Universal Detection of Backdoor Attacks via Density-based Clustering and Centroids Analysis
We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a Deep Neural Network model is subject to a backdoor attack by inspecting the training dataset. CCA-UD first clusters the samples of the training...
Saved in:
| Published in | IEEE transactions on information forensics and security Vol. 19; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1556-6013 1556-6021 1556-6021 |
| DOI | 10.1109/TIFS.2023.3329426 |
Cover
| Abstract | We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a Deep Neural Network model is subject to a backdoor attack by inspecting the training dataset. CCA-UD first clusters the samples of the training set by means of density-based clustering. Then, it applies a novel strategy to detect the presence of poisoned clusters. The proposed strategy is based on a general misclassification behaviour observed when the features of a representative example of the analysed cluster are added to benign samples. The capability of inducing a misclassification error is a general characteristic of poisoned samples, hence the proposed defence is attack-agnostic. This marks a significant difference with respect to existing defences, that, either can defend against only some types of backdoor attacks, or are effective only when some conditions on the poisoning ratio or the kind of triggering signal used by the attacker are satisfied. Experiments carried out on several classification tasks and network architectures, considering different types of backdoor attacks (with either clean or corrupted labels), and triggering signals, including both global and local triggering signals, as well as sample-specific and source-specific triggers, reveal that the proposed method is very effective to defend against backdoor attacks in all the cases, always outperforming the state of the art techniques. |
|---|---|
| AbstractList | We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a Deep Neural Network model is subject to a backdoor attack by inspecting the training dataset. CCA-UD first clusters the samples of the training set by means of density-based clustering. Then, it applies a novel strategy to detect the presence of poisoned clusters. The proposed strategy is based on a general misclassification behaviour observed when the features of a representative example of the analysed cluster are added to benign samples. The capability of inducing a misclassification error is a general characteristic of poisoned samples, hence the proposed defence is attack-agnostic. This marks a significant difference with respect to existing defences, that, either can defend against only some types of backdoor attacks, or are effective only when some conditions on the poisoning ratio or the kind of triggering signal used by the attacker are satisfied. Experiments carried out on several classification tasks and network architectures, considering different types of backdoor attacks (with either clean or corrupted labels), and triggering signals, including both global and local triggering signals, as well as sample-specific and source-specific triggers, reveal that the proposed method is very effective to defend against backdoor attacks in all the cases, always outperforming the state of the art techniques. |
| Author | Guo, Wei Barni, Mauro Tondi, Benedetta |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-6224-0953 surname: Guo fullname: Guo, Wei organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy – sequence: 2 givenname: Benedetta orcidid: 0000-0002-7518-046X surname: Tondi fullname: Tondi, Benedetta organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy – sequence: 3 givenname: Mauro orcidid: 0000-0002-7368-0866 surname: Barni fullname: Barni, Mauro organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy |
| BookMark | eNp9kE1rGzEQhkVwIc7HDwj0sNDzOhpJ1sfRdZPWEMghyamHRbs7CnK3kivJCf73WeMQQgI9aQTv887wnJBJiAEJuQA6A6Dm8n51fTdjlPEZ58wIJo_IFOZzWUvKYPI2Az8mJzmvKRUCpJ6S3w_BP2HKdqh-YMGu-Biq6KrvtvvTx5iqRSnjmKsnb8dEyL7s6tZm7KvlsM0Fkw-PlQ3jF0NJ0fe5WgQ77LLPZ-SLs0PG89f3lDxcX90vf9U3tz9Xy8VN3XGuSg3YglHOqI6y1jkppZNO8Y71qgeqESQIoQ0I5NgrrrHtdN8aMFZox_ScnxJ26N2Gjd0922FoNsn_tWnXAG32epriXW72eppXPSP07QBtUvy3xVyaddym8fIxpw2nShvFxhQcUl2KOSd0n5r34j82qw9M54vdiy3J-uG_5NcD6RHx3SZOBWjBXwD1upFb |
| CODEN | ITIFA6 |
| CitedBy_id | crossref_primary_10_32604_cmc_2024_049791 crossref_primary_10_1145_3679013 crossref_primary_10_1145_3688002 |
| Cites_doi | 10.1109/MLSP.2019.8918908 10.1002/wics.199 10.5555/3298023.3298188 10.1145/2733381 10.1109/SP46215.2023.10179375 10.1109/CVPR42600.2020.01445 10.1007/0-387-25465-X_15 10.1109/TDSC.2020.3028448 10.1109/CVPR52729.2023.01177 10.1109/tnnls.2023.3281872 10.1109/ICIP.2019.8802997 10.1145/304181.304187 10.48550/ARXIV.1706.06083 10.1109/OJSP.2022.3190213 10.1109/tdsc.2022.3233519 10.1109/CVPR.2011.5995566 10.1109/EuroSP53844.2022.00049 10.1007/BFb0086566 10.1109/CVPR52729.2023.00391 10.1097/ALN.0000000000002350 10.1016/j.patrec.2021.01.009 10.14722/ndss.2023.23069 10.1609/aaai.v31i1.10958 10.1007/978-3-030-66415-2_4 10.1109/sp46215.2023.10179451 10.1038/nature14539 10.1007/978-3-031-33377-4_33 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/TIFS.2023.3329426 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (LUT & LAB) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL(IEEE/IET Electronic Library ) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1556-6021 |
| EndPage | 1 |
| ExternalDocumentID | 10.1109/tifs.2023.3329426 10_1109_TIFS_2023_3329426 10304184 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Chinese Government Scholarship grantid: ?201908130181? funderid: 10.13039/501100010890 |
| GroupedDBID | 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS 5VS AAYXX AETIX AGSQL CITATION EJD 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c337t-1eb197f97c02bff666f6f73c2d7d108e161448914e3ed738ebc8db919a48f2853 |
| IEDL.DBID | RIE |
| ISSN | 1556-6013 1556-6021 |
| IngestDate | Sun Oct 26 02:55:26 EDT 2025 Mon Jun 30 06:31:36 EDT 2025 Wed Oct 01 02:18:33 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Wed Aug 27 02:24:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c337t-1eb197f97c02bff666f6f73c2d7d108e161448914e3ed738ebc8db919a48f2853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6224-0953 0000-0002-7518-046X 0000-0002-7368-0866 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10304184 |
| PQID | 2893078972 |
| PQPubID | 85506 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1109_tifs_2023_3329426 proquest_journals_2893078972 crossref_primary_10_1109_TIFS_2023_3329426 crossref_citationtrail_10_1109_TIFS_2023_3329426 ieee_primary_10304184 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information forensics and security |
| PublicationTitleAbbrev | TIFS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 Tran (ref18) ref34 ref15 ref37 ref36 ref31 ref30 ref33 ref32 Abdi (ref20) 2007 ref17 Hayase (ref19) 2021 ref39 ref38 Tang (ref16) Biggio (ref2) McInnes (ref35) 2018 ref24 ref46 ref23 Cohen (ref25) ref45 ref26 Yadav (ref11) 2013; 4 Shan (ref21) Goodfellow (ref1) ref41 Bond (ref14) 2001; 1 ref22 ref44 ref43 ref28 ref27 ref7 ref9 ref3 Turner (ref8) 2019 ref5 Gu (ref6) 2017 ref40 Chen (ref4) 2017 Chen (ref10); 2301 Ester (ref29) Nguyen (ref42) |
| References_xml | – ident: ref13 doi: 10.1109/MLSP.2019.8918908 – volume: 1 start-page: 1 year: 2001 ident: ref14 article-title: GMM estimation of empirical growth models publication-title: J. SSRN – ident: ref15 doi: 10.1002/wics.199 – ident: ref44 doi: 10.5555/3298023.3298188 – ident: ref34 doi: 10.1145/2733381 – ident: ref28 doi: 10.1109/SP46215.2023.10179375 – volume-title: Overview of Clustering Methods ident: ref12 – ident: ref30 doi: 10.1109/CVPR42600.2020.01445 – start-page: 8011 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref18 article-title: Spectral signatures in backdoor attacks – volume: 4 start-page: 2972 issue: 7 year: 2013 ident: ref11 article-title: A review of K-mean algorithm publication-title: Int. J. Eng. Trends Technol. – ident: ref32 doi: 10.1007/0-387-25465-X_15 – year: 2021 ident: ref19 article-title: SPECTRE: Defending against backdoor attacks using robust statistics publication-title: arXiv:2104.11315 – start-page: 1 volume-title: Proc. ICLR ident: ref1 article-title: Explaining and harnessing adversarial examples – ident: ref40 doi: 10.1109/TDSC.2020.3028448 – ident: ref27 doi: 10.1109/CVPR52729.2023.01177 – year: 2019 ident: ref8 article-title: Label-consistent backdoor attacks publication-title: arXiv:1912.02771 – ident: ref23 doi: 10.1109/tnnls.2023.3281872 – year: 2018 ident: ref35 article-title: UMAP: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv:1802.03426 – ident: ref9 doi: 10.1109/ICIP.2019.8802997 – volume: 2301 start-page: 1 volume-title: Proc. AAAI ident: ref10 article-title: Detecting backdoor attacks on deep neural networks by activation clustering – ident: ref33 doi: 10.1145/304181.304187 – ident: ref26 doi: 10.48550/ARXIV.1706.06083 – start-page: 226 volume-title: Proc. KDD ident: ref29 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – ident: ref7 doi: 10.1109/OJSP.2022.3190213 – start-page: 1541 volume-title: Proc. 30th USENIX Secur. Symp. ident: ref16 article-title: Demon in the variant: Statistical analysis of DNNs for robust backdoor contamination detection – start-page: 1310 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref25 article-title: Certified adversarial robustness via randomized smoothing – start-page: 1 volume-title: Proc. ICLR ident: ref42 article-title: WaNet—Imperceptible warping-based backdoor attack – ident: ref5 doi: 10.1109/tdsc.2022.3233519 – year: 2017 ident: ref4 article-title: Targeted backdoor attacks on deep learning systems using data poisoning publication-title: arXiv:1712.05526 – start-page: 3575 volume-title: Proc. 31st USENIX Secur. Symp. ident: ref21 article-title: Poison forensics: Traceback of data poisoning attacks in neural networks – ident: ref43 doi: 10.1109/CVPR.2011.5995566 – ident: ref39 doi: 10.1109/EuroSP53844.2022.00049 – volume-title: 4-Layer DNN Model ident: ref41 – ident: ref38 doi: 10.1007/BFb0086566 – ident: ref45 doi: 10.1109/CVPR52729.2023.00391 – start-page: 907 volume-title: Encyclopedia of Measurement and Statistics year: 2007 ident: ref20 article-title: Singular value decomposition (SVD) and generalized singular value decomposition – year: 2017 ident: ref6 article-title: BadNets: Identifying vulnerabilities in the machine learning model supply chain publication-title: arXiv:1708.06733 – ident: ref37 doi: 10.1097/ALN.0000000000002350 – ident: ref3 doi: 10.1016/j.patrec.2021.01.009 – ident: ref17 doi: 10.14722/ndss.2023.23069 – ident: ref46 doi: 10.1609/aaai.v31i1.10958 – start-page: 1 volume-title: Proc. 29th Int. Conf. Mach. Learn. ident: ref2 article-title: Poisoning attacks against support vector machines – ident: ref22 doi: 10.1007/978-3-030-66415-2_4 – ident: ref24 doi: 10.1109/sp46215.2023.10179451 – ident: ref31 doi: 10.1038/nature14539 – ident: ref36 doi: 10.1007/978-3-031-33377-4_33 |
| SSID | ssj0044168 |
| Score | 2.4609199 |
| Snippet | We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Backdoor Attack Centroids Centroids Analysis Clustering Clustering algorithms Data models Deep Learning Density Density Clustering Feature extraction Information filters Predictive models Training Training data Universal Detection of Backdoor Attacks |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF9sFpbPNvKPvikJJfNJpss9OXaelTBItiDikjY7M7C0ZAcbc6vv97dZHNcFQR924XZbMJM5mN35jcAL1WUUKvkZMAjw4NECQxKbkygDdpwg5UZdrVV7y_4-Tx5d5VebcHxuhYGEbvkMwzdsLvLX2D13RWIxxGfWOueW6dh4rpjJTY6CZfa3INtnlpPfATb84sP008dRGrK7fZdd2Q_jqm_1KSRmLQL47C6YxYyFovEQStsmKWuz8odl_P-ql7KH99kVW1Yn9kOfBneu086uQ5XbRmqn79BOv7vhz2GR94tJdNejp7AFta7sDO0fCBeA-zCww38wqfw2ad12JVn2HZJXTVpDDmR6lo3zQ2Ztq2r4SdfF9JS1C7_IzixdlOT02rlIBrsY4is7dQdMjcLfUsGlJQ9mM_eXJ6eB75bQ6AYy9qAWq0vMiMyFcWlMTYsMtxkTMU60zTKkbrQMxc0QYY6YzmWKteloEImuYmt17APo7qp8RkQRQ0a4VwjLRNqUsk0E5rLlKONYGMcQzQwq1Aeytx11KiKLqSJRHH5dvaxcPwtPH_H8Gq9ZNnjePyNeM_xaIOw58kYDgeRKPyvflvYiJU5zP4sHsPrtZj8sYmTuDubPP8n6gN4YKdJf_hzCKP2ZoVH1h1qyxde6n8Bv7wAsQ priority: 102 providerName: Unpaywall |
| Title | Universal Detection of Backdoor Attacks via Density-based Clustering and Centroids Analysis |
| URI | https://ieeexplore.ieee.org/document/10304184 https://www.proquest.com/docview/2893078972 https://ieeexplore.ieee.org/ielx7/10206/4358835/10304184.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1556-6021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044168 issn: 1556-6021 databaseCode: RIE dateStart: 20060101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfYeIA9MBibdrBNeeAJ1K5p0qR5PMZOA4kTEjtpiIcqTRzptFM77VoQ_PUk_ZhuIBBvreTUjezEdmL_DPDKJJz6TU5HInEi4kZhVArnIuvQhxuslNjVVn2ci4sF_3CVXQ3F6l0tDCJ2yWcYh8fuLt_Wpg1HZaehJRb3IckWbMlc9MVa47brzXpf95ZlwjOmbLjCpIk6vXw_-xyHPuExY6niAUhhwwh1XVXuOZiP2upG__iuV6sNWzPbhfn4l32KyXXcNmVsfv4G4Pjf03gKTwavk0x7NXkGD7Dag92xowMZFvge7GzAEz6Hr0PWhh_5DpsuZ6sitSNvtbm2dX1Lpk0TSvTJt6X2FFVI74iCWbTkbNUGBAb_GaIr_xrOkOulXZMRBGUfFrPzy7OLaGjGEBnGZBNRv6kr6ZQ0SVo656MeJ5xkJrXS0iRHGiLLXFGODK1kOZYmt6WiSvPcpd4pOIDtqq7wEIihDp0Kno_VnLpMM8uUFToT6APUFCeQjNIpzIBUHhpmrIouYklUEQRaBIEWg0An8PpuyE0P0_Ev4v0glA3CXh4TOBp1oBhW8rrwASkLkPwyncCbO734g0mzdOt7TF78hclLeOzJeH-KcwTbzW2Lx96vacqTTp9P4OFi_mn65Req4fQt |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EB7KIVSdQttfeBUlBDHzoePQLtaCuyFRULqIXLssbRilSA2KaK_vnbioKWoVW-JZGcSzcQzz555A7CnIk7tIieDNDJpwJXAoEyNCbRBCzdYmWFXW3U-TSeX_PtVcuWL1btaGETsks8wdJfdWb6uVeu2yg5cSyxuIclzeJFwzpO-XGtYeK1j7yvfkiS1oinzh5g0Egezk_FF6DqFh4zFgjsqhRU31PVVeRRirrfVjby_k4vFircZb8B0eM8-yeQ6bJsyVL_-oHD87w95A6993EkOe0PZhGdYbcHG0NOB-F98C16tEBS-hR8-b8PO_IpNl7VVkdqQI6mudV3fksOmcUX65Odc2hGVS_AInGPU5HjROg4G-xgiK3vrdpHruV6SgQZlGy7H32bHk8C3YwgUY1kTULusi8yITEVxaYzFPSY1GVOxzjSNcqQOW-aCcmSoM5ZjqXJdCiokz01sw4J3sFbVFb4HoqhBI1zsoyWnJpFMM6FTmaRoIWqMI4gG7RTKc5W7lhmLosMskSicQgun0MIrdARfHqbc9EQd_xq87ZSyMrDXxwh2Bxso_L-8LCwkZY6UP4tHsP9gF0-ENHOzfCTkw1-EfIb1yez8rDg7mZ7uwEs7hfd7Oruw1ty2-NFGOU35qbPt3-hX9co |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF9sFpbPNvKPvikJJfNJpss9OXaelTBItiDikjY7M7C0ZAcbc6vv97dZHNcFQR924XZbMJM5mN35jcAL1WUUKvkZMAjw4NECQxKbkygDdpwg5UZdrVV7y_4-Tx5d5VebcHxuhYGEbvkMwzdsLvLX2D13RWIxxGfWOueW6dh4rpjJTY6CZfa3INtnlpPfATb84sP008dRGrK7fZdd2Q_jqm_1KSRmLQL47C6YxYyFovEQStsmKWuz8odl_P-ql7KH99kVW1Yn9kOfBneu086uQ5XbRmqn79BOv7vhz2GR94tJdNejp7AFta7sDO0fCBeA-zCww38wqfw2ad12JVn2HZJXTVpDDmR6lo3zQ2Ztq2r4SdfF9JS1C7_IzixdlOT02rlIBrsY4is7dQdMjcLfUsGlJQ9mM_eXJ6eB75bQ6AYy9qAWq0vMiMyFcWlMTYsMtxkTMU60zTKkbrQMxc0QYY6YzmWKteloEImuYmt17APo7qp8RkQRQ0a4VwjLRNqUsk0E5rLlKONYGMcQzQwq1Aeytx11KiKLqSJRHH5dvaxcPwtPH_H8Gq9ZNnjePyNeM_xaIOw58kYDgeRKPyvflvYiJU5zP4sHsPrtZj8sYmTuDubPP8n6gN4YKdJf_hzCKP2ZoVH1h1qyxde6n8Bv7wAsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Detection+of+Backdoor+Attacks+via+Density-Based+Clustering+and+Centroids+Analysis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Guo%2C+Wei&rft.au=Tondi%2C+Benedetta&rft.au=Barni%2C+Mauro&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=19&rft.spage=970&rft_id=info:doi/10.1109%2FTIFS.2023.3329426&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |