Effect of mussel-inspired polydopamine on the reinforced properties of 3D printed β-tricalcium phosphate/polycaprolactone scaffolds for bone regeneration

Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 11; no. 1; pp. 72 - 82
Main Authors Ho, Chia-Che, Chen, Yi-Wen, Wang, Kan, Lin, Yen-Hong, Chen, Ta-Cheng, Shie, Ming-You
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 22.12.2022
Subjects
Online AccessGet full text
ISSN2050-750X
2050-7518
2050-7518
DOI10.1039/d2tb01995g

Cover

Abstract Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration. 3D printed mussel-inspired polydopamine-coated β-TCP/polycaprolactone scaffolds have been considered potential grafts that facilitated not only the physicochemical behaviors but also stimulated the formation of neo-bone tissue in femur defects.
AbstractList Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration.
Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration.Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration.
Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration.
Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration. 3D printed mussel-inspired polydopamine-coated β-TCP/polycaprolactone scaffolds have been considered potential grafts that facilitated not only the physicochemical behaviors but also stimulated the formation of neo-bone tissue in femur defects.
Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration.
Author Wang, Kan
Shie, Ming-You
Chen, Ta-Cheng
Lin, Yen-Hong
Chen, Yi-Wen
Ho, Chia-Che
AuthorAffiliation Asia University
Graduate Institute of Biomedical Sciences
x-Dimension Center for Medical Research and Translation
Georgia Tech Manufacturing Institute
National Formosa University
High Performance Materials Institute for x-Dimensional Printing
School of Dentistry
China Medical University
China Medical University Hospital
Department of Bioinformatics and Medical Engineering
Department of Information Management
Georgia Institute of Technology
AuthorAffiliation_xml – name: China Medical University
– name: Graduate Institute of Biomedical Sciences
– name: x-Dimension Center for Medical Research and Translation
– name: Department of Information Management
– name: Georgia Tech Manufacturing Institute
– name: School of Dentistry
– name: High Performance Materials Institute for x-Dimensional Printing
– name: National Formosa University
– name: Asia University
– name: Department of Bioinformatics and Medical Engineering
– name: China Medical University Hospital
– name: Georgia Institute of Technology
Author_xml – sequence: 1
  givenname: Chia-Che
  surname: Ho
  fullname: Ho, Chia-Che
– sequence: 2
  givenname: Yi-Wen
  surname: Chen
  fullname: Chen, Yi-Wen
– sequence: 3
  givenname: Kan
  surname: Wang
  fullname: Wang, Kan
– sequence: 4
  givenname: Yen-Hong
  surname: Lin
  fullname: Lin, Yen-Hong
– sequence: 5
  givenname: Ta-Cheng
  surname: Chen
  fullname: Chen, Ta-Cheng
– sequence: 6
  givenname: Ming-You
  surname: Shie
  fullname: Shie, Ming-You
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36373587$$D View this record in MEDLINE/PubMed
BookMark eNptks1KHjEUhkNRqrVuum8JdFMKo_mZzM_SqrWC4MZCd0PmzIlfZCaZJpmFt9LL6IX0mprxUwvSbBLOed6X85M3ZMd5h4S84-yIM9keDyL1jLetun1F9gVTrKgVb3ae3-zHHjmM8Y7l0_CqkeVrsicrWUvV1Pvk17kxCIl6Q6clRhwL6-JsAw509uP94Gc9WYfUO5o2SANaZ3yANR38jCFZjKtYnuWAdSkn_vwuUrCgR7DLROeNj_NGJzxe_UBn2agh5SZoBG2MH4dIsyXt11DAW3QYdLLevSW7Ro8RDx_vA_L96_nN6bfi6vri8vTkqgAp61QIA7weRCNA1FANCkosez4IzYAbXeqGVX0LvUDgrK2FGXrUikkhdMVLgF4ekE9b31zazwVj6iYbAcdRO_RL7ESdx8WUqMqMfnyB3vkluFxdplSlWq4Yy9SHR2rpJxy6PJhJh_vuaeoZYFsAgo8xoOnApoeeU9B27Djr1t12Z-Lmy8NuL7Lk8wvJk-t_4fdbOER45v59FPkXo_WyAA
CitedBy_id crossref_primary_10_1016_j_mtbio_2023_100728
crossref_primary_10_1016_j_mtbio_2024_101253
crossref_primary_10_1002_adtp_202400477
crossref_primary_10_1038_s41368_024_00327_7
crossref_primary_10_1088_1758_5090_ace5e1
crossref_primary_10_1007_s10853_024_10379_z
crossref_primary_10_1016_j_ceramint_2023_12_077
crossref_primary_10_1039_D4MA00531G
crossref_primary_10_3390_cells11243967
crossref_primary_10_3390_polym15183744
crossref_primary_10_1039_D3TB00208J
Cites_doi 10.1016/j.compositesb.2020.108158
10.1039/C7TA03424E
10.1016/j.matdes.2022.110443
10.1002/admi.201601192
10.1016/j.bioadv.2022.213132
10.1016/j.msec.2019.110544
10.1016/j.bioadv.2022.213018
10.1016/j.matdes.2020.109300
10.1016/j.jcis.2012.07.030
10.1021/am401071f
10.1021/am200532j
10.1016/j.biomaterials.2019.01.013
10.1016/j.actbio.2015.11.012
10.1002/adfm.201202127
10.1016/j.matdes.2022.111069
10.3390/ma11091664
10.1021/la501560z
10.1039/C8TB03379J
10.1002/app.1981.070261124
10.1016/j.matdes.2022.110856
10.1016/j.msec.2019.109887
10.1039/C4RA07166B
10.1016/j.msec.2021.111963
10.1021/acsami.2c01657
10.1016/j.biomed.2011.10.005
10.1016/j.cej.2019.01.015
10.1016/j.msec.2022.112660
10.1016/j.polymertesting.2022.107703
10.1016/j.bioadv.2022.212809
10.1016/j.msec.2018.06.005
10.1016/j.msec.2015.06.028
10.1039/C7BM00187H
10.1016/j.actbio.2009.03.017
10.1016/j.msec.2021.112413
10.1016/j.actbio.2013.10.013
10.1002/jbm.a.32052
10.1111/iej.12799
10.1016/j.jmst.2020.08.017
10.1021/la4020288
10.1016/j.matdes.2022.110558
10.1016/j.medengphy.2010.02.002
10.1016/j.msec.2014.07.063
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/d2tb01995g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7518
EndPage 82
ExternalDocumentID 36373587
10_1039_D2TB01995G
d2tb01995g
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -JG
0-7
0R~
4.4
53G
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
D0L
EBS
ECGLT
EE0
EF-
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c337t-2fc17d282c27c6d5c4e4b1d2a0c1fa4a806b9cb2ec10972fdbea50322a614ccb3
ISSN 2050-750X
2050-7518
IngestDate Fri Jul 11 00:32:09 EDT 2025
Mon Jun 30 08:04:56 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Tue Jul 01 01:00:43 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Fri Dec 23 14:52:08 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-2fc17d282c27c6d5c4e4b1d2a0c1fa4a806b9cb2ec10972fdbea50322a614ccb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0650-4344
PMID 36373587
PQID 2756591500
PQPubID 2047522
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_D2TB01995G
pubmed_primary_36373587
proquest_journals_2756591500
proquest_miscellaneous_2736305264
crossref_primary_10_1039_D2TB01995G
rsc_primary_d2tb01995g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationTitleAlternate J Mater Chem B
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D2TB01995G/cit9/1) 2011; 1
Barclay (D2TB01995G/cit13/1) 2017; 4
Liebscher (D2TB01995G/cit22/1) 2013; 29
Wang (D2TB01995G/cit11/1) 2010; 32
Lin (D2TB01995G/cit7/1) 2019; 104
Chen (D2TB01995G/cit20/1) 2018; 91
Batul (D2TB01995G/cit38/1) 2017; 5
Lyu (D2TB01995G/cit41/1) 2022; 222
Abdal-hay (D2TB01995G/cit3/1) 2020; 197
Pitt (D2TB01995G/cit18/1) 1981; 26
Ball (D2TB01995G/cit21/1) 2012; 386
Xiang (D2TB01995G/cit28/1) 2014; 4
Chien (D2TB01995G/cit35/1) 2013; 5
Ghorai (D2TB01995G/cit39/1) 2022; 14
Sun (D2TB01995G/cit43/1) 2021; 131
Yang (D2TB01995G/cit25/1) 2011; 3
Liu (D2TB01995G/cit42/1) 2014; 44
Zhou (D2TB01995G/cit46/1) 2021; 198
Vecchia (D2TB01995G/cit24/1) 2014; 30
Kao (D2TB01995G/cit2/1) 2015; 56
Liu (D2TB01995G/cit6/1) 2019; 362
Vecchia (D2TB01995G/cit23/1) 2013; 23
Zhang (D2TB01995G/cit17/1) 2022; 216
Lin (D2TB01995G/cit27/1) 2017; 29
Gu (D2TB01995G/cit12/1) 2022; 215
Lai (D2TB01995G/cit1/1) 2019; 197
He (D2TB01995G/cit30/1) 2017; 5
Lam (D2TB01995G/cit34/1) 2009; 90A
Backes (D2TB01995G/cit16/1) 2021; 122
Aghajanian (D2TB01995G/cit40/1) 2022; 137
Suo (D2TB01995G/cit26/1) 2021; 123
Wang (D2TB01995G/cit15/1) 2020; 109
Hou (D2TB01995G/cit37/1) 2022; 139
Zhu (D2TB01995G/cit14/1) 2019; 7
Lee (D2TB01995G/cit10/1) 2022; 142
Liu (D2TB01995G/cit5/1) 2022; 220
Kumar (D2TB01995G/cit29/1) 2022; 114
Wu (D2TB01995G/cit19/1) 2014; 10
Soufivand (D2TB01995G/cit32/1) 2020; 33
Lin (D2TB01995G/cit33/1) 2022; 135
Kao (D2TB01995G/cit45/1) 2018; 11
Ho (D2TB01995G/cit4/1) 2018; 51
Poh (D2TB01995G/cit8/1) 2016; 30
Bastos (D2TB01995G/cit36/1) 2021; 129
Jack (D2TB01995G/cit31/1) 2009; 5
Cheng (D2TB01995G/cit44/1) 2021; 69
References_xml – volume: 197
  start-page: 108158
  year: 2020
  ident: D2TB01995G/cit3/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.108158
– volume: 5
  start-page: 13499
  year: 2017
  ident: D2TB01995G/cit30/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03424E
– volume: 215
  start-page: 110443
  year: 2022
  ident: D2TB01995G/cit12/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110443
– volume: 4
  start-page: 1601192
  year: 2017
  ident: D2TB01995G/cit13/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201601192
– volume: 142
  start-page: 213132
  year: 2022
  ident: D2TB01995G/cit10/1
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2022.213132
– volume: 109
  start-page: 110544
  year: 2020
  ident: D2TB01995G/cit15/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2019.110544
– volume: 139
  start-page: 213018
  year: 2022
  ident: D2TB01995G/cit37/1
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2022.213018
– volume: 198
  start-page: 109300
  year: 2021
  ident: D2TB01995G/cit46/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109300
– volume: 386
  start-page: 366
  year: 2012
  ident: D2TB01995G/cit21/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.07.030
– volume: 5
  start-page: 6975
  year: 2013
  ident: D2TB01995G/cit35/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401071f
– volume: 3
  start-page: 3026
  year: 2011
  ident: D2TB01995G/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200532j
– volume: 197
  start-page: 207
  year: 2019
  ident: D2TB01995G/cit1/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.013
– volume: 30
  start-page: 319
  year: 2016
  ident: D2TB01995G/cit8/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.11.012
– volume: 23
  start-page: 1331
  year: 2013
  ident: D2TB01995G/cit23/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202127
– volume: 222
  start-page: 111069
  year: 2022
  ident: D2TB01995G/cit41/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111069
– volume: 11
  start-page: 1664
  year: 2018
  ident: D2TB01995G/cit45/1
  publication-title: Materials
  doi: 10.3390/ma11091664
– volume: 30
  start-page: 9811
  year: 2014
  ident: D2TB01995G/cit24/1
  publication-title: Langmuir
  doi: 10.1021/la501560z
– volume: 7
  start-page: 2019
  year: 2019
  ident: D2TB01995G/cit14/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB03379J
– volume: 26
  start-page: 3779
  year: 1981
  ident: D2TB01995G/cit18/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1981.070261124
– volume: 220
  start-page: 110856
  year: 2022
  ident: D2TB01995G/cit5/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110856
– volume: 104
  start-page: 109887
  year: 2019
  ident: D2TB01995G/cit7/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2019.109887
– volume: 4
  start-page: 44130
  year: 2014
  ident: D2TB01995G/cit28/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07166B
– volume: 123
  start-page: 111963
  year: 2021
  ident: D2TB01995G/cit26/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2021.111963
– volume: 14
  start-page: 28455
  year: 2022
  ident: D2TB01995G/cit39/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c01657
– volume: 1
  start-page: 29
  year: 2011
  ident: D2TB01995G/cit9/1
  publication-title: Biomedicine
  doi: 10.1016/j.biomed.2011.10.005
– volume: 362
  start-page: 269
  year: 2019
  ident: D2TB01995G/cit6/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.015
– volume: 135
  start-page: 112660
  year: 2022
  ident: D2TB01995G/cit33/1
  publication-title: Biomater. Adv.
  doi: 10.1016/j.msec.2022.112660
– volume: 114
  start-page: 107703
  year: 2022
  ident: D2TB01995G/cit29/1
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2022.107703
– volume: 137
  start-page: 212809
  year: 2022
  ident: D2TB01995G/cit40/1
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2022.212809
– volume: 91
  start-page: 679
  year: 2018
  ident: D2TB01995G/cit20/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2018.06.005
– volume: 33
  start-page: 101181
  year: 2020
  ident: D2TB01995G/cit32/1
  publication-title: Addit. Manuf.
– volume: 122
  start-page: 111928
  year: 2021
  ident: D2TB01995G/cit16/1
  publication-title: Biomater. Adv.
– volume: 56
  start-page: 165
  year: 2015
  ident: D2TB01995G/cit2/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2015.06.028
– volume: 5
  start-page: 1204
  year: 2017
  ident: D2TB01995G/cit38/1
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00187H
– volume: 5
  start-page: 2657
  year: 2009
  ident: D2TB01995G/cit31/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.03.017
– volume: 129
  start-page: 112413
  year: 2021
  ident: D2TB01995G/cit36/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2021.112413
– volume: 131
  start-page: 112482
  year: 2021
  ident: D2TB01995G/cit43/1
  publication-title: Biomater. Adv.
– volume: 10
  start-page: 428
  year: 2014
  ident: D2TB01995G/cit19/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.013
– volume: 29
  start-page: 11
  year: 2017
  ident: D2TB01995G/cit27/1
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 90A
  start-page: 906
  year: 2009
  ident: D2TB01995G/cit34/1
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.32052
– volume: 51
  start-page: e291
  year: 2018
  ident: D2TB01995G/cit4/1
  publication-title: Int. Endod. J.
  doi: 10.1111/iej.12799
– volume: 69
  start-page: 106
  year: 2021
  ident: D2TB01995G/cit44/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.08.017
– volume: 29
  start-page: 10539
  year: 2013
  ident: D2TB01995G/cit22/1
  publication-title: Langmuir
  doi: 10.1021/la4020288
– volume: 216
  start-page: 110558
  year: 2022
  ident: D2TB01995G/cit17/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110558
– volume: 32
  start-page: 391
  year: 2010
  ident: D2TB01995G/cit11/1
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.02.002
– volume: 44
  start-page: 44
  year: 2014
  ident: D2TB01995G/cit42/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2014.07.063
SSID ssj0000816834
Score 2.3983831
Snippet Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms Alkaline phosphatase
Bioceramics
Bone grafts
Bone growth
Bone healing
Bone Regeneration
Calcium phosphates
Cell differentiation
Cell proliferation
Compressive strength
Degradability
Differentiation (biology)
Dopamine
Dopamine - pharmacology
Femur
Fillers
Mesenchyme
Mineralization
Osteogenesis
Polycaprolactone
Polymers
Polymers - pharmacology
Printing, Three-Dimensional
Regeneration
Regeneration (physiology)
Scaffolds
Stem cells
Three dimensional composites
Three dimensional printing
Tissue Scaffolds
Tricalcium phosphate
Title Effect of mussel-inspired polydopamine on the reinforced properties of 3D printed β-tricalcium phosphate/polycaprolactone scaffolds for bone regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/36373587
https://www.proquest.com/docview/2756591500
https://www.proquest.com/docview/2736305264
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7518
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816834
  issn: 2050-750X
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaE9AIHhlchUBgx0AOTcetIfh6bRwnPUzpNTxlZlpvMpHYmdg7wU_gZ_BB-Bz-DXcsvkhwKF09GtmTH-1m7Wu1-S8hbLrjlK5CAUF4IC5TINzzf40bIA1cJJ3CDPI_7y1dnfGF9nNrTVut3I2ppkwUn8vvevJL_kSq0gVwxS_YfJFsNCg3wG-QLR5AwHG8l44J6GLfIN2mqlsYixo1zsCFXyfJbCOvhGzQi9X5Ad61yllTc8F-hC36NXKrYmQ-76N5D2_N4MDruMyPLiUPkYnPTXc2TdDVHfgt2jqNKAZ2XWKUHRk6liKJkGaY66hOb1uo6Z7KuBL5r-YKRrN9OV5bl5k66fZ05VJ7Jx2sQRG3HAIy1i3e-EMZgXrUOilyTq4VxWee4XRY-8U-N-CNNnXClYmOcFMq78H2wvAwLa7hDmWmbBtg8U63Nmm3FrF7O8b0dLOsJW9cNKlU_26tUTI6crEM26ZuY0P6-Vp1luMCWRq3iHPMdfu7P6r53yAFzHYe1ycHZaPLhc-UPzAug5EEQ1Z8q2XS5f1oP8Lf9tLMoAhNpXZauyU2kyQNyv5AwPdNAfUhaKn5E7jUYLx-THxqyNInoFmRpE7I0iSlAltaQpTVksTMf0gKy9NfPBlxpBdfTbbDSCqwUhqQIVtoE6xNycT6aDMZGUR7EkJy7mcEi2XND5jHJXOmEtrSUFfRCJkzZi4QlPNMJfBkwJTHKgkVhoIRtggITYJJKGfBD0o7hXs8ItSzOeQiLHxVJy4lsIUweYbE2ZYcWU6xD3pUvfSYL7nws4bKc7Uq4Q95U1640Y8zeq45K2c2KGSWdYSkG24clmtkhr6vT8B3iJp6IVbLBa7jDkaTJ6pCnWubVbeCMy23P7ZBDAEHVHLIsyO96_fxWz_aC3K0_tiPSztYb9RJM7yx4VaD2D4wT4IM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+mussel-inspired+polydopamine+on+the+reinforced+properties+of+3D+printed+%CE%B2-tricalcium+phosphate%2Fpolycaprolactone+scaffolds+for+bone+regeneration&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Ho%2C+Chia-Che&rft.au=Chen%2C+Yi-Wen&rft.au=Wang%2C+Kan&rft.au=Lin%2C+Yen-Hong&rft.date=2022-12-22&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=11&rft.issue=1&rft.spage=72&rft.epage=82&rft_id=info:doi/10.1039%2FD2TB01995G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TB01995G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon