Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation

Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications lik...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2021; pp. 1 - 8
Main Authors Sharma, Richa, Sharma, Manoj, Shukla, Ankit, Chaudhury, Santanu
Format Journal Article
LanguageEnglish
Published New York Hindawi 11.11.2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2021/8358314

Cover

Abstract Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications like object tracking, gesture recognition, and action recognition. This paper has put forward a proposal for a novel architecture that uses conditional deep 3D-convolutional generative adversarial networks to synthesize RGB-D data by exploiting 3D spatio-temporal convolutional framework. The proposed architecture can be used to generate virtually unlimited data. In this work, we have presented the architecture to generate RGB-D data conditioned on class labels. In the architecture, two parallel paths were used, one to generate RGB data and the second to synthesize depth map. The output from the two parallel paths is combined to generate RGB-D data. The proposed model is used for video generation at 30 fps (frames per second). The frame referred here is an RGB-D with the spatial resolution of 512 × 512.
AbstractList Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications like object tracking, gesture recognition, and action recognition. This paper has put forward a proposal for a novel architecture that uses conditional deep 3D-convolutional generative adversarial networks to synthesize RGB-D data by exploiting 3D spatio-temporal convolutional framework. The proposed architecture can be used to generate virtually unlimited data. In this work, we have presented the architecture to generate RGB-D data conditioned on class labels. In the architecture, two parallel paths were used, one to generate RGB data and the second to synthesize depth map. The output from the two parallel paths is combined to generate RGB-D data. The proposed model is used for video generation at 30 fps (frames per second). The frame referred here is an RGB-D with the spatial resolution of 512 × 512.
Author Chaudhury, Santanu
Sharma, Manoj
Shukla, Ankit
Sharma, Richa
Author_xml – sequence: 1
  givenname: Richa
  orcidid: 0000-0003-0593-7196
  surname: Sharma
  fullname: Sharma, Richa
  organization: IIT DelhiNew DelhiIndiaiitd.ac.in
– sequence: 2
  givenname: Manoj
  surname: Sharma
  fullname: Sharma, Manoj
  organization: ECE Department of Bennet UniversityGreater NoidaIndia
– sequence: 3
  givenname: Ankit
  surname: Shukla
  fullname: Shukla, Ankit
  organization: ECE Department of Bennet UniversityGreater NoidaIndia
– sequence: 4
  givenname: Santanu
  surname: Chaudhury
  fullname: Chaudhury, Santanu
  organization: Department of Electrical EngineeringIIT Delhi and Director of IIT JodhpurNew DelhiIndia
BookMark eNqFkF9LwzAUxYNMcJu--QEKPmpc_jTt-jg3ncJQGAq-laS9xYyazKTd2Lc3s8MHQX26l8PvnMs9A9Qz1gBC55RcUyrEiBFGR2MuxpzGR6hPRcKxoHHaCzthMaaMv56ggfcrEkhBx320nFpT6kZbI-toBrCO-AwHbWPr9qDOwYCTjd5ANCk34Lx0OsiP0Piosi5azm_w7Juy5hQdV7L2cHaYQ_Ryd_s8vceLp_nDdLLABedpg2lFkyJWqco4QJpBxgsCPC4VSQuuiBCKS1amFRCiWJYRSkmmYiCSQqHC4EOEu9zWrOVuK-s6Xzv9Lt0upyTfF5LvC8kPhQT-ouPXzn604Jt8ZVsXPvQ5SwghiciYCNRVRxXOeu-g-i-U_cAL3XzV0Dip699Ml53pTZtSbvXfJz4BDpGLMQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3406476
Cites_doi 10.2307/j.ctv1220q3v.3
10.1007/s12652-020-02669-6
10.1109/CVPR.2017.241
10.1007/s10710-017-9314-z
10.1080/2150704x.2020.1746854
10.1142/s0218001421510046
10.1016/j.neucom.2018.08.013
10.1007/s10489-020-02149-6
10.1371/journal.pone.0212849
10.1016/j.urology.2020.09.034
10.1109/CVPRW.2016.88
10.18178/joig.6.2.152-159
10.1016/j.neucom.2020.10.108
ContentType Journal Article
Copyright Copyright © 2021 Richa Sharma et al.
Copyright © 2021 Richa Sharma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Richa Sharma et al.
– notice: Copyright © 2021 Richa Sharma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1155/2021/8358314
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Kumar, Vijay
Editor_xml – sequence: 1
  givenname: Vijay
  surname: Kumar
  fullname: Kumar, Vijay
EndPage 8
ExternalDocumentID 10.1155/2021/8358314
10_1155_2021_8358314
GroupedDBID 29M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
IOF
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
RNS
TR2
TUS
XSB
YQT
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
OVT
PHGZM
PHGZT
PQGLB
PUEGO
7TB
8FD
AZQEC
COVID
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQUKI
PRINS
-~9
188
2UF
ADTOC
AFFNX
C1A
CAG
COF
EJD
IL9
IPNFZ
RIG
UGNYK
UNPAY
ID FETCH-LOGICAL-c337t-1f16c4b7b93ee79e93c0e34db07c3b055b3a2d7fe00b29901109b4e0a1ecbe0a3
IEDL.DBID UNPAY
ISSN 1024-123X
1026-7077
1563-5147
IngestDate Sun Oct 26 04:06:26 EDT 2025
Fri Jul 25 10:08:14 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Wed Oct 01 02:56:28 EDT 2025
Sun Jun 02 18:54:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-1f16c4b7b93ee79e93c0e34db07c3b055b3a2d7fe00b29901109b4e0a1ecbe0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0593-7196
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/mpe/2021/8358314.pdf
PQID 2600065925
PQPubID 237775
PageCount 8
ParticipantIDs unpaywall_primary_10_1155_2021_8358314
proquest_journals_2600065925
crossref_primary_10_1155_2021_8358314
crossref_citationtrail_10_1155_2021_8358314
hindawi_primary_10_1155_2021_8358314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-11
PublicationDateYYYYMMDD 2021-11-11
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-11
  day: 11
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References T. Salimans (19) 2016
23
M. Firman (4) 2016
25
28
X. Wei (8) 2018
J.-Y. Zhu (29) 2017
M. Mirza (15) 2014
K. Papadopoulos (20) 2019
10
J. I. Daniel (11) 2016
H. Huang (2) 2018
T.-C. Wang (26) 2017
J. Oh (16) 2015
17
18
H. Huang (7) 2018
Z. Luo (13) 2017
J. Wallach (24) 2011
P. Vitoria (1) 2018
I. J. Goodfellow (6) 2017
3
T. Xue (27) 2016
Z. Chai (14) 2021
5
T. Karras (12) 2017
9
A. Shrivastava (22)
21
References_xml – volume-title: Metal Rules the Globe
  year: 2011
  ident: 24
  article-title: Affective overdrive, scene dynamics, and identity in the global metal scene
  doi: 10.2307/j.ctv1220q3v.3
– ident: 23
  doi: 10.1007/s12652-020-02669-6
– year: 2018
  ident: 8
  article-title: Improving the improved training of wasserstein gans: a consistency term and its dual effect
– ident: 22
  article-title: Learning from simulated and unsupervised images through adversarial training
  doi: 10.1109/CVPR.2017.241
– ident: 5
  doi: 10.1007/s10710-017-9314-z
– year: 2016
  ident: 19
  article-title: Improved techniques for training GANs
– ident: 17
  doi: 10.1080/2150704x.2020.1746854
– year: 2017
  ident: 26
  article-title: High-resolution image synthesis and semantic manipulation with conditional GANs
– year: 2021
  ident: 14
  article-title: CMS-LSTM: context-embedding and multi-scale spatiotemporal-expression LSTM for video prediction
– year: 2017
  ident: 6
  article-title: NIPS 2016 tutorial: generative adversarial networks
– ident: 21
  doi: 10.1142/s0218001421510046
– year: 2017
  ident: 29
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– year: 2018
  ident: 1
  article-title: Semantic image inpainting through improved wasserstein generative adversarial networks
– year: 2019
  ident: 20
  article-title: Vertex feature encoding and hierarchical temporal modeling in a spatial-temporal graph convolutional network for action recognition
– ident: 10
  doi: 10.1016/j.neucom.2018.08.013
– year: 2015
  ident: 16
  article-title: Action-conditional video prediction using deep networks in atari games
– year: 2016
  ident: 11
  article-title: Generative adversarial parallelization
– year: 2014
  ident: 15
  article-title: Conditional generative adversarial nets
– ident: 25
  doi: 10.1007/s10489-020-02149-6
– ident: 3
  doi: 10.1371/journal.pone.0212849
– year: 2018
  ident: 7
  article-title: An introduction to image synthesis with generative adversarial nets
– year: 2017
  ident: 12
  article-title: Progressive growing of GANs for improved quality, stability, and variation
– volume-title: Advances in Neural Information Processing Systems 29
  year: 2016
  ident: 27
  article-title: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks
– year: 2018
  ident: 2
  article-title: Introvae: introspective variational autoencoders for photographic image synthesis
– ident: 18
  doi: 10.1016/j.urology.2020.09.034
– year: 2017
  ident: 13
  article-title: Unsupervised learning of long-term motion dynamics for videos
– year: 2016
  ident: 4
  article-title: RGBD datasets: past, present and future
  doi: 10.1109/CVPRW.2016.88
– ident: 9
  doi: 10.18178/joig.6.2.152-159
– ident: 28
  doi: 10.1016/j.neucom.2020.10.108
SSID ssj0021518
Score 2.2621453
Snippet Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data...
SourceID unpaywall
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Deep learning
Frames per second
Generative adversarial networks
Generators
Gesture recognition
Mathematical problems
Moving object recognition
Noise
Spatial resolution
Synthesis
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86EH3xW5xOycP0RYJp0_TjUZ1z-LCH4aBvJUlTFEY3bOfwvzfXZsUpfjyVhmsLd5fc73rJ7xDqQqUn1VwRGgWCeGEmiGQiJDTzQh4q5Yq0Yvsc-oOx9xjz2JIkFd9L-CbaQXruXBugEDJoWL0e-rBzazSIm7zKBK36xJsLFHwsXu5v__LsSuTZeIaUd_GyAiw35_lMvC_EZPIpxvR30bYFh_imtuYeWtP5PtqxQBHbaVgcoNHdFCrN1V883NN6hlmPmLE360dmtKaThrUMVz2XCwGehoe6LLDBqXj0cEt6jdQ0P0Tj_v3T3YDY5ghEMRaUxMkcX3kykBHTOoh0xBTVzEslDRSTlHOjcjcNMk2phJADzKLS01Q4WklzYUeolU9zfYywWSulDP1IKpp6KU0jzZh0A9dELskMgGijq6XiEmWZw6GBxSSpMgjOE1BzYtXcRheN9KxmzPhBrmtt8IdYZ2mgxE6vIgFW_aogzNvosjHar-85-d_nTtEW3MJpQ8fpoFb5OtdnBnaU8rxyug_tt8uw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60InrxLVar5KBeJJjdbLq7BxG11uKhSFHobcmrKJRtta3ivzezzVZ7UE-BMOSQmcx8yWS-ATjGTI-xQlOWxpJGSU9SxWVCWS9KRKJ1KE3B9tmut56i-67oLkC7rIXBb5WlTywctRlofCM_RyL1IgcoLoevFLtGYXa1bKEhfWsFc1FQjC3CUojMWBVYur5tP3RmVzAX36bFcSGy9fFu-RVeCHwFCM4dHkl4EM0FqeVnvB1_vMxh0JVJPpSfH7Lf_xGOmhuw5nEkuZoqfhMWbL4F6x5TEn9iR9vQuRlgUrp48CMNa4eEN6ibe_cm52anzNPo9kjRnnkk0ShJ245HxEFa0rm7po2Z1CDfgafm7eNNi_o-ClRzHo9p0AvqOlKxSrm1cWpTrpnlkVEs1lwxIZx2QhP3LGMKoxOSkKrIMhlYrdzAd6GSD3K7B8S5VaWSeqo0M5FhJrWcqzAOXZBT3GGNKpyVG5dpTzKOvS76WXHZECLDbc78NlfhZCY9nJJr_CJ37HXwj1itVFDmT-Io-7abKpzOlPbnOvt_r3MAqyiNBYlBUIPK-G1iDx0yGasjb25fCfbcaA
  priority: 102
  providerName: ProQuest
Title Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation
URI https://dx.doi.org/10.1155/2021/8358314
https://www.proquest.com/docview/2600065925
https://downloads.hindawi.com/journals/mpe/2021/8358314.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20240530
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 24P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ahLG9tPsqS9cGPXR7GUply7Js9tQ2TcMGoQsLZDAw-jIbC06YnZXtr59ky6EpdBt7sS1xGEt3nH7nk34HcOIyPdowhUnKBY6SXGBJRYJJHiUsUSoUumb7nMTjWfRuzuY78LY9C6MdRfxS6HLwxcWkN19rb-3ntTy1UNKF68GpBQ4JDaLBSue70I2ZBeId6M4m12ef6vxm6Nj46Lx5jjEndQ1GG6xQbCECb7fAM7b1uq3F6YH_gi3s-XBdrMTPG7FY3FqGRvvwuR1As_vk22BdyYH6dYfb8T9H-Bj2PDxFZ409PYEdUzyFfQ9VkXcE5TOYXixdrrv-j4iGxqwQHWLb98Nbsu1tCK2dN0V11edSOFtHE1OVyCJlNL06x8ON1LJ4DrPR5ceLMfblGbCilFc4yINYRZLLlBrDU5NSRQyNtCRcUUkYs0oPNc8NIdIteo7bVEaGiMAoaW_0ADrFsjAvAFlvLWUSp1IRHWmiU0OpDHlo105JLYTpwZtWL5ny3OWuhMYiq2MYxjI3ZZmfsh682kivGs6Oe-ROvAr-InbU6j9r1ZQ5Xv86Jc168HpjE398z-G_Cr6ER67pTjwGwRF0qu9rc2yhTyX7sJuMrvrQPb-cXE9t6_2HxF6n43nfG_9v7mv-Ig
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9swFH9iRQgug7EhugHzAbhMBieOm-SwAzSDMlgPCLTeQuy4AlGlhaSr4EPxVfaV8EucbkwaO3HYKVL0YiXO7_3zs38PYBMrPakWirLQT6gX9BMqeRJQ1vcCESjlJmnJ9tltdc69rz3Rm4GH-iwMbqusbWJpqNOhwjXyXSRSL2uA9Q7KY303MflZ_vkoMj9zy3UPvpy1O9S2EKCKc7-gTt9pKU_6MuRa-6EOuWKae6lkvuKSCWFezE39vmZMomFG_k3paZY4Wklz4Wbc7dENxS5VWM21LTtewazBueM2YLb9PTrsTFM84z-rw3cusgHyXr3VXghcZXB2TbwTcMd74gTnLjH7nlw9iXHnx9kouZskg8Fv7u5gEX7WE1XtcrneGRdyR93_wSH5_8zkEry2kTfZq1TlDczobBkWbRROrI3L38Jpe4hl_HKJlERajwiPqLn3wyqpuVtxdaOjIGVD6zxBNSZdXeTEJAHk9HCfRlOpYfYOzl_kY1egkQ0zvQrEOCIpg1YoFUu9lKWh5ly6vmvCAslNdNaETzUUYmVp2bE7yCAu0zMhYgRObIHThK2p9KiiI_mL3KZF1T_E1mqIxNZ25fEvfDRhewrDZ8d5__w4H2G-c_btJD456h5_gAV8Eo9zOs4aNIrbsV43cV0hN6wyEbh4aSA-AiL5V_0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVjwulEcrthTwoeWC3HXiOI8DqtoN2y1FK1RRsbc0dhxRdZVdSLar8tP4K_yZehJnoUiUUw-cIkUTK3G-eXnsbwC2sNKTaaEoi4KUemGeUsnTkLLcC0WolJtmNdvn0B-ceO9HYrQEP9qzMLitsrWJtaHOJgrXyLtIpF7XAEU3t9siPsb93elXih2ksNLattNoIHKkL-cmfSvfHsbmX2-7bv_dp96A2g4DVHEeVNTJHV95MpAR1zqIdMQV09zLJAsUl0wI895uFuSaMYl2G-k5padZ6mglzYWbce_ASugHvjEKK73P8cFgke4ZX9ocxHORGZCP2m33QuCKg9M1sU_IHe-aQ7z7BTPx-dm1ePf-rJiml_N0PP7N9fVX4Wc7ac2Ol_OdWSV31Pc_-CT_z1l9BA9tRE72GhV6DEu6eAKrNjon1vaVT-G4N8Hyfr10SmKtp4TH1Ny7sMpr7jYc3uhASN3oukxRvclQVyUxyQE5Ptin8UJqUqzBya182TosF5NCPwNiHJSUoR9JxTIvY1mkOZdu4JpwQXITtXXgTQuLRFm6duwaMk7qtE2IBEGUWBB1YHshPW1oSv4it2UR9g-xzRYuibVpZfILKx14vYDkjeNs3DzOK7hn0JZ8OBwePYcH-CCe8nScTViuvs30CxPuVfKl1SsCp7cNuisII2DF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_0ROxLtWrpVS37YH2RPTfZbDbBJ-tVxYejSA9OEMJ-BUuP3NHkerR_fXeTzdET_MCnJMsQsjvDzG8yu78BOHSVHm2YwiTlAkdJLrCkIsEkjxKWKBUKXbN9DuKrYXQ9YqMVOG3PwmhHET8Ruuzdu5x0_qP21n5dyxMLJV26HpxY4JDQIOpNdb4KazGzQLwDa8PBt7Pbur4ZOjY-OmruY8xJ3YPRJisUW4jA2y3wjC29bik4rfsvWMKeG7NiKv7MxXj8Xxi62IS7dgLN7pOfvVkle-rvA27HV85wC956eIrOGnt6Byum2IZND1WRdwTlDtycT1ytu_6PiPrGTBHtYzv221uyHW0IrZ03RXXX51I4W0cDU5XIImV0c_kF9xdSk2IXhhdfv59fYd-eAStKeYWDPIhVJLlMqTE8NSlVxNBIS8IVlYQxq_RQ89wQIl3Qc9ymMjJEBEZJe6HvoVNMCvMBkPXWUiZxKhXRkSY6NZTKkIc2dkpqIUwXjlu9ZMpzl7sWGuOszmEYy9ySZX7JuvB5IT1tODsekTv0KnhGbL_Vf9aqKXO8_nVJmnXhaGETT77n40sF9-CNe3QnHoNgHzrVr5k5sNCnkp-8if8DY2b5mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Deep+3D-Convolutional+Generative+Adversarial+Nets+for+RGB-D+Generation&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Sharma%2C+Richa&rft.au=Sharma%2C+Manoj&rft.au=Shukla%2C+Ankit&rft.au=Chaudhury%2C+Santanu&rft.date=2021-11-11&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8358314&rft.externalDocID=10_1155_2021_8358314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon