Universal Detection of Backdoor Attacks via Density-based Clustering and Centroids Analysis

We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a Deep Neural Network model is subject to a backdoor attack by inspecting the training dataset. CCA-UD first clusters the samples of the training...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 19; p. 1
Main Authors Guo, Wei, Tondi, Benedetta, Barni, Mauro
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1556-6013
1556-6021
1556-6021
DOI10.1109/TIFS.2023.3329426

Cover

Abstract We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a Deep Neural Network model is subject to a backdoor attack by inspecting the training dataset. CCA-UD first clusters the samples of the training set by means of density-based clustering. Then, it applies a novel strategy to detect the presence of poisoned clusters. The proposed strategy is based on a general misclassification behaviour observed when the features of a representative example of the analysed cluster are added to benign samples. The capability of inducing a misclassification error is a general characteristic of poisoned samples, hence the proposed defence is attack-agnostic. This marks a significant difference with respect to existing defences, that, either can defend against only some types of backdoor attacks, or are effective only when some conditions on the poisoning ratio or the kind of triggering signal used by the attacker are satisfied. Experiments carried out on several classification tasks and network architectures, considering different types of backdoor attacks (with either clean or corrupted labels), and triggering signals, including both global and local triggering signals, as well as sample-specific and source-specific triggers, reveal that the proposed method is very effective to defend against backdoor attacks in all the cases, always outperforming the state of the art techniques.
AbstractList We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a Deep Neural Network model is subject to a backdoor attack by inspecting the training dataset. CCA-UD first clusters the samples of the training set by means of density-based clustering. Then, it applies a novel strategy to detect the presence of poisoned clusters. The proposed strategy is based on a general misclassification behaviour observed when the features of a representative example of the analysed cluster are added to benign samples. The capability of inducing a misclassification error is a general characteristic of poisoned samples, hence the proposed defence is attack-agnostic. This marks a significant difference with respect to existing defences, that, either can defend against only some types of backdoor attacks, or are effective only when some conditions on the poisoning ratio or the kind of triggering signal used by the attacker are satisfied. Experiments carried out on several classification tasks and network architectures, considering different types of backdoor attacks (with either clean or corrupted labels), and triggering signals, including both global and local triggering signals, as well as sample-specific and source-specific triggers, reveal that the proposed method is very effective to defend against backdoor attacks in all the cases, always outperforming the state of the art techniques.
Author Guo, Wei
Barni, Mauro
Tondi, Benedetta
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-6224-0953
  surname: Guo
  fullname: Guo, Wei
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 2
  givenname: Benedetta
  orcidid: 0000-0002-7518-046X
  surname: Tondi
  fullname: Tondi, Benedetta
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 3
  givenname: Mauro
  orcidid: 0000-0002-7368-0866
  surname: Barni
  fullname: Barni, Mauro
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
BookMark eNp9kE1rGzEQhkVwIc7HDwj0sNDzOhpJ1sfRdZPWEMghyamHRbs7CnK3kivJCf73WeMQQgI9aQTv887wnJBJiAEJuQA6A6Dm8n51fTdjlPEZ58wIJo_IFOZzWUvKYPI2Az8mJzmvKRUCpJ6S3w_BP2HKdqh-YMGu-Biq6KrvtvvTx5iqRSnjmKsnb8dEyL7s6tZm7KvlsM0Fkw-PlQ3jF0NJ0fe5WgQ77LLPZ-SLs0PG89f3lDxcX90vf9U3tz9Xy8VN3XGuSg3YglHOqI6y1jkppZNO8Y71qgeqESQIoQ0I5NgrrrHtdN8aMFZox_ScnxJ26N2Gjd0922FoNsn_tWnXAG32epriXW72eppXPSP07QBtUvy3xVyaddym8fIxpw2nShvFxhQcUl2KOSd0n5r34j82qw9M54vdiy3J-uG_5NcD6RHx3SZOBWjBXwD1upFb
CODEN ITIFA6
CitedBy_id crossref_primary_10_32604_cmc_2024_049791
crossref_primary_10_1145_3679013
crossref_primary_10_1145_3688002
Cites_doi 10.1109/MLSP.2019.8918908
10.1002/wics.199
10.5555/3298023.3298188
10.1145/2733381
10.1109/SP46215.2023.10179375
10.1109/CVPR42600.2020.01445
10.1007/0-387-25465-X_15
10.1109/TDSC.2020.3028448
10.1109/CVPR52729.2023.01177
10.1109/tnnls.2023.3281872
10.1109/ICIP.2019.8802997
10.1145/304181.304187
10.48550/ARXIV.1706.06083
10.1109/OJSP.2022.3190213
10.1109/tdsc.2022.3233519
10.1109/CVPR.2011.5995566
10.1109/EuroSP53844.2022.00049
10.1007/BFb0086566
10.1109/CVPR52729.2023.00391
10.1097/ALN.0000000000002350
10.1016/j.patrec.2021.01.009
10.14722/ndss.2023.23069
10.1609/aaai.v31i1.10958
10.1007/978-3-030-66415-2_4
10.1109/sp46215.2023.10179451
10.1038/nature14539
10.1007/978-3-031-33377-4_33
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TIFS.2023.3329426
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (LUT & LAB)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL(IEEE/IET Electronic Library )
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 1
ExternalDocumentID 10.1109/tifs.2023.3329426
10_1109_TIFS_2023_3329426
10304184
Genre orig-research
GrantInformation_xml – fundername: Chinese Government Scholarship
  grantid: ?201908130181?
  funderid: 10.13039/501100010890
GroupedDBID 0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
CITATION
EJD
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c337t-1eb197f97c02bff666f6f73c2d7d108e161448914e3ed738ebc8db919a48f2853
IEDL.DBID RIE
ISSN 1556-6013
1556-6021
IngestDate Sun Oct 26 02:55:26 EDT 2025
Mon Jun 30 06:31:36 EDT 2025
Wed Oct 01 02:18:33 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Wed Aug 27 02:24:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-1eb197f97c02bff666f6f73c2d7d108e161448914e3ed738ebc8db919a48f2853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6224-0953
0000-0002-7518-046X
0000-0002-7368-0866
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10304184
PQID 2893078972
PQPubID 85506
PageCount 1
ParticipantIDs unpaywall_primary_10_1109_tifs_2023_3329426
proquest_journals_2893078972
crossref_primary_10_1109_TIFS_2023_3329426
crossref_citationtrail_10_1109_TIFS_2023_3329426
ieee_primary_10304184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Tran (ref18)
ref34
ref15
ref37
ref36
ref31
ref30
ref33
ref32
Abdi (ref20) 2007
ref17
Hayase (ref19) 2021
ref39
ref38
Tang (ref16)
Biggio (ref2)
McInnes (ref35) 2018
ref24
ref46
ref23
Cohen (ref25)
ref45
ref26
Yadav (ref11) 2013; 4
Shan (ref21)
Goodfellow (ref1)
ref41
Bond (ref14) 2001; 1
ref22
ref44
ref43
ref28
ref27
ref7
ref9
ref3
Turner (ref8) 2019
ref5
Gu (ref6) 2017
ref40
Chen (ref4) 2017
Chen (ref10); 2301
Ester (ref29)
Nguyen (ref42)
References_xml – ident: ref13
  doi: 10.1109/MLSP.2019.8918908
– volume: 1
  start-page: 1
  year: 2001
  ident: ref14
  article-title: GMM estimation of empirical growth models
  publication-title: J. SSRN
– ident: ref15
  doi: 10.1002/wics.199
– ident: ref44
  doi: 10.5555/3298023.3298188
– ident: ref34
  doi: 10.1145/2733381
– ident: ref28
  doi: 10.1109/SP46215.2023.10179375
– volume-title: Overview of Clustering Methods
  ident: ref12
– ident: ref30
  doi: 10.1109/CVPR42600.2020.01445
– start-page: 8011
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref18
  article-title: Spectral signatures in backdoor attacks
– volume: 4
  start-page: 2972
  issue: 7
  year: 2013
  ident: ref11
  article-title: A review of K-mean algorithm
  publication-title: Int. J. Eng. Trends Technol.
– ident: ref32
  doi: 10.1007/0-387-25465-X_15
– year: 2021
  ident: ref19
  article-title: SPECTRE: Defending against backdoor attacks using robust statistics
  publication-title: arXiv:2104.11315
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref1
  article-title: Explaining and harnessing adversarial examples
– ident: ref40
  doi: 10.1109/TDSC.2020.3028448
– ident: ref27
  doi: 10.1109/CVPR52729.2023.01177
– year: 2019
  ident: ref8
  article-title: Label-consistent backdoor attacks
  publication-title: arXiv:1912.02771
– ident: ref23
  doi: 10.1109/tnnls.2023.3281872
– year: 2018
  ident: ref35
  article-title: UMAP: Uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv:1802.03426
– ident: ref9
  doi: 10.1109/ICIP.2019.8802997
– volume: 2301
  start-page: 1
  volume-title: Proc. AAAI
  ident: ref10
  article-title: Detecting backdoor attacks on deep neural networks by activation clustering
– ident: ref33
  doi: 10.1145/304181.304187
– ident: ref26
  doi: 10.48550/ARXIV.1706.06083
– start-page: 226
  volume-title: Proc. KDD
  ident: ref29
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– ident: ref7
  doi: 10.1109/OJSP.2022.3190213
– start-page: 1541
  volume-title: Proc. 30th USENIX Secur. Symp.
  ident: ref16
  article-title: Demon in the variant: Statistical analysis of DNNs for robust backdoor contamination detection
– start-page: 1310
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref25
  article-title: Certified adversarial robustness via randomized smoothing
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref42
  article-title: WaNet—Imperceptible warping-based backdoor attack
– ident: ref5
  doi: 10.1109/tdsc.2022.3233519
– year: 2017
  ident: ref4
  article-title: Targeted backdoor attacks on deep learning systems using data poisoning
  publication-title: arXiv:1712.05526
– start-page: 3575
  volume-title: Proc. 31st USENIX Secur. Symp.
  ident: ref21
  article-title: Poison forensics: Traceback of data poisoning attacks in neural networks
– ident: ref43
  doi: 10.1109/CVPR.2011.5995566
– ident: ref39
  doi: 10.1109/EuroSP53844.2022.00049
– volume-title: 4-Layer DNN Model
  ident: ref41
– ident: ref38
  doi: 10.1007/BFb0086566
– ident: ref45
  doi: 10.1109/CVPR52729.2023.00391
– start-page: 907
  volume-title: Encyclopedia of Measurement and Statistics
  year: 2007
  ident: ref20
  article-title: Singular value decomposition (SVD) and generalized singular value decomposition
– year: 2017
  ident: ref6
  article-title: BadNets: Identifying vulnerabilities in the machine learning model supply chain
  publication-title: arXiv:1708.06733
– ident: ref37
  doi: 10.1097/ALN.0000000000002350
– ident: ref3
  doi: 10.1016/j.patrec.2021.01.009
– ident: ref17
  doi: 10.14722/ndss.2023.23069
– ident: ref46
  doi: 10.1609/aaai.v31i1.10958
– start-page: 1
  volume-title: Proc. 29th Int. Conf. Mach. Learn.
  ident: ref2
  article-title: Poisoning attacks against support vector machines
– ident: ref22
  doi: 10.1007/978-3-030-66415-2_4
– ident: ref24
  doi: 10.1109/sp46215.2023.10179451
– ident: ref31
  doi: 10.1038/nature14539
– ident: ref36
  doi: 10.1007/978-3-031-33377-4_33
SSID ssj0044168
Score 2.4609199
Snippet We propose a Universal Defence against backdoor attacks based on Clustering and Centroids Analysis (CCA-UD). The goal of the defence is to reveal whether a...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Backdoor Attack
Centroids
Centroids Analysis
Clustering
Clustering algorithms
Data models
Deep Learning
Density
Density Clustering
Feature extraction
Information filters
Predictive models
Training
Training data
Universal Detection of Backdoor Attacks
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF9sFpbPNvKPvikJJfNJpss9OXaelTBItiDikjY7M7C0ZAcbc6vv97dZHNcFQR924XZbMJM5mN35jcAL1WUUKvkZMAjw4NECQxKbkygDdpwg5UZdrVV7y_4-Tx5d5VebcHxuhYGEbvkMwzdsLvLX2D13RWIxxGfWOueW6dh4rpjJTY6CZfa3INtnlpPfATb84sP008dRGrK7fZdd2Q_jqm_1KSRmLQL47C6YxYyFovEQStsmKWuz8odl_P-ql7KH99kVW1Yn9kOfBneu086uQ5XbRmqn79BOv7vhz2GR94tJdNejp7AFta7sDO0fCBeA-zCww38wqfw2ad12JVn2HZJXTVpDDmR6lo3zQ2Ztq2r4SdfF9JS1C7_IzixdlOT02rlIBrsY4is7dQdMjcLfUsGlJQ9mM_eXJ6eB75bQ6AYy9qAWq0vMiMyFcWlMTYsMtxkTMU60zTKkbrQMxc0QYY6YzmWKteloEImuYmt17APo7qp8RkQRQ0a4VwjLRNqUsk0E5rLlKONYGMcQzQwq1Aeytx11KiKLqSJRHH5dvaxcPwtPH_H8Gq9ZNnjePyNeM_xaIOw58kYDgeRKPyvflvYiJU5zP4sHsPrtZj8sYmTuDubPP8n6gN4YKdJf_hzCKP2ZoVH1h1qyxde6n8Bv7wAsQ
  priority: 102
  providerName: Unpaywall
Title Universal Detection of Backdoor Attacks via Density-based Clustering and Centroids Analysis
URI https://ieeexplore.ieee.org/document/10304184
https://www.proquest.com/docview/2893078972
https://ieeexplore.ieee.org/ielx7/10206/4358835/10304184.pdf
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6021
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfYeIA9MBibdrBNeeAJ1K5p0qR5PMZOA4kTEjtpiIcqTRzptFM77VoQ_PUk_ZhuIBBvreTUjezEdmL_DPDKJJz6TU5HInEi4kZhVArnIuvQhxuslNjVVn2ci4sF_3CVXQ3F6l0tDCJ2yWcYh8fuLt_Wpg1HZaehJRb3IckWbMlc9MVa47brzXpf95ZlwjOmbLjCpIk6vXw_-xyHPuExY6niAUhhwwh1XVXuOZiP2upG__iuV6sNWzPbhfn4l32KyXXcNmVsfv4G4Pjf03gKTwavk0x7NXkGD7Dag92xowMZFvge7GzAEz6Hr0PWhh_5DpsuZ6sitSNvtbm2dX1Lpk0TSvTJt6X2FFVI74iCWbTkbNUGBAb_GaIr_xrOkOulXZMRBGUfFrPzy7OLaGjGEBnGZBNRv6kr6ZQ0SVo656MeJ5xkJrXS0iRHGiLLXFGODK1kOZYmt6WiSvPcpd4pOIDtqq7wEIihDp0Kno_VnLpMM8uUFToT6APUFCeQjNIpzIBUHhpmrIouYklUEQRaBIEWg0An8PpuyE0P0_Ev4v0glA3CXh4TOBp1oBhW8rrwASkLkPwyncCbO734g0mzdOt7TF78hclLeOzJeH-KcwTbzW2Lx96vacqTTp9P4OFi_mn65Req4fQt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EB7KIVSdQttfeBUlBDHzoePQLtaCuyFRULqIXLssbRilSA2KaK_vnbioKWoVW-JZGcSzcQzz555A7CnIk7tIieDNDJpwJXAoEyNCbRBCzdYmWFXW3U-TSeX_PtVcuWL1btaGETsks8wdJfdWb6uVeu2yg5cSyxuIclzeJFwzpO-XGtYeK1j7yvfkiS1oinzh5g0Egezk_FF6DqFh4zFgjsqhRU31PVVeRRirrfVjby_k4vFircZb8B0eM8-yeQ6bJsyVL_-oHD87w95A6993EkOe0PZhGdYbcHG0NOB-F98C16tEBS-hR8-b8PO_IpNl7VVkdqQI6mudV3fksOmcUX65Odc2hGVS_AInGPU5HjROg4G-xgiK3vrdpHruV6SgQZlGy7H32bHk8C3YwgUY1kTULusi8yITEVxaYzFPSY1GVOxzjSNcqQOW-aCcmSoM5ZjqXJdCiokz01sw4J3sFbVFb4HoqhBI1zsoyWnJpFMM6FTmaRoIWqMI4gG7RTKc5W7lhmLosMskSicQgun0MIrdARfHqbc9EQd_xq87ZSyMrDXxwh2Bxso_L-8LCwkZY6UP4tHsP9gF0-ENHOzfCTkw1-EfIb1yez8rDg7mZ7uwEs7hfd7Oruw1ty2-NFGOU35qbPt3-hX9co
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_q9UF9sFpbPNvKPvikJJfNJpss9OXaelTBItiDikjY7M7C0ZAcbc6vv97dZHNcFQR924XZbMJM5mN35jcAL1WUUKvkZMAjw4NECQxKbkygDdpwg5UZdrVV7y_4-Tx5d5VebcHxuhYGEbvkMwzdsLvLX2D13RWIxxGfWOueW6dh4rpjJTY6CZfa3INtnlpPfATb84sP008dRGrK7fZdd2Q_jqm_1KSRmLQL47C6YxYyFovEQStsmKWuz8odl_P-ql7KH99kVW1Yn9kOfBneu086uQ5XbRmqn79BOv7vhz2GR94tJdNejp7AFta7sDO0fCBeA-zCww38wqfw2ad12JVn2HZJXTVpDDmR6lo3zQ2Ztq2r4SdfF9JS1C7_IzixdlOT02rlIBrsY4is7dQdMjcLfUsGlJQ9mM_eXJ6eB75bQ6AYy9qAWq0vMiMyFcWlMTYsMtxkTMU60zTKkbrQMxc0QYY6YzmWKteloEImuYmt17APo7qp8RkQRQ0a4VwjLRNqUsk0E5rLlKONYGMcQzQwq1Aeytx11KiKLqSJRHH5dvaxcPwtPH_H8Gq9ZNnjePyNeM_xaIOw58kYDgeRKPyvflvYiJU5zP4sHsPrtZj8sYmTuDubPP8n6gN4YKdJf_hzCKP2ZoVH1h1qyxde6n8Bv7wAsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Detection+of+Backdoor+Attacks+via+Density-Based+Clustering+and+Centroids+Analysis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Guo%2C+Wei&rft.au=Tondi%2C+Benedetta&rft.au=Barni%2C+Mauro&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=19&rft.spage=970&rft_id=info:doi/10.1109%2FTIFS.2023.3329426&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon