGe9FZReigBiV7kEKxiUjKWzoMwjKh2nGAibaM9lb0tONS2F5RyWzLr9D7E3dN8dcGueg5binUk5r1ogbaCSqrqjupbIo5J5j0mtxi0q4p0c8t6Fm_tKCfW9CnFqrvw38-68q_VGvszr_q_nhyQw3gt4Oks3UQLIwu1TT1GN0rhCf0_6wU |
| CitedBy_id | crossref_primary_10_1016_j_est_2024_114355 crossref_primary_10_1039_D3DT04347A crossref_primary_10_1016_j_electacta_2023_142813 crossref_primary_10_1149_1945_7111_aca181 crossref_primary_10_1002_aoc_7721 crossref_primary_10_1016_j_ijoes_2024_100548 crossref_primary_10_3390_mi14051059 |
| Cites_doi | 10.1016/j.apsusc.2017.09.021 10.1016/j.rser.2017.05.011 10.1016/j.jallcom.2021.163045 10.1039/C6CS00752J 10.1039/C5NR03054D 10.1016/j.jallcom.2018.07.149 10.1016/j.electacta.2015.11.039 10.1016/j.electacta.2018.11.170 10.1016/j.jpowsour.2017.03.047 10.1021/nn1003937 10.1021/am502925j 10.1016/j.ultsonch.2015.07.023 10.1021/acsami.5b01212 10.1016/j.electacta.2018.10.081 10.1002/352760054X 10.1126/sciadv.1500259 10.1002/eom2.12097 10.1016/j.solener.2020.07.094 10.1016/j.apsusc.2022.154315 10.1016/j.solener.2018.05.074 10.1016/j.apcatb.2018.12.029 10.1016/j.envres.2019.02.032 10.1016/j.solmat.2009.04.006 10.1039/C5RA01017A 10.1016/j.electacta.2017.06.102 10.1016/j.jcis.2018.04.046 10.1002/chem.201601300 10.1002/eom2.12084 10.1016/j.ultsonch.2017.12.023 10.1039/D1TC00391G 10.1002/pip.3350 10.1039/c2jm35447k 10.1016/j.watres.2021.116850 10.1002/eom2.12177 10.1021/acs.chemrev.6b00075 10.1002/lpor.202000459 10.1002/lpor.202100343 10.1016/j.apsusc.2017.08.051 10.1016/j.jpowsour.2012.11.088 10.1016/j.jallcom.2020.156810 10.1016/j.cej.2018.07.116 10.1016/j.jelechem.2015.02.004 10.1002/anie.201000659 10.1016/j.rser.2010.12.008 10.1039/C7DT01511A 10.1016/j.jpowsour.2018.02.048 10.1007/s10562-018-2450-0 10.1016/j.nanoen.2016.06.037 10.1016/j.jallcom.2022.165238 10.1021/acsami.5b11326 10.1016/j.solener.2019.09.081 10.1016/j.electacta.2017.12.023 10.1016/j.jpowsour.2020.229068 10.1016/j.jcis.2018.06.092 10.1016/j.jechem.2017.09.003 10.1039/C5RA10308H 10.1021/acsami.9b03328 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Dec 25, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Dec 25, 2022 |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1016/j.jallcom.2022.167220 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1873-4669 |
| ExternalDocumentID | 10_1016_j_jallcom_2022_167220 S0925838822036118 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS T9H WUQ ~HD 8BQ 8FD AGCQF JG9 |
| ID | FETCH-LOGICAL-c337t-44f623765c901b9b987e8692f081341bb6c2694dbef14217c6715386c79182c43 |
| IEDL.DBID | .~1 |
| ISSN | 0925-8388 |
| IngestDate | Sun Sep 07 03:40:08 EDT 2025 Thu Oct 16 04:32:33 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Fri Feb 23 02:39:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dye-sensitized solar cell Ultrasonic assisted preparation Hydrothermal method Counter electrode Molybdenum sulfide Graphitic carbon nitride |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-44f623765c901b9b987e8692f081341bb6c2694dbef14217c6715386c79182c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2760225618 |
| PQPubID | 2045454 |
| ParticipantIDs | proquest_journals_2760225618 crossref_primary_10_1016_j_jallcom_2022_167220 crossref_citationtrail_10_1016_j_jallcom_2022_167220 elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_167220 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-25 |
| PublicationDateYYYYMMDD | 2022-12-25 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Journal of alloys and compounds |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Jourshabani, Shariatinia, Badiei (bib31) 2018; 427 Han, Chen, Fan, Li, Zou (bib25) 2021; 3 Zhu, Xiao, Li, Carabineiro (bib35) 2014; 6 Iniyan, Jebaraj, Suganthi, Samuel (bib1) 2020; 67 Ong, Tan, Ng, Yong, Chai (bib33) 2016; 116 Lee, Yan, Brus, Heinz, Hone, Ryu (bib49) 2010; 4 Li, Dong, Li, Tang, Tian, Li, Chen, Xie, Jin, Xiao, Zeng (bib17) 2021; 192 Mason, T.J., Lorimer, J.P. ,2002. Applied sonochemistry: the uses of power ultrasound in chemistry and processing (Vol. 10). Weinheim: Wiley-Vch. Pokhrel, Vabbina, Pala (bib41) 2016; 29 Quy, Vijayakumar, Ho, Park, Rajesh, Kwon, Ahn (bib50) 2018; 260 Afshari, Dinari, Momeni (bib37) 2018; 42 AlemuZelekeDong-HauKuo (bib21) 2019; 172 Ding, Huang, Yan, Peng, Sun, Sun, Huang (bib30) 2018; 767 Zhang, Chen, Yang, Zhang, Zhang, Tang, Li (bib45) 2015; 5 Rashidi, Heydari, Esmaeili, Tran, Thangi, Wei (bib16) 2021; 29 Zhang, Zai, Liu, Chen, Wang, Li, Yu (bib9) 2017; 46 Tai, Liu, Chou, Chien, Lin, Lin (bib60) 2012; 22 Gao, Han, Wu (bib22) 2018; 27 Ye, Wang, Chen (bib52) 2016; 8 Li, Wang, Zheng, Zhao, Huang, Sun, Sun (bib8) 2018; 384 Hu, Zhang, An, Liu, Liang, Cui (bib32) 2019; 245 Belakehal, Atacan, Güy, Megriche, Özacar (bib38) 2022 Song, Bie, Yan, Zhu, Ma (bib5) 2022; 4 Ma, Peng, Mu, Huang, Zhou, Lei (bib28) 2013; 229 Chen, Zhu, Xiao, Yang (bib51) 2015; 743 Kumavat, Sonar, Dalal (bib4) 2017; 78 Zhou, Zhu, Chen, Dong, Li, Chai (bib18) 2021; 852 Vijaya, Landi, Wu, Anandan (bib15) 2020; 478 Li, Tang, Zhang, Wang, Deng, Zhang, Jin (bib39) 2022; 913 Chen, Ma, Cai, Yang, Huang (bib27) 2017; 246 Kuo, Lin, Yeh, Fan, Hsiao, Lin, Ho (bib3) 2019; 11 Pang, Lin, Shi, Wang, Chen, Ma, Dong (bib7) 2019; 297 Yang, Jin, Hu, Bi, Lu (bib34) 2018; 427 Huang, Wang, Wu, Hu, Lin, Qin, Li (bib19) 2022; 896 Ma, Yue, Wu, Lan, Lin (bib11) 2015; 5 Wang, Kuang, Zhang, Hou, Nian (bib36) 2016; 187 Khir, Pandey, Saidur, Amad, Rahim, Dewika, Samykano (bib53) 2022; 53 Sharma, Sharma, Sharma (bib57) 2018; 13 Yue, Wang, Wang, Zhao, Wang, Gao, Sun (bib24) 2022; 16 Cao, Fan, Feng, Chen, Jiang, Wang (bib42) 2018; 353 Wan, Jia, Wang (bib10) 2015; 7 Chen, Guo, Yin, He, Qiu, Zhang, Xu, Zhu, Yang, Yan (bib23) 2021; 15 Li, Wang, Jiang, Gao, Shen (bib54) 2010; 49 Miao, Xiao, Yang, Khoo, Chen, Fan, Hsu, Chen, Hua Zhang, Liu (bib44) 2015; 1 Kim, Jung, Noh, Seo, Choi, Park, Hoon, Choi (bib6) 2021; 3 Ding, Guo, Du, Hu, Yang, He, Zhou, Zang (bib26) 2021; 9 Xue, Ma, Zhou, Zhang, He (bib48) 2015; 7 Vijaya, Landi, Wu, Anandan (bib58) 2019; 294 Zeleke, Kuo, Ahmed, Gultom (bib20) 2018; 530 Chen, Wu, Wang, Wang, Wang, Gao, Jiang (bib29) 2018; 524 Banos, Manzano-Agugliaro, Montoya, Gil, Alcayde, Gómez (bib2) 2011; 15 Zhu, Wei, Wang, Wu (bib12) 2009; 93 Hussain, Patil, Memon, Vikraman, Naqvi, Jeong, Jung (bib56) 2018; 171 Han, Liu, Liu, Jin, Li, Cheng, Xiong (bib13) 2020; 208 Zhang, Xie, Jiu, Meng, Zhang, Gao (bib47) 2018; 148 Gurulakshmi, Meenakshamma, Susmitha, Charanadhar, Srikanth, Babu, Raghavender (bib14) 2019; 193 Wu, Lan, Lin, Huang, Huang, Fan, Luo, Lin, Xie, Wei (bib55) 2017; 46 Ma, Shen, Yu (bib43) 2017; 351 Fu, He, Zhang, Wu, Wang, Wang, Liu (bib46) 2016; 27 Wang, Zhang, Kuang, Zhang (bib59) 2016; 22 Ding (10.1016/j.jallcom.2022.167220_bib26) 2021; 9 Ding (10.1016/j.jallcom.2022.167220_bib30) 2018; 767 Chen (10.1016/j.jallcom.2022.167220_bib29) 2018; 524 Wan (10.1016/j.jallcom.2022.167220_bib10) 2015; 7 Iniyan (10.1016/j.jallcom.2022.167220_bib1) 2020; 67 Afshari (10.1016/j.jallcom.2022.167220_bib37) 2018; 42 Wang (10.1016/j.jallcom.2022.167220_bib59) 2016; 22 Ma (10.1016/j.jallcom.2022.167220_bib11) 2015; 5 Fu (10.1016/j.jallcom.2022.167220_bib46) 2016; 27 Tai (10.1016/j.jallcom.2022.167220_bib60) 2012; 22 Sharma (10.1016/j.jallcom.2022.167220_bib57) 2018; 13 Banos (10.1016/j.jallcom.2022.167220_bib2) 2011; 15 Kuo (10.1016/j.jallcom.2022.167220_bib3) 2019; 11 Kim (10.1016/j.jallcom.2022.167220_bib6) 2021; 3 Huang (10.1016/j.jallcom.2022.167220_bib19) 2022; 896 Zhu (10.1016/j.jallcom.2022.167220_bib35) 2014; 6 Ong (10.1016/j.jallcom.2022.167220_bib33) 2016; 116 Wu (10.1016/j.jallcom.2022.167220_bib55) 2017; 46 Han (10.1016/j.jallcom.2022.167220_bib25) 2021; 3 Lee (10.1016/j.jallcom.2022.167220_bib49) 2010; 4 Song (10.1016/j.jallcom.2022.167220_bib5) 2022; 4 Zhang (10.1016/j.jallcom.2022.167220_bib45) 2015; 5 Zhu (10.1016/j.jallcom.2022.167220_bib12) 2009; 93 Jourshabani (10.1016/j.jallcom.2022.167220_bib31) 2018; 427 Hussain (10.1016/j.jallcom.2022.167220_bib56) 2018; 171 Vijaya (10.1016/j.jallcom.2022.167220_bib58) 2019; 294 Zhang (10.1016/j.jallcom.2022.167220_bib9) 2017; 46 Zhou (10.1016/j.jallcom.2022.167220_bib18) 2021; 852 Hu (10.1016/j.jallcom.2022.167220_bib32) 2019; 245 Kumavat (10.1016/j.jallcom.2022.167220_bib4) 2017; 78 Pokhrel (10.1016/j.jallcom.2022.167220_bib41) 2016; 29 Zeleke (10.1016/j.jallcom.2022.167220_bib20) 2018; 530 Khir (10.1016/j.jallcom.2022.167220_bib53) 2022; 53 Chen (10.1016/j.jallcom.2022.167220_bib27) 2017; 246 10.1016/j.jallcom.2022.167220_bib40 Gurulakshmi (10.1016/j.jallcom.2022.167220_bib14) 2019; 193 AlemuZelekeDong-HauKuo (10.1016/j.jallcom.2022.167220_bib21) 2019; 172 Han (10.1016/j.jallcom.2022.167220_bib13) 2020; 208 Chen (10.1016/j.jallcom.2022.167220_bib23) 2021; 15 Cao (10.1016/j.jallcom.2022.167220_bib42) 2018; 353 Wang (10.1016/j.jallcom.2022.167220_bib36) 2016; 187 Ma (10.1016/j.jallcom.2022.167220_bib43) 2017; 351 Ye (10.1016/j.jallcom.2022.167220_bib52) 2016; 8 Xue (10.1016/j.jallcom.2022.167220_bib48) 2015; 7 Yang (10.1016/j.jallcom.2022.167220_bib34) 2018; 427 Li (10.1016/j.jallcom.2022.167220_bib54) 2010; 49 Miao (10.1016/j.jallcom.2022.167220_bib44) 2015; 1 Rashidi (10.1016/j.jallcom.2022.167220_bib16) 2021; 29 Gao (10.1016/j.jallcom.2022.167220_bib22) 2018; 27 Ma (10.1016/j.jallcom.2022.167220_bib28) 2013; 229 Zhang (10.1016/j.jallcom.2022.167220_bib47) 2018; 148 Yue (10.1016/j.jallcom.2022.167220_bib24) 2022; 16 Li (10.1016/j.jallcom.2022.167220_bib39) 2022; 913 Chen (10.1016/j.jallcom.2022.167220_bib51) 2015; 743 Pang (10.1016/j.jallcom.2022.167220_bib7) 2019; 297 Vijaya (10.1016/j.jallcom.2022.167220_bib15) 2020; 478 Belakehal (10.1016/j.jallcom.2022.167220_bib38) 2022 Quy (10.1016/j.jallcom.2022.167220_bib50) 2018; 260 Li (10.1016/j.jallcom.2022.167220_bib17) 2021; 192 Li (10.1016/j.jallcom.2022.167220_bib8) 2018; 384 |
| References_xml | – volume: 78 start-page: 1262 year: 2017 end-page: 1287 ident: bib4 article-title: An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements publication-title: Renew. Sustain. Energy Rev. – volume: 524 start-page: 475 year: 2018 end-page: 482 ident: bib29 article-title: In-situ synthesis of molybdenum sulfide/reduced graphene oxide porous film as robust counter electrode for dye-sensitized solar cells publication-title: J. Colloid Interface Sci. – volume: 187 start-page: 243 year: 2016 end-page: 248 ident: bib36 article-title: Graphitic carbon nitride/multiwalled carbon nanotubes composite as Pt-free counter electrode for high-efficiency dye-sensitized solar cells publication-title: Electrochim. Acta – volume: 29 start-page: 238 year: 2021 end-page: 261 ident: bib16 article-title: WS publication-title: Prog. Photovolt. Res. Appl. – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: bib33 article-title: Graphitic carbon nitride(g-C publication-title: Chem. Rev. – volume: 245 start-page: 130 year: 2019 end-page: 142 ident: bib32 article-title: In-situ Fe-doped g-C publication-title: Appl. Catal. B Environ. – volume: 93 start-page: 1461 year: 2009 end-page: 1470 ident: bib12 article-title: Applications of carbon materials in photovoltaic solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 27 start-page: 703 year: 2018 end-page: 712 ident: bib22 article-title: Review on transition metal compounds based counter electrode for dye-sensitized solar cells publication-title: J. Energy Chem. – volume: 384 start-page: 1 year: 2018 end-page: 9 ident: bib8 article-title: In situ preparation of NiS publication-title: J. Power Sources – volume: 49 start-page: 3653 year: 2010 end-page: 3656 ident: bib54 article-title: Carbon nanotubes with titanium nitride as a low‐cost counter‐electrode material for dye‐sensitized solar cells publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 44 year: 2016 end-page: 50 ident: bib46 article-title: Strong interfacial coupling of MoS publication-title: Nano Energy – volume: 13 start-page: 1 year: 2018 end-page: 46 ident: bib57 article-title: Dye-sensitized solar cells: fundamentals and current status publication-title: Nanoscale Res. Lett. – volume: 246 start-page: 615 year: 2017 end-page: 624 ident: bib27 article-title: In situ growth of polypyrrole onto three-dimensional tubular MoS publication-title: Electrochim. Acta – volume: 260 start-page: 716 year: 2018 end-page: 725 ident: bib50 article-title: Electrodeposited MoS publication-title: Electrochim. Acta – volume: 351 start-page: 58 year: 2017 end-page: 66 ident: bib43 article-title: Graphene-enhanced three-dimensional structures of MoS publication-title: J. Power Sources – year: 2022 ident: bib38 article-title: Fabrication of heterostructured CdS/g-C3N4/ZnFe2O4 nanocomposite synthesized through ultrasonic-assisted method for efficient photocatalytic hydrogen production publication-title: Appl. Surf. Sci. – volume: 743 start-page: 99 year: 2015 end-page: 104 ident: bib51 article-title: PEDOT/g-C3N4 binary electrode material for supercapacitors publication-title: J. Electroanal. Chem. – volume: 427 start-page: 587 year: 2018 end-page: 597 ident: bib34 article-title: Ni-Mo-S nanoparticles modified graphitic C publication-title: Appl. Surf. Sci. – volume: 6 start-page: 16449 year: 2014 end-page: 16465 ident: bib35 article-title: Graphitic carbon nitride: synthesis, properties, and applications in catalysis publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 2100343 year: 2022 ident: bib24 article-title: Direct observation of room‐temperature intravalley coherent coupling processes in monolayer MoS publication-title: Laser Photonics Rev. – volume: 171 start-page: 122 year: 2018 end-page: 129 ident: bib56 article-title: CuS/WS publication-title: Sol. Energy – volume: 4 year: 2022 ident: bib5 article-title: Interfacial engineering of nanostructured photoanode in fiber dye‐sensitized solar cells for self‐charging power systems publication-title: EcoMat – reference: Mason, T.J., Lorimer, J.P. ,2002. Applied sonochemistry: the uses of power ultrasound in chemistry and processing (Vol. 10). Weinheim: Wiley-Vch. – volume: 7 start-page: 9630 year: 2015 end-page: 9637 ident: bib48 article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 9511 year: 2017 end-page: 9516 ident: bib9 article-title: A hierarchical CoFeS publication-title: Dalton Trans. – volume: 208 start-page: 469 year: 2020 end-page: 479 ident: bib13 article-title: Flexible counter electrodes with a composite carbon/metal nanowire/polymer structure for use in dye-sensitized solar cells publication-title: Sol. Energy – volume: 896 year: 2022 ident: bib19 article-title: Shape-controlled synthesis of CuS as a Fenton-like photocatalyst with high catalytic performance and stability publication-title: J. Alloy. Compd. – volume: 427 start-page: 375 year: 2018 end-page: 387 ident: bib31 article-title: Synthesis and characterization of novel Sm publication-title: Appl. Surf. Sci. – volume: 22 start-page: 24753 year: 2012 end-page: 24759 ident: bib60 article-title: Few-layer MoS publication-title: J. Mater. Chem. – volume: 46 start-page: 5975 year: 2017 end-page: 6023 ident: bib55 article-title: Counter electrodes in dye-sensitized solar cells publication-title: Chem. Soc. Rev. – volume: 42 start-page: 631 year: 2018 end-page: 639 ident: bib37 article-title: Ultrasonic irradiation preparation of graphitic-C publication-title: Ultrason. Sonochem. – volume: 148 start-page: 2812 year: 2018 end-page: 2821 ident: bib47 article-title: Synthesized hollow TiO publication-title: Catal. Lett. – volume: 7 start-page: 12737 year: 2015 end-page: 12742 ident: bib10 article-title: In situ growth of hierarchical NiS publication-title: Nanoscale – volume: 3 year: 2021 ident: bib25 article-title: Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting publication-title: EcoMat – volume: 22 start-page: 11763 year: 2016 end-page: 11769 ident: bib59 article-title: Enhanced electrocatalytic performance of a porous g-C publication-title: Chem. Eur. J. – volume: 229 start-page: 72 year: 2013 end-page: 78 ident: bib28 article-title: In situ intercalative polymerization of pyrrole in graphene analogue of MoS publication-title: J. Power Sources – volume: 15 start-page: 2000459 year: 2021 ident: bib23 article-title: Photoluminescence‐induced four‐wave mixing generation in a monolayer‐MoS2–cladded GaN microdisk resonator publication-title: Laser Photonics Rev. – volume: 192 year: 2021 ident: bib17 article-title: Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes publication-title: Water Res. – volume: 172 start-page: 279 year: 2019 end-page: 288 ident: bib21 article-title: Synthesis of oxy-sulfide based nanocomposite catalyst for visible light-driven reduction of Cr(VI) publication-title: Environ. Res. – volume: 8 start-page: 5280 year: 2016 end-page: 5289 ident: bib52 article-title: Fabrication and enhanced photoelectrochemical performance of MoS publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1753 year: 2011 end-page: 1766 ident: bib2 article-title: Optimization methods applied to renewable and sustainable energy: a review publication-title: Renew. Sustain. Energy Rev. – volume: 767 start-page: 848 year: 2018 end-page: 855 ident: bib30 article-title: A MoS publication-title: J. Alloy. Compd. – volume: 297 start-page: 70 year: 2019 end-page: 76 ident: bib7 article-title: Synthesis of CoFe publication-title: Electrochim. Acta – volume: 5 start-page: 89682 year: 2015 end-page: 89688 ident: bib45 article-title: MoS 2/reduced graphene oxide hybrid structure and its tribological properties publication-title: Rsc Adv. – volume: 478 year: 2020 ident: bib15 article-title: Ni publication-title: J. Power Sources – volume: 67 start-page: 28 year: 2020 end-page: 37 ident: bib1 article-title: Energy models for renewable energy utilization and to replace fossil fuels publication-title: Methodology – volume: 11 start-page: 25090 year: 2019 end-page: 25099 ident: bib3 article-title: Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 193 start-page: 568 year: 2019 end-page: 575 ident: bib14 article-title: A transparent and Pt-free all-carbon nanocomposite counter electrode catalyst for efficient dye sensitized solar cells publication-title: Sol. Energy – volume: 4 start-page: 2695 year: 2010 end-page: 2700 ident: bib49 article-title: Anomalous lattice vibrations of single-and few-layer MoS publication-title: ACS Nano – volume: 53 start-page: 102745 year: 2022 ident: bib53 article-title: Recent advancements and challenges in flexible low temperature dye sensitised solar cells publication-title: Sustain. Energy Technol. Assess – volume: 5 start-page: 43639 year: 2015 end-page: 43647 ident: bib11 article-title: A strategy to enhance overall efficiency for dye-sensitized solar cells with a transparent electrode of nickel sulfide decorated with poly (3, 4-ethylenedioxythiophene) publication-title: RSC Adv. – volume: 1 year: 2015 ident: bib44 article-title: Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte publication-title: Sci. Adv. – volume: 294 start-page: 134 year: 2019 end-page: 141 ident: bib58 article-title: MoS publication-title: Electrochim. Acta – volume: 530 start-page: 567 year: 2018 end-page: 578 ident: bib20 article-title: Facile synthesis of bimetallic (In,Ga)2(O,S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr(VI) publication-title: J. Colloid Interface Sci. Vol. – volume: 29 start-page: 104 year: 2016 end-page: 128 ident: bib41 article-title: Sonochemistry: science and engineering publication-title: Ultrason. Sonochem. – volume: 913 year: 2022 ident: bib39 article-title: Ultrasonic and size effects on the rheological behavior of CoCrFeMnNi high-entropy alloy publication-title: J. Alloy. Compd. – volume: 9 start-page: 4838 year: 2021 end-page: 4846 ident: bib26 article-title: Low-operating temperature ammonia sensor based on Cu publication-title: J. Mater. Chem. C – volume: 852 year: 2021 ident: bib18 article-title: Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting publication-title: J. Alloy. Compd. – volume: 3 year: 2021 ident: bib6 article-title: Strategy for large‐scale monolithic Perovskite/Silicon tandem solar cell: a review of recent progress publication-title: EcoMat – volume: 353 start-page: 147 year: 2018 end-page: 156 ident: bib42 article-title: Sulfur-doped g-C publication-title: Chem. Eng. J. – volume: 427 start-page: 587 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib34 article-title: Ni-Mo-S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.021 – volume: 78 start-page: 1262 year: 2017 ident: 10.1016/j.jallcom.2022.167220_bib4 article-title: An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.011 – volume: 896 year: 2022 ident: 10.1016/j.jallcom.2022.167220_bib19 article-title: Shape-controlled synthesis of CuS as a Fenton-like photocatalyst with high catalytic performance and stability publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.163045 – volume: 46 start-page: 5975 issue: 19 year: 2017 ident: 10.1016/j.jallcom.2022.167220_bib55 article-title: Counter electrodes in dye-sensitized solar cells publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00752J – volume: 7 start-page: 12737 issue: 29 year: 2015 ident: 10.1016/j.jallcom.2022.167220_bib10 article-title: In situ growth of hierarchical NiS2 hollow microspheres as efficient counter electrode for dye-sensitized solar cell publication-title: Nanoscale doi: 10.1039/C5NR03054D – volume: 767 start-page: 848 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib30 article-title: A MoS2/sulfur-doped carbon sphere nanohybrid catalyst with high-efficiency electrocatalysis for flexible counter electrodes publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.07.149 – volume: 187 start-page: 243 year: 2016 ident: 10.1016/j.jallcom.2022.167220_bib36 article-title: Graphitic carbon nitride/multiwalled carbon nanotubes composite as Pt-free counter electrode for high-efficiency dye-sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.039 – volume: 297 start-page: 70 year: 2019 ident: 10.1016/j.jallcom.2022.167220_bib7 article-title: Synthesis of CoFe2O4/graphene composite as a novel counter electrode for high performance dye-sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.170 – volume: 351 start-page: 58 year: 2017 ident: 10.1016/j.jallcom.2022.167220_bib43 article-title: Graphene-enhanced three-dimensional structures of MoS2 nanosheets as a counter electrode for Pt-free efficient dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.047 – volume: 4 start-page: 2695 issue: 5 year: 2010 ident: 10.1016/j.jallcom.2022.167220_bib49 article-title: Anomalous lattice vibrations of single-and few-layer MoS2 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 6 start-page: 16449 issue: 19 year: 2014 ident: 10.1016/j.jallcom.2022.167220_bib35 article-title: Graphitic carbon nitride: synthesis, properties, and applications in catalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502925j – volume: 29 start-page: 104 year: 2016 ident: 10.1016/j.jallcom.2022.167220_bib41 article-title: Sonochemistry: science and engineering publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.07.023 – volume: 7 start-page: 9630 issue: 18 year: 2015 ident: 10.1016/j.jallcom.2022.167220_bib48 article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01212 – volume: 13 start-page: 1 issue: 27 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib57 article-title: Dye-sensitized solar cells: fundamentals and current status publication-title: Nanoscale Res. Lett. – volume: 294 start-page: 134 year: 2019 ident: 10.1016/j.jallcom.2022.167220_bib58 article-title: MoS2 nanosheets based counter electrodes: an alternative for Pt-free dye-sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.081 – ident: 10.1016/j.jallcom.2022.167220_bib40 doi: 10.1002/352760054X – volume: 1 issue: 7 year: 2015 ident: 10.1016/j.jallcom.2022.167220_bib44 article-title: Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte publication-title: Sci. Adv. doi: 10.1126/sciadv.1500259 – volume: 3 issue: 3 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib25 article-title: Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting publication-title: EcoMat doi: 10.1002/eom2.12097 – volume: 208 start-page: 469 year: 2020 ident: 10.1016/j.jallcom.2022.167220_bib13 article-title: Flexible counter electrodes with a composite carbon/metal nanowire/polymer structure for use in dye-sensitized solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.094 – year: 2022 ident: 10.1016/j.jallcom.2022.167220_bib38 article-title: Fabrication of heterostructured CdS/g-C3N4/ZnFe2O4 nanocomposite synthesized through ultrasonic-assisted method for efficient photocatalytic hydrogen production publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154315 – volume: 171 start-page: 122 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib56 article-title: CuS/WS2 and CuS/MoS2 heterostructures for high performance counter electrodes in dye-sensitized solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.074 – volume: 245 start-page: 130 year: 2019 ident: 10.1016/j.jallcom.2022.167220_bib32 article-title: In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.12.029 – volume: 172 start-page: 279 year: 2019 ident: 10.1016/j.jallcom.2022.167220_bib21 article-title: Synthesis of oxy-sulfide based nanocomposite catalyst for visible light-driven reduction of Cr(VI) publication-title: Environ. Res. doi: 10.1016/j.envres.2019.02.032 – volume: 93 start-page: 1461 issue: 9 year: 2009 ident: 10.1016/j.jallcom.2022.167220_bib12 article-title: Applications of carbon materials in photovoltaic solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.04.006 – volume: 5 start-page: 43639 issue: 54 year: 2015 ident: 10.1016/j.jallcom.2022.167220_bib11 article-title: A strategy to enhance overall efficiency for dye-sensitized solar cells with a transparent electrode of nickel sulfide decorated with poly (3, 4-ethylenedioxythiophene) publication-title: RSC Adv. doi: 10.1039/C5RA01017A – volume: 246 start-page: 615 year: 2017 ident: 10.1016/j.jallcom.2022.167220_bib27 article-title: In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.102 – volume: 524 start-page: 475 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib29 article-title: In-situ synthesis of molybdenum sulfide/reduced graphene oxide porous film as robust counter electrode for dye-sensitized solar cells publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.04.046 – volume: 22 start-page: 11763 issue: 33 year: 2016 ident: 10.1016/j.jallcom.2022.167220_bib59 article-title: Enhanced electrocatalytic performance of a porous g-C3N4/graphene composite as a counter electrode for dye‐sensitized solar cells publication-title: Chem. Eur. J. doi: 10.1002/chem.201601300 – volume: 3 issue: 2 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib6 article-title: Strategy for large‐scale monolithic Perovskite/Silicon tandem solar cell: a review of recent progress publication-title: EcoMat doi: 10.1002/eom2.12084 – volume: 42 start-page: 631 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib37 article-title: Ultrasonic irradiation preparation of graphitic-C3N4/polyaniline nanocomposites as counter electrodes for dye-sensitized solar cells publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.12.023 – volume: 53 start-page: 102745 year: 2022 ident: 10.1016/j.jallcom.2022.167220_bib53 article-title: Recent advancements and challenges in flexible low temperature dye sensitised solar cells publication-title: Sustain. Energy Technol. Assess – volume: 9 start-page: 4838 issue: 14 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib26 article-title: Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00391G – volume: 29 start-page: 238 issue: 2 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib16 article-title: WS2 and MoS2 counter electrode materials for dye sensitized solar cells publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.3350 – volume: 22 start-page: 24753 issue: 47 year: 2012 ident: 10.1016/j.jallcom.2022.167220_bib60 article-title: Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells publication-title: J. Mater. Chem. doi: 10.1039/c2jm35447k – volume: 192 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib17 article-title: Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes publication-title: Water Res. doi: 10.1016/j.watres.2021.116850 – volume: 4 issue: 3 year: 2022 ident: 10.1016/j.jallcom.2022.167220_bib5 article-title: Interfacial engineering of nanostructured photoanode in fiber dye‐sensitized solar cells for self‐charging power systems publication-title: EcoMat doi: 10.1002/eom2.12177 – volume: 116 start-page: 7159 issue: 12 year: 2016 ident: 10.1016/j.jallcom.2022.167220_bib33 article-title: Graphitic carbon nitride(g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 15 start-page: 2000459 issue: 4 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib23 article-title: Photoluminescence‐induced four‐wave mixing generation in a monolayer‐MoS2–cladded GaN microdisk resonator publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000459 – volume: 16 start-page: 2100343 issue: 2 year: 2022 ident: 10.1016/j.jallcom.2022.167220_bib24 article-title: Direct observation of room‐temperature intravalley coherent coupling processes in monolayer MoS2 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202100343 – volume: 427 start-page: 375 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib31 article-title: Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.051 – volume: 229 start-page: 72 year: 2013 ident: 10.1016/j.jallcom.2022.167220_bib28 article-title: In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.088 – volume: 852 year: 2021 ident: 10.1016/j.jallcom.2022.167220_bib18 article-title: Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.156810 – volume: 353 start-page: 147 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib42 article-title: Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.116 – volume: 743 start-page: 99 year: 2015 ident: 10.1016/j.jallcom.2022.167220_bib51 article-title: PEDOT/g-C3N4 binary electrode material for supercapacitors publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2015.02.004 – volume: 49 start-page: 3653 issue: 21 year: 2010 ident: 10.1016/j.jallcom.2022.167220_bib54 article-title: Carbon nanotubes with titanium nitride as a low‐cost counter‐electrode material for dye‐sensitized solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000659 – volume: 15 start-page: 1753 issue: 4 year: 2011 ident: 10.1016/j.jallcom.2022.167220_bib2 article-title: Optimization methods applied to renewable and sustainable energy: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.12.008 – volume: 46 start-page: 9511 issue: 29 year: 2017 ident: 10.1016/j.jallcom.2022.167220_bib9 article-title: A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells publication-title: Dalton Trans. doi: 10.1039/C7DT01511A – volume: 384 start-page: 1 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib8 article-title: In situ preparation of NiS2/CoS2 composite electrocatalytic materials on conductive glass substrates with electronic modulation for high-performance counter electrodes of dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.048 – volume: 148 start-page: 2812 issue: 9 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib47 article-title: Synthesized hollow TiO2@ g-C3N4 composites for carbon dioxide reduction under visible light publication-title: Catal. Lett. doi: 10.1007/s10562-018-2450-0 – volume: 27 start-page: 44 year: 2016 ident: 10.1016/j.jallcom.2022.167220_bib46 article-title: Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.037 – volume: 913 year: 2022 ident: 10.1016/j.jallcom.2022.167220_bib39 article-title: Ultrasonic and size effects on the rheological behavior of CoCrFeMnNi high-entropy alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.165238 – volume: 8 start-page: 5280 issue: 8 year: 2016 ident: 10.1016/j.jallcom.2022.167220_bib52 article-title: Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11326 – volume: 193 start-page: 568 year: 2019 ident: 10.1016/j.jallcom.2022.167220_bib14 article-title: A transparent and Pt-free all-carbon nanocomposite counter electrode catalyst for efficient dye sensitized solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2019.09.081 – volume: 260 start-page: 716 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib50 article-title: Electrodeposited MoS2 as electrocatalytic counter electrode for quantum dot-and dye-sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.12.023 – volume: 478 year: 2020 ident: 10.1016/j.jallcom.2022.167220_bib15 article-title: Ni3S4/CoS2 mixed-phase nanocomposite as counter electrode for Pt-free dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229068 – volume: 530 start-page: 567 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib20 article-title: Facile synthesis of bimetallic (In,Ga)2(O,S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr(VI) publication-title: J. Colloid Interface Sci. Vol. doi: 10.1016/j.jcis.2018.06.092 – volume: 27 start-page: 703 issue: 3 year: 2018 ident: 10.1016/j.jallcom.2022.167220_bib22 article-title: Review on transition metal compounds based counter electrode for dye-sensitized solar cells publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.09.003 – volume: 67 start-page: 28 year: 2020 ident: 10.1016/j.jallcom.2022.167220_bib1 article-title: Energy models for renewable energy utilization and to replace fossil fuels publication-title: Methodology – volume: 5 start-page: 89682 issue: 109 year: 2015 ident: 10.1016/j.jallcom.2022.167220_bib45 article-title: MoS 2/reduced graphene oxide hybrid structure and its tribological properties publication-title: Rsc Adv. doi: 10.1039/C5RA10308H – volume: 11 start-page: 25090 issue: 28 year: 2019 ident: 10.1016/j.jallcom.2022.167220_bib3 article-title: Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03328 |
| SSID | ssj0001931 |
| Score | 2.4491386 |
| Snippet | Graphitic carbon nitride (g-C3N4) has special semiconducting properties which make it candiate for several catalytic processes. The subject of using g-C3N4 for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 167220 |
| SubjectTerms | Carbon Carbon nitride Catalytic activity Charge transfer Condensates Condensation polymerization Counter electrode Dye-sensitized solar cell Dyes Electrode materials Electrodes Electron microscopy Energy conversion efficiency Energy storage Field emission microscopy Field emission spectroscopy Fluorine Graphitic carbon nitride Hydrothermal method Irradiation Maximum power Microscopy Molybdenum Molybdenum disulfide Molybdenum sulfide Nanoparticles Nanostructure Photovoltaic cells Prepolymers Raman spectroscopy Redox reactions Structural analysis Synthesis Ultrasonic assisted preparation |
| Title | Ultrasonically assisted preparation of molybdenum sulfide/graphitic carbon nitride nanohybrid as counter electrode material for dye-sensitized solar cell |
| URI | https://dx.doi.org/10.1016/j.jallcom.2022.167220 https://www.proquest.com/docview/2760225618 |
| Volume | 929 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4669 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 issn: 0925-8388 databaseCode: AKRWK dateStart: 19930111 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB0hUFV6QO22FbQU-dBrNsTrOMkRrYq2IHGhK3GzYsdRd5UmqyQclkP_g79lxnGgrSohcUwydqLMeOZZfjMD8DXhccrL1NWplAF6SRPoQhRBZqIc4XmaC-OqfV7JxVJc3MQ3OzAfc2GIVul9_-DTnbf2d0L_N8PNahVen2aczvwwwqEXRpxMGewioS4G099PNA8EKK5rHgoHJP2UxROup-u8qog0wjGSTSOZcGr7_f_49I-nduHn_C0ceNzIzoZPewc7tp7A6_nYrm0Cb_6oLDiBV47Zabr3cL-s-jbvGpf_WG0ZgmXSbME2rR3qfjc1a0r2q6m2uiBiPOtuq3JV2NAVsyZ2HDN5q1EMl3-LD1id183PLeV64XTMtZuwLfMddfA5omBn2AwRMSu2NuiIJt-v7vC1He2lGZ0XfIDl-bcf80Xg-zEEZjZL-kCIUhKJJjYIInSmszSxqcx4ibACg6HW0lBebKFtGQnc6hiZkD-VJslwF2PE7CPs1k1tD4FRlUKO6MVKnQodnWpuEGeUGm0linNTHoEYtaCML1ZOPTMqNbLS1sorT5Hy1KC8I5g-DtsM1TqeG5COKlZ_mZ3CiPLc0OPRJJRf953iiUQJxKTpp5fP_Bn26YpIMzw-ht2-vbVfEPr0-sTZ9gnsnX2_XFw9AHsoBUA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIlR6QLCAaCngA9dsGq_jJMdqRbVA6YWu1JsVO47YVZqskvSwHPo_-m874zgUEFIlrvFHosx45o38ZgbgY8LjlJepq1MpA7SSJtCFKILMRDnC8zQXxlX7PJeLpfhyGV_uwHzMhSFapbf9g0131to_Cf3fDDerVfj9OON054ceDq0w4uRH8FjEPKEIbHpzz_NAhOLa5uHsgKbfp_GE6-k6rypijXB0ZdNIJpz6fv_bQf1lqp3_OX0OzzxwZCfDt72AHVtPYG8-9mubwP5vpQUn8MRRO033Em6XVd_mXeMSIKstQ7RMoi3YprVD4e-mZk3JrppqqwtixrPuuipXhQ1dNWuixzGTtxqn4flvcYDVed382FKyF27HXL8J2zLfUgfHEQY7zWYIiVmxtUFHPPl-9RNf21EwzejC4BUsTz9dzBeBb8gQmNks6QMhSkksmtggitCZztLEpjLjJeIK9IZaS0OJsYW2ZSQw1jEyIYMqTZJhGGPE7DXs1k1t3wCjMoUc4YuVOhU6OtbcINAoNSpLFOemPAAxSkEZX62cmmZUaqSlrZUXniLhqUF4BzD9tWwzlOt4aEE6ilj9oXcKXcpDS49GlVD-4HeKJxJnIChND_9_5w-wt7j4dqbOPp9_fQtPaYQYNDw-gt2-vbbvEAf1-r3T8ztwTgbV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasonically+assisted+preparation+of+molybdenum+sulfide%2Fgraphitic+carbon+nitride+nanohybrid+as+counter+electrode+material+for+dye-sensitized+solar+cell&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=khorrambin%2C+Sedigheh&rft.au=Ghasemi%2C+Shahram&rft.au=Hosseini%2C+Sayed+Reza&rft.date=2022-12-25&rft.issn=0925-8388&rft.volume=929&rft.spage=167220&rft_id=info:doi/10.1016%2Fj.jallcom.2022.167220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2022_167220 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |