Multi‐view stereo for weakly textured indoor 3D reconstruction

A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature ma...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 39; no. 10; pp. 1469 - 1489
Main Authors Wang, Tao, Gan, Vincent J. L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
1467-8667
DOI10.1111/mice.13149

Cover

Abstract A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction.
AbstractList A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction.
A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction.
Author Gan, Vincent J. L.
Wang, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: National University of Singapore
– sequence: 2
  givenname: Vincent J. L.
  surname: Gan
  fullname: Gan, Vincent J. L.
  email: vincent.gan@nus.edu.sg
  organization: National University of Singapore
BookMark eNp9kE1OwzAUhC1UJNrChhNEYgdKsbFj1ztQKVCpFRtYW_Gf5JLGxXEI2XEEzshJSAkrhDoL-8n6ZvTGIzAofWkAOEVwgjpdbpwyE4QR4QdgiAhl6ZRSNuhmyHHK6ZQdgVFVrWEnQvAQXK_qIrqvj883Z5qkiiYYn1gfksbkL0WbRPMe62B04krtu2d8mwSjfFnFUKvofHkMDm1eVObk9x6D57v50-whXT7eL2Y3y1RhzHiqJWcys1TTqc2o7Q5oFGJWE64llYznV4wQTjkyRMsME2mV1BBKZVmGkcZjcNHn1uU2b5u8KMQ2uE0eWoGg2JUXu_Lip3xHn_X0NvjX2lRRrH0dym5BgSHhWcYgoR113lMq-KoKxu6PhH9g5WK--4IYclf8b0G9pXGFafeEi9ViNu893zR_isw
CitedBy_id crossref_primary_10_3390_rs16244712
crossref_primary_10_3390_s24248196
crossref_primary_10_1016_j_scs_2024_106054
crossref_primary_10_1109_TIM_2024_3522683
crossref_primary_10_1111_mice_13191
crossref_primary_10_1016_j_autcon_2024_105600
Cites_doi 10.1016/j.autcon.2020.103109
10.1109/CVPR.2016.445
10.1109/ICCV.2017.253
10.1109/3DV50981.2020.00049
10.1109/CVPRW.2017.167
10.1016/j.autcon.2021.103940
10.1109/3DV.2019.00010
10.1109/CVPR.2019.00567
10.1016/j.autcon.2020.103231
10.1109/JSTARS.2019.2918937
10.1007/978-3-030-01237-3_47
10.4018/IJ3DIM.2016070101
10.1109/CVPR42600.2020.00493
10.1061/(ASCE)CO.1943-7862.0002260
10.1109/ICCV.2019.00695
10.1016/j.autcon.2021.104092
10.1016/j.autcon.2021.103812
10.1109/CVPR.2017.272
10.1109/TPAMI.2017.2699184
10.1109/CVPR42600.2020.00257
10.1007/978-3-030-01216-8_7
10.1109/CVPR.2014.59
10.1561/0600000052
10.3390/ijgi9050330
10.1111/mice.12715
10.1109/CLOUDCOMP.2015.7149628
10.1109/CVPR.2006.19
10.1109/TPAMI.2007.1166
10.1016/j.autcon.2023.104810
10.1016/j.autcon.2022.104625
10.1109/CVPR42600.2020.00166
10.1111/j.1467-8667.1989.tb00026.x
10.3390/rs11010058
10.1061/(ASCE)CO.1943-7862.0001047
10.1111/mice.12501
10.1016/j.autcon.2012.09.017
10.1109/ICIP42928.2021.9506469
10.1016/j.engstruct.2017.10.070
10.1109/CVPR.2008.4587706
10.1111/j.1467-8667.2006.00466.x
10.1007/978-3-030-01234-2_1
10.1609/aaai.v35i4.16411
10.1109/CVPR52688.2022.00839
10.1061/(ASCE)CO.1943-7862.0001570
10.1109/ICCV.2015.106
10.1145/3072959.3073599
10.1109/ICCVW.2011.6130280
10.1111/cgf.14021
10.1109/ICCV.1999.790410
10.1109/CVPR46437.2021.01397
10.1109/CVPR42600.2020.00186
10.1080/19648189.2012.676365
10.1111/mice.12568
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of Editor.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of Editor.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1111/mice.13149
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 1489
ExternalDocumentID 10.1111/mice.13149
10_1111_mice_13149
MICE13149
Genre article
GrantInformation_xml – fundername: Ministry of Education Singapore
– fundername: NUS Start‐up Grant
  funderid: R‐296‐000‐233‐133
– fundername: Academic Research Fund Tier 1
  funderid: A‐8001207‐00‐00
GroupedDBID ..I
.3N
.DC
.GA
05W
0R~
10A
1OC
24P
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAP
EBS
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.4S
1OB
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ARCSS
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EAD
EDO
EJD
EMK
FEDTE
HF~
HVGLF
I-F
LW6
MK~
PALCI
RJQFR
SAMSI
TUS
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c3379-db97b5f6d68f56f8f50ec17fd49db6b79a27449691e4db534bfcbd00bcf7531d3
IEDL.DBID 24P
ISSN 1093-9687
1467-8667
IngestDate Tue Aug 19 21:06:13 EDT 2025
Sun Jul 13 04:19:30 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
Wed Oct 01 04:16:02 EDT 2025
Wed Jan 22 17:20:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3379-db97b5f6d68f56f8f50ec17fd49db6b79a27449691e4db534bfcbd00bcf7531d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13149
PQID 3049557046
PQPubID 2045171
PageCount 21
ParticipantIDs unpaywall_primary_10_1111_mice_13149
proquest_journals_3049557046
crossref_primary_10_1111_mice_13149
crossref_citationtrail_10_1111_mice_13149
wiley_primary_10_1111_mice_13149_MICE13149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2022; 134
2018a; 144
2019; 12
2021; 129
2014; 27
2023; 149
2012; 16
2007; 30
2016; 142
2018b; 156
2021; 36
2022; 2202
2017; 30
2017; 36
2020; 9
2022; 37
2007; 22
1989; 4
2020; 2010
2011
2019; 1905
2020; 39
2008
2006
2020; 35
2003
2018; 1812
2015; 9
1999
2022; 144
2016; 5
2015; 28
2013; 33
2022
2021
2020
2019
2020; 116
2018
2017
2016
2015
2014
2020; 113
2021; 132
2014; 1412
2018; 11
2022; 148
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
Jaderberg M. (e_1_2_8_23_1) 2015
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_57_1
Hartley R. (e_1_2_8_19_1) 2003
e_1_2_8_32_1
e_1_2_8_55_1
Mnih V. (e_1_2_8_38_1) 2014
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Dosovitskiy A. (e_1_2_8_14_1) 2020; 2010
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_63_1
Feng Z. (e_1_2_8_15_1) 2018; 1812
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
Kar A. (e_1_2_8_27_1) 2017
e_1_2_8_37_1
e_1_2_8_58_1
Ba J. (e_1_2_8_5_1) 2014; 1412
Cyganek B. (e_1_2_8_9_1) 2011
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2011
– start-page: 1790
  year: 2020
  end-page: 1799
  article-title: BlendedMVS: A large‐scale dataset for generalized multi‐view stereo networks
– volume: 4
  start-page: 247
  issue: 4
  year: 1989
  end-page: 256
  article-title: Perceptron learning in engineering design
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 9
  start-page: 330
  issue: 5
  year: 2020
  article-title: A Review of techniques for 3D reconstruction of indoor environments
  publication-title: ISPRS International Journal of Geo‐Information
– volume: 144
  issue: 12
  year: 2018a
  article-title: Novel machine learning model for construction cost estimation taking into account economic variables and indices
  publication-title: Journal of Construction Engineering and Management
– start-page: 101
  year: 2018
  end-page: 116
  article-title: Open‐world stereo video matching with deep RNN
– volume: 28
  year: 2015
– volume: 9
  start-page: 1
  issue: 1‐2
  year: 2015
  end-page: 148
  article-title: Multi‐view stereo: A tutorial
  publication-title: Foundations and Trends® in Computer Graphics and Vision
– start-page: 2307
  year: 2017
  end-page: 2315
  article-title: SurfaceNet: An end‐to‐end 3D neural network for multiview stereopsis
– volume: 30
  start-page: 328
  issue: 2
  year: 2007
  end-page: 341
  article-title: Stereo processing by semiglobal matching and mutual information
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 4104
  year: 2016
  end-page: 4113
  article-title: Structure‐from‐motion revisited
– volume: 134
  year: 2022
  article-title: Deep learning‐based 3D reconstruction of scaffolds using a robot dog
  publication-title: Automation in Construction
– volume: 116
  year: 2020
  article-title: Image‐based construction of building energy models using computer vision
  publication-title: Automation in Construction
– volume: 33
  start-page: 48
  year: 2013
  end-page: 60
  article-title: Image‐based 3D scene reconstruction and exploration in augmented reality
  publication-title: Automation in Construction
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 13
  article-title: Tanks and temples: Benchmarking large‐scale scene reconstruction
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 519
  year: 2006
  end-page: 528
  article-title: A comparison and evaluation of multi‐view stereo reconstruction algorithms
– volume: 12
  start-page: 3117
  issue: 8
  year: 2019
  end-page: 3130
  article-title: Automatic 3‐D reconstruction of indoor environment with mobile laser scanning point clouds
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 30
  year: 2017
– start-page: 1150
  year: 1999
  end-page: 1157
  article-title: Object recognition from local scale‐invariant features
– volume: 2010
  year: 2020
  publication-title: arXiv preprint arXiv
– volume: 36
  start-page: 89
  issue: 1
  year: 2021
  end-page: 108
  article-title: Structure‐aware 3D reconstruction for cable‐stayed bridges: A learning‐based method
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 3030
  year: 2021
  end-page: 3038
  article-title: Self‐supervised multi‐view stereo via effective co‐segmentation and data‐augmentation
– start-page: 2495
  year: 2020
  end-page: 2504
  article-title: Cascade cost volume for high‐resolution multi‐view stereo and stereo matching
– start-page: 406
  year: 2014
  end-page: 413
  article-title: Large scale multi‐view stereopsis evaluation
– start-page: 14194
  year: 2021
  end-page: 14203
  article-title: PatchmatchNet: Learned multi‐view patchmatch stereo
– start-page: 1
  year: 2017
  end-page: 10
  article-title: Intel RealSense stereoscopic depth cameras
– start-page: 8585
  year: 2022
  end-page: 8594
  article-title: TransMVSNet: Global context‐aware multi‐view stereo network with transformers
– start-page: 1590
  year: 2020
  end-page: 1599
  article-title: Attention‐aware multi‐view stereo
– volume: 11
  start-page: 58
  issue: 1
  year: 2018
  article-title: Low‐cost and efficient indoor 3D reconstruction through annotated hierarchical structure‐from‐motion
  publication-title: Remote Sensing
– start-page: 3260
  year: 2017
  end-page: 3269
  article-title: A multi‐view stereo benchmark with high‐resolution images and multi‐camera videos
– volume: 113
  year: 2020
  article-title: Indoor 3D reconstruction from point clouds for optimal routing in complex buildings to support disaster management
  publication-title: Automation in Construction
– start-page: 394
  year: 2020
  end-page: 403
  article-title: BP‐MVSNet: Belief‐propagation‐layers for multi‐view‐stereo
– start-page: 6851
  year: 2019
  end-page: 6860
  article-title: Accurate monocular 3D object detection via color‐embedded 3D reconstruction for autonomous driving
– volume: 142
  issue: 2
  year: 2016
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: Journal of Construction Engineering and Management
– volume: 1412
  start-page: 7755
  year: 2014
  article-title: Multiple object recognition with visual attention
  publication-title: arXiv preprint arXiv
– volume: 22
  start-page: 19
  issue: 1
  year: 2007
  end-page: 30
  article-title: A new approach for health monitoring of structures: Terrestrial laser scanning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 2202
  year: 2022
– volume: 16
  start-page: 543
  issue: 5
  year: 2012
  end-page: 556
  article-title: Application of digital techniques in monument preservation
  publication-title: European Journal of Environmental and Civil Engineering
– start-page: 767
  year: 2018
  end-page: 783
  article-title: MVSNet: Depth inference for unstructured multi‐view stereo
– start-page: 5525
  year: 2019
  end-page: 5534
  article-title: Recurrent MVSNet for high‐resolution multi‐view stereo depth inference
– volume: 149
  year: 2023
  article-title: Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer learning
  publication-title: Automation in Construction
– volume: 35
  start-page: 511
  issue: 5
  year: 2020
  end-page: 529
  article-title: Image‐based crack assessment of bridge piers using unmanned aerial vehicles and three‐dimensional scene reconstruction
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2003
– start-page: 3
  year: 2018
  end-page: 19
  article-title: CBAM: Convolutional block attention module
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  end-page: 848
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 27
  year: 2014
– start-page: 1
  year: 2015
  end-page: 5
  article-title: An indoor emergency guidance algorithm based on wireless sensor networks
– start-page: 3163
  year: 2021
  end-page: 3167
  article-title: M3VSNET: Unsupervised multi‐metric multi‐view stereo network
– volume: 129
  year: 2021
  article-title: Semi‐automated luminance map re‐projection via high dynamic range imaging and indoor space 3‐D reconstruction
  publication-title: Automation in Construction
– volume: 5
  start-page: 1
  issue: 3
  year: 2016
  end-page: 17
  article-title: Valid space description in BIM for 3D indoor navigation
  publication-title: International Journal of 3‐D Information Modeling (IJ3DIM)
– volume: 37
  start-page: 354
  issue: 3
  year: 2022
  end-page: 369
  article-title: A 3D reconstruction method for buildings based on monocular vision
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 148
  issue: 4
  year: 2022
  article-title: Applications of smart technologies in construction project management
  publication-title: Journal of Construction Engineering and Management
– volume: 39
  start-page: 667
  issue: 2
  year: 2020
  end-page: 699
  article-title: State‐of‐the‐art in automatic 3D reconstruction of structured indoor environments
  publication-title: Computer Graphics Forum
– start-page: 873
  year: 2015
  end-page: 881
  article-title: Massively parallel multiview stereopsis by surface normal diffusion
– volume: 1905
  year: 2019
– volume: 144
  year: 2022
  article-title: Digital twin‐enabled built environment sensing and monitoring through semantic enrichment of BIM with sensorML
  publication-title: Automation in Construction
– volume: 1812
  year: 2018
  publication-title: arXiv preprint arXiv
– volume: 132
  year: 2021
  article-title: Computer vision applications in construction: Current state, opportunities & challenges
  publication-title: Automation in Construction
– start-page: 1
  year: 2008
  end-page: 8
  article-title: On benchmarking camera calibration and multi‐view stereo for high resolution imagery
– start-page: 467
  year: 2011
  end-page: 474
  article-title: On building an accurate stereo matching system on graphics hardware
– start-page: 4877
  year: 2020
  end-page: 4886
  article-title: Cost volume pyramid based depth inference for multi‐view stereo
– start-page: 1
  year: 2019
  end-page: 8
  article-title: MVS2: Deep unsupervised multi‐view stereo with multi‐view symmetry
– volume: 156
  start-page: 598
  year: 2018b
  end-page: 607
  article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures
  publication-title: Engineering Structures
– ident: e_1_2_8_39_1
  doi: 10.1016/j.autcon.2020.103109
– ident: e_1_2_8_46_1
  doi: 10.1109/CVPR.2016.445
– ident: e_1_2_8_25_1
  doi: 10.1109/ICCV.2017.253
– ident: e_1_2_8_49_1
  doi: 10.1109/3DV50981.2020.00049
– ident: e_1_2_8_28_1
  doi: 10.1109/CVPRW.2017.167
– ident: e_1_2_8_40_1
  doi: 10.1016/j.autcon.2021.103940
– ident: e_1_2_8_10_1
  doi: 10.1109/3DV.2019.00010
– volume-title: Multiple view geometry in computer vision
  year: 2003
  ident: e_1_2_8_19_1
– ident: e_1_2_8_61_1
  doi: 10.1109/CVPR.2019.00567
– ident: e_1_2_8_13_1
  doi: 10.1016/j.autcon.2020.103231
– ident: e_1_2_8_8_1
  doi: 10.1109/JSTARS.2019.2918937
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_8_27_1
– ident: e_1_2_8_60_1
  doi: 10.1007/978-3-030-01237-3_47
– ident: e_1_2_8_2_1
  doi: 10.4018/IJ3DIM.2016070101
– ident: e_1_2_8_58_1
  doi: 10.1109/CVPR42600.2020.00493
– ident: e_1_2_8_64_1
  doi: 10.1061/(ASCE)CO.1943-7862.0002260
– ident: e_1_2_8_36_1
  doi: 10.1109/ICCV.2019.00695
– ident: e_1_2_8_30_1
  doi: 10.1016/j.autcon.2021.104092
– ident: e_1_2_8_31_1
  doi: 10.1016/j.autcon.2021.103812
– ident: e_1_2_8_47_1
  doi: 10.1109/CVPR.2017.272
– ident: e_1_2_8_7_1
  doi: 10.1109/TPAMI.2017.2699184
– ident: e_1_2_8_18_1
  doi: 10.1109/CVPR42600.2020.00257
– ident: e_1_2_8_63_1
  doi: 10.1007/978-3-030-01216-8_7
– ident: e_1_2_8_24_1
  doi: 10.1109/CVPR.2014.59
– ident: e_1_2_8_16_1
  doi: 10.1561/0600000052
– volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_8_38_1
– ident: e_1_2_8_26_1
  doi: 10.3390/ijgi9050330
– ident: e_1_2_8_29_1
– ident: e_1_2_8_56_1
  doi: 10.1111/mice.12715
– volume: 1412
  start-page: 7755
  year: 2014
  ident: e_1_2_8_5_1
  article-title: Multiple object recognition with visual attention
  publication-title: arXiv preprint arXiv
– volume: 1812
  year: 2018
  ident: e_1_2_8_15_1
  article-title: Rapid 3D reconstruction of indoor environments to generate virtual reality serious games scenarios
  publication-title: arXiv preprint arXiv
– ident: e_1_2_8_4_1
  doi: 10.1109/CLOUDCOMP.2015.7149628
– volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: e_1_2_8_23_1
– ident: e_1_2_8_48_1
  doi: 10.1109/CVPR.2006.19
– ident: e_1_2_8_20_1
  doi: 10.1109/TPAMI.2007.1166
– ident: e_1_2_8_52_1
  doi: 10.1016/j.autcon.2023.104810
– ident: e_1_2_8_53_1
  doi: 10.1016/j.autcon.2022.104625
– ident: e_1_2_8_35_1
  doi: 10.1109/CVPR42600.2020.00166
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1467-8667.1989.tb00026.x
– ident: e_1_2_8_12_1
  doi: 10.3390/rs11010058
– ident: e_1_2_8_44_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– ident: e_1_2_8_33_1
  doi: 10.1111/mice.12501
– volume-title: An introduction to 3D computer vision techniques and algorithms
  year: 2011
  ident: e_1_2_8_9_1
– ident: e_1_2_8_59_1
  doi: 10.1016/j.autcon.2012.09.017
– volume: 2010
  year: 2020
  ident: e_1_2_8_14_1
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv preprint arXiv
– ident: e_1_2_8_22_1
  doi: 10.1109/ICIP42928.2021.9506469
– ident: e_1_2_8_55_1
– ident: e_1_2_8_45_1
  doi: 10.1016/j.engstruct.2017.10.070
– ident: e_1_2_8_50_1
  doi: 10.1109/CVPR.2008.4587706
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1467-8667.2006.00466.x
– ident: e_1_2_8_54_1
  doi: 10.1007/978-3-030-01234-2_1
– ident: e_1_2_8_57_1
  doi: 10.1609/aaai.v35i4.16411
– ident: e_1_2_8_11_1
  doi: 10.1109/CVPR52688.2022.00839
– ident: e_1_2_8_43_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– ident: e_1_2_8_17_1
  doi: 10.1109/ICCV.2015.106
– ident: e_1_2_8_32_1
  doi: 10.1145/3072959.3073599
– ident: e_1_2_8_37_1
  doi: 10.1109/ICCVW.2011.6130280
– ident: e_1_2_8_42_1
  doi: 10.1111/cgf.14021
– ident: e_1_2_8_34_1
  doi: 10.1109/ICCV.1999.790410
– ident: e_1_2_8_51_1
  doi: 10.1109/CVPR46437.2021.01397
– ident: e_1_2_8_62_1
  doi: 10.1109/CVPR42600.2020.00186
– ident: e_1_2_8_6_1
  doi: 10.1080/19648189.2012.676365
– ident: e_1_2_8_21_1
  doi: 10.1111/mice.12568
SSID ssj0000443
Score 2.4533226
Snippet A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1469
SubjectTerms Algorithms
Artificial neural networks
Data recovery
Deep learning
Feature maps
Image reconstruction
Indoor environments
Machine learning
Representations
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ofFAfnFecTinoi0LnuqTJ8ubQjSE4fHAwn0ouDYijG7ox5pM_wd_oLzFJ2-lEhuBLKSE9tDmXfGlOvgNwqsNQUMKpz3Wd-Rgr7XMpiXF3qnFVBfU0N-e2Q9pdfNMLe99O8af8ELMfbtYzXLy2Dj5UOo3zuatf2IrtlQAZlL8MKyQ0aLwAK93OXePBbXIy5DPiauS5eFAnhGYMpfMPz89JX0BzdZwM-XTC-_156OrmnlYReP7WacrJU2U8EhX5-oPQ8T-ftQkbGTD1GqklbcFSnGxDMQOpXhYCXkxTXgcib9uG9W-khjtw6c70fry9200Hz_IwxAPPQGNvEvOn_tSzqSbjZyPzMVED04yuPbcqnzHZ7kK31by_avtZnQZfIkSZrwSjItREkboOiTaXaiyNrhVmShBBGbc0hIywIMZKhAgLLYWqVoXUZrEUKLQHhWSQxPvgESkYwjyk0gC5Gg0EwUEtRkIojqmBqiU4yzUVyYzE3NbS6Ef5YsaOXeTGrgQns77DlLrj117lXOFR5r4vkd17tNxkmJTgdGYEC6WcO6Uu6BIZt2q6u4O_yTyEtZpBUGl2ZRkKRgvxkUFAI3GcGfknwC4Fgw
  priority: 102
  providerName: Unpaywall
Title Multi‐view stereo for weakly textured indoor 3D reconstruction
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13149
https://www.proquest.com/docview/3049557046
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13149
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8667
  dateEnd: 20241104
  omitProxy: true
  ssIdentifier: ssj0000443
  issn: 1467-8667
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 20241104
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1467-8667
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-8667
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HtSDj6pYrWVBLwor3U02acCDYltEsIhYqKclj83F0hZrEW_-BH-jv8TJPvoAKXgJS5jkkJlJvtlMvgE4s1GkOJPcl7YhfEqN9aXWDN2dW1o3QSPLzXnosLsuve9FvRW4Kt7CZPwQ0x9uzjPS_do5uFTjOSd31dovA4IIfxXWAgQyzr5D-jjbh2meXi-IL1iD5-SkLo9nNnbxOJphzPXJYCQ_P2S_v4ha02OnvQNbOV70bjIF78JKMijDdo4dvdwzx9hVlGco-sqwOcc1uAfX6VPbn69vdxfgOXqEZOghYvU-Evna__RcBsjkDefEIH2I3aTppcHylGB2H7rt1vPtnZ-XT_A1IVz4RgmuIssMa9iIWWzqiUYVGCqMYooL6dgBBRNBQo2KCFVWK1OvK20xhgkMOYDSYDhIDsFjWglCZcQ14quQB4rRIEyIUkZSjgiyAufFKsY65xZ3JS76cRFjuBWP0xWvwOlUdpQxavwpVS2UEedeNY7dlaCjDKOsAmdTBS2d5SLV3RKRGK29lX4d_Uf4GDZChDdZ6mMVSqiL5AThybuqpVaIbfMprMFat_N48_ILs2vjWQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHtCDD9SIom4iF03WsLTb0ptGJahAPEDCbdPH9iIBIhLCzZ_gb_SX2O52eSSGxMtm00x7mOm037TTbwDKOgwFJZz6XNeYj7HSPpeSGHenGldUUEtzc1pt0ujil17Yc7k59i1Myg8xP3CznpGs19bB7YH0kpfbcu23ATIQfxO2MAmIjb2q-G2xEGOXX8-Qz0iNOnZSm8iz6Lu6Hy1AZn4yGPHZlPf7q7A12Xfq-7DrAKN3n1r4ADbiQQH2HHj0nGuOTVNWnyFrK8DOEtngIdwlb21_vr7tZYBn-RHioWcgqzeN-Xt_5tkUkMmHGdNE6UPTjB69JFqeM8weQbf-1Hlo-K5-gi8RosxXglERaqJITYdEm08llsYGCjMliKCMW3pARlgQYyVChIWWQlUqQmoTxAQKHUNuMBzEJ-ARKRjCPKTSAKwqDQTBQTVGQiiOqYGQRbjOtBhJRy5ua1z0oyzIsBqPEo0X4WouO0opNf6UKmXGiJxbjSN7J2g5wzApQnluoLWj3CS2WyMSmen-lPyd_kf4EvKNTqsZNZ_br2ewXTVYJ82DLEHO2CU-N1jlU1wkM_IXgW7kLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSyMxFD6sXfDysF1v2F3XHdAXhSmdJpNM3ly2Ft1VEVHwbcgVpGVabIvokz_B37i_xCSTqe2yCO7LMIQzgck5Z_Jl8uU7AHsmTQUlnMbcZCzGWJmYS0lsulODWyrJSm7O2Tk5vsa_btKbwM1xZ2FKfYjpDzeXGf577RJcD5WZyXJXrr2ZIAvxF-AjTlnmGH2dyxn1KBz49QzFjGQ0qJM6Is_rs_Pz0SvIXJoUQ_5wz_v9edjq551uvSyuOvJyhY5u0mtOxqIpH_8Sc_zvV_oMnwIijX6UIbQKH3SxBvWATqOQ-yPbVBWAqNrWYGVGzXAdDv1h3j9Pz263IXICDHoQWUwc3Wve6z9EjmMyubN93hZqYJtRJ_LL8amE7QZcd4-ufh7HoUBDLBGiLFaCUZEaokhmUmLspaWldbLCTAkiKONOf5ARlmisRIqwMFKoVktIY1dJiUKbUCsGhd6CiEjBEOYplRbBtWkiCE7aGgmhOKYWozZgv3JTLoN6uSui0c-rVYwbu9yPXQN2p7bDUrPjn1bblbfzkLej3G06OlEyTBqwN42AN3s58B59wyS3-XTk7768x_g7LF50uvnpyfnvr7Dctliq5FluQ826RX-zWGgsdnzEvwDLswTV
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ofFAfnFecTinoi0LnuqTJ8ubQjSE4fHAwn0ouDYijG7ox5pM_wd_oLzFJ2-lEhuBLKSE9tDmXfGlOvgNwqsNQUMKpz3Wd-Rgr7XMpiXF3qnFVBfU0N-e2Q9pdfNMLe99O8af8ELMfbtYzXLy2Dj5UOo3zuatf2IrtlQAZlL8MKyQ0aLwAK93OXePBbXIy5DPiauS5eFAnhGYMpfMPz89JX0BzdZwM-XTC-_156OrmnlYReP7WacrJU2U8EhX5-oPQ8T-ftQkbGTD1GqklbcFSnGxDMQOpXhYCXkxTXgcib9uG9W-khjtw6c70fry9200Hz_IwxAPPQGNvEvOn_tSzqSbjZyPzMVED04yuPbcqnzHZ7kK31by_avtZnQZfIkSZrwSjItREkboOiTaXaiyNrhVmShBBGbc0hIywIMZKhAgLLYWqVoXUZrEUKLQHhWSQxPvgESkYwjyk0gC5Gg0EwUEtRkIojqmBqiU4yzUVyYzE3NbS6Ef5YsaOXeTGrgQns77DlLrj117lXOFR5r4vkd17tNxkmJTgdGYEC6WcO6Uu6BIZt2q6u4O_yTyEtZpBUGl2ZRkKRgvxkUFAI3GcGfknwC4Fgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90view+stereo+for+weakly+textured+indoor+3D+reconstruction&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Wang%2C+Tao&rft.au=Gan%2C+Vincent+J.+L.&rft.date=2024-05-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=10&rft.spage=1469&rft.epage=1489&rft_id=info:doi/10.1111%2Fmice.13149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon