Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation
Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications lik...
Saved in:
| Published in | Mathematical problems in engineering Vol. 2021; pp. 1 - 8 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
11.11.2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI | 10.1155/2021/8358314 |
Cover
| Abstract | Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications like object tracking, gesture recognition, and action recognition. This paper has put forward a proposal for a novel architecture that uses conditional deep 3D-convolutional generative adversarial networks to synthesize RGB-D data by exploiting 3D spatio-temporal convolutional framework. The proposed architecture can be used to generate virtually unlimited data. In this work, we have presented the architecture to generate RGB-D data conditioned on class labels. In the architecture, two parallel paths were used, one to generate RGB data and the second to synthesize depth map. The output from the two parallel paths is combined to generate RGB-D data. The proposed model is used for video generation at 30 fps (frames per second). The frame referred here is an RGB-D with the spatial resolution of 512 × 512. |
|---|---|
| AbstractList | Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications like object tracking, gesture recognition, and action recognition. This paper has put forward a proposal for a novel architecture that uses conditional deep 3D-convolutional generative adversarial networks to synthesize RGB-D data by exploiting 3D spatio-temporal convolutional framework. The proposed architecture can be used to generate virtually unlimited data. In this work, we have presented the architecture to generate RGB-D data conditioned on class labels. In the architecture, two parallel paths were used, one to generate RGB data and the second to synthesize depth map. The output from the two parallel paths is combined to generate RGB-D data. The proposed model is used for video generation at 30 fps (frames per second). The frame referred here is an RGB-D with the spatial resolution of 512 × 512. |
| Author | Chaudhury, Santanu Sharma, Manoj Shukla, Ankit Sharma, Richa |
| Author_xml | – sequence: 1 givenname: Richa orcidid: 0000-0003-0593-7196 surname: Sharma fullname: Sharma, Richa organization: IIT DelhiNew DelhiIndiaiitd.ac.in – sequence: 2 givenname: Manoj surname: Sharma fullname: Sharma, Manoj organization: ECE Department of Bennet UniversityGreater NoidaIndia – sequence: 3 givenname: Ankit surname: Shukla fullname: Shukla, Ankit organization: ECE Department of Bennet UniversityGreater NoidaIndia – sequence: 4 givenname: Santanu surname: Chaudhury fullname: Chaudhury, Santanu organization: Department of Electrical EngineeringIIT Delhi and Director of IIT JodhpurNew DelhiIndia |
| BookMark | eNqFkF9LwzAUxYNMcJu--QEKPmpc_jTt-jg3ncJQGAq-laS9xYyazKTd2Lc3s8MHQX26l8PvnMs9A9Qz1gBC55RcUyrEiBFGR2MuxpzGR6hPRcKxoHHaCzthMaaMv56ggfcrEkhBx320nFpT6kZbI-toBrCO-AwHbWPr9qDOwYCTjd5ANCk34Lx0OsiP0Piosi5azm_w7Juy5hQdV7L2cHaYQ_Ryd_s8vceLp_nDdLLABedpg2lFkyJWqco4QJpBxgsCPC4VSQuuiBCKS1amFRCiWJYRSkmmYiCSQqHC4EOEu9zWrOVuK-s6Xzv9Lt0upyTfF5LvC8kPhQT-ouPXzn604Jt8ZVsXPvQ5SwghiciYCNRVRxXOeu-g-i-U_cAL3XzV0Dip699Ml53pTZtSbvXfJz4BDpGLMQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3406476 |
| Cites_doi | 10.2307/j.ctv1220q3v.3 10.1007/s12652-020-02669-6 10.1109/CVPR.2017.241 10.1007/s10710-017-9314-z 10.1080/2150704x.2020.1746854 10.1142/s0218001421510046 10.1016/j.neucom.2018.08.013 10.1007/s10489-020-02149-6 10.1371/journal.pone.0212849 10.1016/j.urology.2020.09.034 10.1109/CVPRW.2016.88 10.18178/joig.6.2.152-159 10.1016/j.neucom.2020.10.108 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Richa Sharma et al. Copyright © 2021 Richa Sharma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2021 Richa Sharma et al. – notice: Copyright © 2021 Richa Sharma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.1155/2021/8358314 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Coronavirus Research Database Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1563-5147 |
| Editor | Kumar, Vijay |
| Editor_xml | – sequence: 1 givenname: Vijay surname: Kumar fullname: Kumar, Vijay |
| EndPage | 8 |
| ExternalDocumentID | 10.1155/2021/8358314 10_1155_2021_8358314 |
| GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY CITATION H13 OVT PHGZM PHGZT PQGLB PUEGO 7TB 8FD AZQEC COVID DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQUKI PRINS -~9 188 2UF ADTOC AFFNX C1A CAG COF EJD IL9 IPNFZ RIG UGNYK UNPAY |
| ID | FETCH-LOGICAL-c337t-1f16c4b7b93ee79e93c0e34db07c3b055b3a2d7fe00b29901109b4e0a1ecbe0a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1024-123X 1026-7077 1563-5147 |
| IngestDate | Sun Oct 26 04:06:26 EDT 2025 Fri Jul 25 10:08:14 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Wed Oct 01 02:56:28 EDT 2025 Sun Jun 02 18:54:54 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-1f16c4b7b93ee79e93c0e34db07c3b055b3a2d7fe00b29901109b4e0a1ecbe0a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0593-7196 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/mpe/2021/8358314.pdf |
| PQID | 2600065925 |
| PQPubID | 237775 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_8358314 proquest_journals_2600065925 crossref_primary_10_1155_2021_8358314 crossref_citationtrail_10_1155_2021_8358314 hindawi_primary_10_1155_2021_8358314 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-11 |
| PublicationDateYYYYMMDD | 2021-11-11 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Mathematical problems in engineering |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | T. Salimans (19) 2016 23 M. Firman (4) 2016 25 28 X. Wei (8) 2018 J.-Y. Zhu (29) 2017 M. Mirza (15) 2014 K. Papadopoulos (20) 2019 10 J. I. Daniel (11) 2016 H. Huang (2) 2018 T.-C. Wang (26) 2017 J. Oh (16) 2015 17 18 H. Huang (7) 2018 Z. Luo (13) 2017 J. Wallach (24) 2011 P. Vitoria (1) 2018 I. J. Goodfellow (6) 2017 3 T. Xue (27) 2016 Z. Chai (14) 2021 5 T. Karras (12) 2017 9 A. Shrivastava (22) 21 |
| References_xml | – volume-title: Metal Rules the Globe year: 2011 ident: 24 article-title: Affective overdrive, scene dynamics, and identity in the global metal scene doi: 10.2307/j.ctv1220q3v.3 – ident: 23 doi: 10.1007/s12652-020-02669-6 – year: 2018 ident: 8 article-title: Improving the improved training of wasserstein gans: a consistency term and its dual effect – ident: 22 article-title: Learning from simulated and unsupervised images through adversarial training doi: 10.1109/CVPR.2017.241 – ident: 5 doi: 10.1007/s10710-017-9314-z – year: 2016 ident: 19 article-title: Improved techniques for training GANs – ident: 17 doi: 10.1080/2150704x.2020.1746854 – year: 2017 ident: 26 article-title: High-resolution image synthesis and semantic manipulation with conditional GANs – year: 2021 ident: 14 article-title: CMS-LSTM: context-embedding and multi-scale spatiotemporal-expression LSTM for video prediction – year: 2017 ident: 6 article-title: NIPS 2016 tutorial: generative adversarial networks – ident: 21 doi: 10.1142/s0218001421510046 – year: 2017 ident: 29 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – year: 2018 ident: 1 article-title: Semantic image inpainting through improved wasserstein generative adversarial networks – year: 2019 ident: 20 article-title: Vertex feature encoding and hierarchical temporal modeling in a spatial-temporal graph convolutional network for action recognition – ident: 10 doi: 10.1016/j.neucom.2018.08.013 – year: 2015 ident: 16 article-title: Action-conditional video prediction using deep networks in atari games – year: 2016 ident: 11 article-title: Generative adversarial parallelization – year: 2014 ident: 15 article-title: Conditional generative adversarial nets – ident: 25 doi: 10.1007/s10489-020-02149-6 – ident: 3 doi: 10.1371/journal.pone.0212849 – year: 2018 ident: 7 article-title: An introduction to image synthesis with generative adversarial nets – year: 2017 ident: 12 article-title: Progressive growing of GANs for improved quality, stability, and variation – volume-title: Advances in Neural Information Processing Systems 29 year: 2016 ident: 27 article-title: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks – year: 2018 ident: 2 article-title: Introvae: introspective variational autoencoders for photographic image synthesis – ident: 18 doi: 10.1016/j.urology.2020.09.034 – year: 2017 ident: 13 article-title: Unsupervised learning of long-term motion dynamics for videos – year: 2016 ident: 4 article-title: RGBD datasets: past, present and future doi: 10.1109/CVPRW.2016.88 – ident: 9 doi: 10.18178/joig.6.2.152-159 – ident: 28 doi: 10.1016/j.neucom.2020.10.108 |
| SSID | ssj0021518 |
| Score | 2.2621453 |
| Snippet | Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data... |
| SourceID | unpaywall proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Deep learning Frames per second Generative adversarial networks Generators Gesture recognition Mathematical problems Moving object recognition Noise Spatial resolution Synthesis |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86EH3xW5xOycP0RYJp0_TjUZ1z-LCH4aBvJUlTFEY3bOfwvzfXZsUpfjyVhmsLd5fc73rJ7xDqQqUn1VwRGgWCeGEmiGQiJDTzQh4q5Yq0Yvsc-oOx9xjz2JIkFd9L-CbaQXruXBugEDJoWL0e-rBzazSIm7zKBK36xJsLFHwsXu5v__LsSuTZeIaUd_GyAiw35_lMvC_EZPIpxvR30bYFh_imtuYeWtP5PtqxQBHbaVgcoNHdFCrN1V883NN6hlmPmLE360dmtKaThrUMVz2XCwGehoe6LLDBqXj0cEt6jdQ0P0Tj_v3T3YDY5ghEMRaUxMkcX3kykBHTOoh0xBTVzEslDRSTlHOjcjcNMk2phJADzKLS01Q4WklzYUeolU9zfYywWSulDP1IKpp6KU0jzZh0A9dELskMgGijq6XiEmWZw6GBxSSpMgjOE1BzYtXcRheN9KxmzPhBrmtt8IdYZ2mgxE6vIgFW_aogzNvosjHar-85-d_nTtEW3MJpQ8fpoFb5OtdnBnaU8rxyug_tt8uw priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60InrxLVar5KBeJJjdbLq7BxG11uKhSFHobcmrKJRtta3ivzezzVZ7UE-BMOSQmcx8yWS-ATjGTI-xQlOWxpJGSU9SxWVCWS9KRKJ1KE3B9tmut56i-67oLkC7rIXBb5WlTywctRlofCM_RyL1IgcoLoevFLtGYXa1bKEhfWsFc1FQjC3CUojMWBVYur5tP3RmVzAX36bFcSGy9fFu-RVeCHwFCM4dHkl4EM0FqeVnvB1_vMxh0JVJPpSfH7Lf_xGOmhuw5nEkuZoqfhMWbL4F6x5TEn9iR9vQuRlgUrp48CMNa4eEN6ibe_cm52anzNPo9kjRnnkk0ShJ245HxEFa0rm7po2Z1CDfgafm7eNNi_o-ClRzHo9p0AvqOlKxSrm1cWpTrpnlkVEs1lwxIZx2QhP3LGMKoxOSkKrIMhlYrdzAd6GSD3K7B8S5VaWSeqo0M5FhJrWcqzAOXZBT3GGNKpyVG5dpTzKOvS76WXHZECLDbc78NlfhZCY9nJJr_CJ37HXwj1itVFDmT-Io-7abKpzOlPbnOvt_r3MAqyiNBYlBUIPK-G1iDx0yGasjb25fCfbcaA priority: 102 providerName: ProQuest |
| Title | Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation |
| URI | https://dx.doi.org/10.1155/2021/8358314 https://www.proquest.com/docview/2600065925 https://downloads.hindawi.com/journals/mpe/2021/8358314.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1563-5147 dateEnd: 20240530 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1563-5147 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 24P dateStart: 19950101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ahLG9tPsqS9cGPXR7GUply7Js9tQ2TcMGoQsLZDAw-jIbC06YnZXtr59ky6EpdBt7sS1xGEt3nH7nk34HcOIyPdowhUnKBY6SXGBJRYJJHiUsUSoUumb7nMTjWfRuzuY78LY9C6MdRfxS6HLwxcWkN19rb-3ntTy1UNKF68GpBQ4JDaLBSue70I2ZBeId6M4m12ef6vxm6Nj46Lx5jjEndQ1GG6xQbCECb7fAM7b1uq3F6YH_gi3s-XBdrMTPG7FY3FqGRvvwuR1As_vk22BdyYH6dYfb8T9H-Bj2PDxFZ409PYEdUzyFfQ9VkXcE5TOYXixdrrv-j4iGxqwQHWLb98Nbsu1tCK2dN0V11edSOFtHE1OVyCJlNL06x8ON1LJ4DrPR5ceLMfblGbCilFc4yINYRZLLlBrDU5NSRQyNtCRcUUkYs0oPNc8NIdIteo7bVEaGiMAoaW_0ADrFsjAvAFlvLWUSp1IRHWmiU0OpDHlo105JLYTpwZtWL5ny3OWuhMYiq2MYxjI3ZZmfsh682kivGs6Oe-ROvAr-InbU6j9r1ZQ5Xv86Jc168HpjE398z-G_Cr6ER67pTjwGwRF0qu9rc2yhTyX7sJuMrvrQPb-cXE9t6_2HxF6n43nfG_9v7mv-Ig |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9swFH9iRQgug7EhugHzAbhMBieOm-SwAzSDMlgPCLTeQuy4AlGlhaSr4EPxVfaV8EucbkwaO3HYKVL0YiXO7_3zs38PYBMrPakWirLQT6gX9BMqeRJQ1vcCESjlJmnJ9tltdc69rz3Rm4GH-iwMbqusbWJpqNOhwjXyXSRSL2uA9Q7KY303MflZ_vkoMj9zy3UPvpy1O9S2EKCKc7-gTt9pKU_6MuRa-6EOuWKae6lkvuKSCWFezE39vmZMomFG_k3paZY4Wklz4Wbc7dENxS5VWM21LTtewazBueM2YLb9PTrsTFM84z-rw3cusgHyXr3VXghcZXB2TbwTcMd74gTnLjH7nlw9iXHnx9kouZskg8Fv7u5gEX7WE1XtcrneGRdyR93_wSH5_8zkEry2kTfZq1TlDczobBkWbRROrI3L38Jpe4hl_HKJlERajwiPqLn3wyqpuVtxdaOjIGVD6zxBNSZdXeTEJAHk9HCfRlOpYfYOzl_kY1egkQ0zvQrEOCIpg1YoFUu9lKWh5ly6vmvCAslNdNaETzUUYmVp2bE7yCAu0zMhYgRObIHThK2p9KiiI_mL3KZF1T_E1mqIxNZ25fEvfDRhewrDZ8d5__w4H2G-c_btJD456h5_gAV8Eo9zOs4aNIrbsV43cV0hN6wyEbh4aSA-AiL5V_0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVjwulEcrthTwoeWC3HXiOI8DqtoN2y1FK1RRsbc0dhxRdZVdSLar8tP4K_yZehJnoUiUUw-cIkUTK3G-eXnsbwC2sNKTaaEoi4KUemGeUsnTkLLcC0WolJtmNdvn0B-ceO9HYrQEP9qzMLitsrWJtaHOJgrXyLtIpF7XAEU3t9siPsb93elXih2ksNLattNoIHKkL-cmfSvfHsbmX2-7bv_dp96A2g4DVHEeVNTJHV95MpAR1zqIdMQV09zLJAsUl0wI895uFuSaMYl2G-k5padZ6mglzYWbce_ASugHvjEKK73P8cFgke4ZX9ocxHORGZCP2m33QuCKg9M1sU_IHe-aQ7z7BTPx-dm1ePf-rJiml_N0PP7N9fVX4Wc7ac2Ol_OdWSV31Pc_-CT_z1l9BA9tRE72GhV6DEu6eAKrNjon1vaVT-G4N8Hyfr10SmKtp4TH1Ny7sMpr7jYc3uhASN3oukxRvclQVyUxyQE5Ptin8UJqUqzBya182TosF5NCPwNiHJSUoR9JxTIvY1mkOZdu4JpwQXITtXXgTQuLRFm6duwaMk7qtE2IBEGUWBB1YHshPW1oSv4it2UR9g-xzRYuibVpZfILKx14vYDkjeNs3DzOK7hn0JZ8OBwePYcH-CCe8nScTViuvs30CxPuVfKl1SsCp7cNuisII2DF |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_0ROxLtWrpVS37YH2RPTfZbDbBJ-tVxYejSA9OEMJ-BUuP3NHkerR_fXeTzdET_MCnJMsQsjvDzG8yu78BOHSVHm2YwiTlAkdJLrCkIsEkjxKWKBUKXbN9DuKrYXQ9YqMVOG3PwmhHET8Ruuzdu5x0_qP21n5dyxMLJV26HpxY4JDQIOpNdb4KazGzQLwDa8PBt7Pbur4ZOjY-OmruY8xJ3YPRJisUW4jA2y3wjC29bik4rfsvWMKeG7NiKv7MxXj8Xxi62IS7dgLN7pOfvVkle-rvA27HV85wC956eIrOGnt6Byum2IZND1WRdwTlDtycT1ytu_6PiPrGTBHtYzv221uyHW0IrZ03RXXX51I4W0cDU5XIImV0c_kF9xdSk2IXhhdfv59fYd-eAStKeYWDPIhVJLlMqTE8NSlVxNBIS8IVlYQxq_RQ89wQIl3Qc9ymMjJEBEZJe6HvoVNMCvMBkPXWUiZxKhXRkSY6NZTKkIc2dkpqIUwXjlu9ZMpzl7sWGuOszmEYy9ySZX7JuvB5IT1tODsekTv0KnhGbL_Vf9aqKXO8_nVJmnXhaGETT77n40sF9-CNe3QnHoNgHzrVr5k5sNCnkp-8if8DY2b5mg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Deep+3D-Convolutional+Generative+Adversarial+Nets+for+RGB-D+Generation&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Sharma%2C+Richa&rft.au=Sharma%2C+Manoj&rft.au=Shukla%2C+Ankit&rft.au=Chaudhury%2C+Santanu&rft.date=2021-11-11&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8358314&rft.externalDocID=10_1155_2021_8358314 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |