Multi‐view stereo for weakly textured indoor 3D reconstruction
A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature ma...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 39; no. 10; pp. 1469 - 1489 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 1467-8667 |
| DOI | 10.1111/mice.13149 |
Cover
| Abstract | A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction. |
|---|---|
| AbstractList | A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction. A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms have emerged, replacing conventional hand‐crafted features with convolutional neural network‐encoded deep representation to reduce feature matching ambiguity, leading to a more complete scene recovery from imagery data. However, the state‐of‐the‐art architectures are not designed for an indoor environment with abundant weakly textured or textureless objects. This paper proposes AttentionSPP‐PatchmatchNet, a deep learning‐based MVS algorithm designed for indoor 3D reconstruction. The algorithm integrates multi‐scale feature sampling to produce global‐context‐aware feature maps and recalibrates the weight of essential features to tackle challenges posed by indoor environments. A new dataset designed exclusively for indoor environments is presented to verify the performance of the proposed network. Experimental results show that AttentionSPP‐PatchmatchNet outperforms state‐of‐the‐art algorithms with relative 132.87% and 163.55% improvements at the 10 and 2 mm threshold, respectively, making it suitable for accurate and complete indoor 3D reconstruction. |
| Author | Gan, Vincent J. L. Wang, Tao |
| Author_xml | – sequence: 1 givenname: Tao surname: Wang fullname: Wang, Tao organization: National University of Singapore – sequence: 2 givenname: Vincent J. L. surname: Gan fullname: Gan, Vincent J. L. email: vincent.gan@nus.edu.sg organization: National University of Singapore |
| BookMark | eNp9kE1OwzAUhC1UJNrChhNEYgdKsbFj1ztQKVCpFRtYW_Gf5JLGxXEI2XEEzshJSAkrhDoL-8n6ZvTGIzAofWkAOEVwgjpdbpwyE4QR4QdgiAhl6ZRSNuhmyHHK6ZQdgVFVrWEnQvAQXK_qIrqvj883Z5qkiiYYn1gfksbkL0WbRPMe62B04krtu2d8mwSjfFnFUKvofHkMDm1eVObk9x6D57v50-whXT7eL2Y3y1RhzHiqJWcys1TTqc2o7Q5oFGJWE64llYznV4wQTjkyRMsME2mV1BBKZVmGkcZjcNHn1uU2b5u8KMQ2uE0eWoGg2JUXu_Lip3xHn_X0NvjX2lRRrH0dym5BgSHhWcYgoR113lMq-KoKxu6PhH9g5WK--4IYclf8b0G9pXGFafeEi9ViNu893zR_isw |
| CitedBy_id | crossref_primary_10_3390_rs16244712 crossref_primary_10_3390_s24248196 crossref_primary_10_1016_j_scs_2024_106054 crossref_primary_10_1109_TIM_2024_3522683 crossref_primary_10_1111_mice_13191 crossref_primary_10_1016_j_autcon_2024_105600 |
| Cites_doi | 10.1016/j.autcon.2020.103109 10.1109/CVPR.2016.445 10.1109/ICCV.2017.253 10.1109/3DV50981.2020.00049 10.1109/CVPRW.2017.167 10.1016/j.autcon.2021.103940 10.1109/3DV.2019.00010 10.1109/CVPR.2019.00567 10.1016/j.autcon.2020.103231 10.1109/JSTARS.2019.2918937 10.1007/978-3-030-01237-3_47 10.4018/IJ3DIM.2016070101 10.1109/CVPR42600.2020.00493 10.1061/(ASCE)CO.1943-7862.0002260 10.1109/ICCV.2019.00695 10.1016/j.autcon.2021.104092 10.1016/j.autcon.2021.103812 10.1109/CVPR.2017.272 10.1109/TPAMI.2017.2699184 10.1109/CVPR42600.2020.00257 10.1007/978-3-030-01216-8_7 10.1109/CVPR.2014.59 10.1561/0600000052 10.3390/ijgi9050330 10.1111/mice.12715 10.1109/CLOUDCOMP.2015.7149628 10.1109/CVPR.2006.19 10.1109/TPAMI.2007.1166 10.1016/j.autcon.2023.104810 10.1016/j.autcon.2022.104625 10.1109/CVPR42600.2020.00166 10.1111/j.1467-8667.1989.tb00026.x 10.3390/rs11010058 10.1061/(ASCE)CO.1943-7862.0001047 10.1111/mice.12501 10.1016/j.autcon.2012.09.017 10.1109/ICIP42928.2021.9506469 10.1016/j.engstruct.2017.10.070 10.1109/CVPR.2008.4587706 10.1111/j.1467-8667.2006.00466.x 10.1007/978-3-030-01234-2_1 10.1609/aaai.v35i4.16411 10.1109/CVPR52688.2022.00839 10.1061/(ASCE)CO.1943-7862.0001570 10.1109/ICCV.2015.106 10.1145/3072959.3073599 10.1109/ICCVW.2011.6130280 10.1111/cgf.14021 10.1109/ICCV.1999.790410 10.1109/CVPR46437.2021.01397 10.1109/CVPR42600.2020.00186 10.1080/19648189.2012.676365 10.1111/mice.12568 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of Editor. 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of Editor. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1111/mice.13149 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 1489 |
| ExternalDocumentID | 10.1111/mice.13149 10_1111_mice_13149 MICE13149 |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Education Singapore – fundername: NUS Start‐up Grant funderid: R‐296‐000‐233‐133 – fundername: Academic Research Fund Tier 1 funderid: A‐8001207‐00‐00 |
| GroupedDBID | ..I .3N .DC .GA 05W 0R~ 10A 1OC 24P 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAP EBS EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT .4S 1OB 31~ AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACUHS ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AHEFC AI. AIDQK AIDYY AIQQE ARCSS ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EAD EDO EJD EMK FEDTE HF~ HVGLF I-F LW6 MK~ PALCI RJQFR SAMSI TUS VH1 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3379-db97b5f6d68f56f8f50ec17fd49db6b79a27449691e4db534bfcbd00bcf7531d3 |
| IEDL.DBID | 24P |
| ISSN | 1093-9687 1467-8667 |
| IngestDate | Tue Aug 19 21:06:13 EDT 2025 Sun Jul 13 04:19:30 EDT 2025 Thu Apr 24 22:56:22 EDT 2025 Wed Oct 01 04:16:02 EDT 2025 Wed Jan 22 17:20:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Attribution-NonCommercial cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3379-db97b5f6d68f56f8f50ec17fd49db6b79a27449691e4db534bfcbd00bcf7531d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13149 |
| PQID | 3049557046 |
| PQPubID | 2045171 |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_1111_mice_13149 proquest_journals_3049557046 crossref_primary_10_1111_mice_13149 crossref_citationtrail_10_1111_mice_13149 wiley_primary_10_1111_mice_13149_MICE13149 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 40 2022; 134 2018a; 144 2019; 12 2021; 129 2014; 27 2023; 149 2012; 16 2007; 30 2016; 142 2018b; 156 2021; 36 2022; 2202 2017; 30 2017; 36 2020; 9 2022; 37 2007; 22 1989; 4 2020; 2010 2011 2019; 1905 2020; 39 2008 2006 2020; 35 2003 2018; 1812 2015; 9 1999 2022; 144 2016; 5 2015; 28 2013; 33 2022 2021 2020 2019 2020; 116 2018 2017 2016 2015 2014 2020; 113 2021; 132 2014; 1412 2018; 11 2022; 148 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 Jaderberg M. (e_1_2_8_23_1) 2015 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_57_1 Hartley R. (e_1_2_8_19_1) 2003 e_1_2_8_32_1 e_1_2_8_55_1 Mnih V. (e_1_2_8_38_1) 2014 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Dosovitskiy A. (e_1_2_8_14_1) 2020; 2010 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_63_1 Feng Z. (e_1_2_8_15_1) 2018; 1812 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 Kar A. (e_1_2_8_27_1) 2017 e_1_2_8_37_1 e_1_2_8_58_1 Ba J. (e_1_2_8_5_1) 2014; 1412 Cyganek B. (e_1_2_8_9_1) 2011 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – year: 2011 – start-page: 1790 year: 2020 end-page: 1799 article-title: BlendedMVS: A large‐scale dataset for generalized multi‐view stereo networks – volume: 4 start-page: 247 issue: 4 year: 1989 end-page: 256 article-title: Perceptron learning in engineering design publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 9 start-page: 330 issue: 5 year: 2020 article-title: A Review of techniques for 3D reconstruction of indoor environments publication-title: ISPRS International Journal of Geo‐Information – volume: 144 issue: 12 year: 2018a article-title: Novel machine learning model for construction cost estimation taking into account economic variables and indices publication-title: Journal of Construction Engineering and Management – start-page: 101 year: 2018 end-page: 116 article-title: Open‐world stereo video matching with deep RNN – volume: 28 year: 2015 – volume: 9 start-page: 1 issue: 1‐2 year: 2015 end-page: 148 article-title: Multi‐view stereo: A tutorial publication-title: Foundations and Trends® in Computer Graphics and Vision – start-page: 2307 year: 2017 end-page: 2315 article-title: SurfaceNet: An end‐to‐end 3D neural network for multiview stereopsis – volume: 30 start-page: 328 issue: 2 year: 2007 end-page: 341 article-title: Stereo processing by semiglobal matching and mutual information publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 4104 year: 2016 end-page: 4113 article-title: Structure‐from‐motion revisited – volume: 134 year: 2022 article-title: Deep learning‐based 3D reconstruction of scaffolds using a robot dog publication-title: Automation in Construction – volume: 116 year: 2020 article-title: Image‐based construction of building energy models using computer vision publication-title: Automation in Construction – volume: 33 start-page: 48 year: 2013 end-page: 60 article-title: Image‐based 3D scene reconstruction and exploration in augmented reality publication-title: Automation in Construction – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 13 article-title: Tanks and temples: Benchmarking large‐scale scene reconstruction publication-title: ACM Transactions on Graphics (TOG) – start-page: 519 year: 2006 end-page: 528 article-title: A comparison and evaluation of multi‐view stereo reconstruction algorithms – volume: 12 start-page: 3117 issue: 8 year: 2019 end-page: 3130 article-title: Automatic 3‐D reconstruction of indoor environment with mobile laser scanning point clouds publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 30 year: 2017 – start-page: 1150 year: 1999 end-page: 1157 article-title: Object recognition from local scale‐invariant features – volume: 2010 year: 2020 publication-title: arXiv preprint arXiv – volume: 36 start-page: 89 issue: 1 year: 2021 end-page: 108 article-title: Structure‐aware 3D reconstruction for cable‐stayed bridges: A learning‐based method publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 3030 year: 2021 end-page: 3038 article-title: Self‐supervised multi‐view stereo via effective co‐segmentation and data‐augmentation – start-page: 2495 year: 2020 end-page: 2504 article-title: Cascade cost volume for high‐resolution multi‐view stereo and stereo matching – start-page: 406 year: 2014 end-page: 413 article-title: Large scale multi‐view stereopsis evaluation – start-page: 14194 year: 2021 end-page: 14203 article-title: PatchmatchNet: Learned multi‐view patchmatch stereo – start-page: 1 year: 2017 end-page: 10 article-title: Intel RealSense stereoscopic depth cameras – start-page: 8585 year: 2022 end-page: 8594 article-title: TransMVSNet: Global context‐aware multi‐view stereo network with transformers – start-page: 1590 year: 2020 end-page: 1599 article-title: Attention‐aware multi‐view stereo – volume: 11 start-page: 58 issue: 1 year: 2018 article-title: Low‐cost and efficient indoor 3D reconstruction through annotated hierarchical structure‐from‐motion publication-title: Remote Sensing – start-page: 3260 year: 2017 end-page: 3269 article-title: A multi‐view stereo benchmark with high‐resolution images and multi‐camera videos – volume: 113 year: 2020 article-title: Indoor 3D reconstruction from point clouds for optimal routing in complex buildings to support disaster management publication-title: Automation in Construction – start-page: 394 year: 2020 end-page: 403 article-title: BP‐MVSNet: Belief‐propagation‐layers for multi‐view‐stereo – start-page: 6851 year: 2019 end-page: 6860 article-title: Accurate monocular 3D object detection via color‐embedded 3D reconstruction for autonomous driving – volume: 142 issue: 2 year: 2016 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Journal of Construction Engineering and Management – volume: 1412 start-page: 7755 year: 2014 article-title: Multiple object recognition with visual attention publication-title: arXiv preprint arXiv – volume: 22 start-page: 19 issue: 1 year: 2007 end-page: 30 article-title: A new approach for health monitoring of structures: Terrestrial laser scanning publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2202 year: 2022 – volume: 16 start-page: 543 issue: 5 year: 2012 end-page: 556 article-title: Application of digital techniques in monument preservation publication-title: European Journal of Environmental and Civil Engineering – start-page: 767 year: 2018 end-page: 783 article-title: MVSNet: Depth inference for unstructured multi‐view stereo – start-page: 5525 year: 2019 end-page: 5534 article-title: Recurrent MVSNet for high‐resolution multi‐view stereo depth inference – volume: 149 year: 2023 article-title: Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer learning publication-title: Automation in Construction – volume: 35 start-page: 511 issue: 5 year: 2020 end-page: 529 article-title: Image‐based crack assessment of bridge piers using unmanned aerial vehicles and three‐dimensional scene reconstruction publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2003 – start-page: 3 year: 2018 end-page: 19 article-title: CBAM: Convolutional block attention module – volume: 40 start-page: 834 issue: 4 year: 2017 end-page: 848 article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 27 year: 2014 – start-page: 1 year: 2015 end-page: 5 article-title: An indoor emergency guidance algorithm based on wireless sensor networks – start-page: 3163 year: 2021 end-page: 3167 article-title: M3VSNET: Unsupervised multi‐metric multi‐view stereo network – volume: 129 year: 2021 article-title: Semi‐automated luminance map re‐projection via high dynamic range imaging and indoor space 3‐D reconstruction publication-title: Automation in Construction – volume: 5 start-page: 1 issue: 3 year: 2016 end-page: 17 article-title: Valid space description in BIM for 3D indoor navigation publication-title: International Journal of 3‐D Information Modeling (IJ3DIM) – volume: 37 start-page: 354 issue: 3 year: 2022 end-page: 369 article-title: A 3D reconstruction method for buildings based on monocular vision publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 148 issue: 4 year: 2022 article-title: Applications of smart technologies in construction project management publication-title: Journal of Construction Engineering and Management – volume: 39 start-page: 667 issue: 2 year: 2020 end-page: 699 article-title: State‐of‐the‐art in automatic 3D reconstruction of structured indoor environments publication-title: Computer Graphics Forum – start-page: 873 year: 2015 end-page: 881 article-title: Massively parallel multiview stereopsis by surface normal diffusion – volume: 1905 year: 2019 – volume: 144 year: 2022 article-title: Digital twin‐enabled built environment sensing and monitoring through semantic enrichment of BIM with sensorML publication-title: Automation in Construction – volume: 1812 year: 2018 publication-title: arXiv preprint arXiv – volume: 132 year: 2021 article-title: Computer vision applications in construction: Current state, opportunities & challenges publication-title: Automation in Construction – start-page: 1 year: 2008 end-page: 8 article-title: On benchmarking camera calibration and multi‐view stereo for high resolution imagery – start-page: 467 year: 2011 end-page: 474 article-title: On building an accurate stereo matching system on graphics hardware – start-page: 4877 year: 2020 end-page: 4886 article-title: Cost volume pyramid based depth inference for multi‐view stereo – start-page: 1 year: 2019 end-page: 8 article-title: MVS2: Deep unsupervised multi‐view stereo with multi‐view symmetry – volume: 156 start-page: 598 year: 2018b end-page: 607 article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures publication-title: Engineering Structures – ident: e_1_2_8_39_1 doi: 10.1016/j.autcon.2020.103109 – ident: e_1_2_8_46_1 doi: 10.1109/CVPR.2016.445 – ident: e_1_2_8_25_1 doi: 10.1109/ICCV.2017.253 – ident: e_1_2_8_49_1 doi: 10.1109/3DV50981.2020.00049 – ident: e_1_2_8_28_1 doi: 10.1109/CVPRW.2017.167 – ident: e_1_2_8_40_1 doi: 10.1016/j.autcon.2021.103940 – ident: e_1_2_8_10_1 doi: 10.1109/3DV.2019.00010 – volume-title: Multiple view geometry in computer vision year: 2003 ident: e_1_2_8_19_1 – ident: e_1_2_8_61_1 doi: 10.1109/CVPR.2019.00567 – ident: e_1_2_8_13_1 doi: 10.1016/j.autcon.2020.103231 – ident: e_1_2_8_8_1 doi: 10.1109/JSTARS.2019.2918937 – volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_8_27_1 – ident: e_1_2_8_60_1 doi: 10.1007/978-3-030-01237-3_47 – ident: e_1_2_8_2_1 doi: 10.4018/IJ3DIM.2016070101 – ident: e_1_2_8_58_1 doi: 10.1109/CVPR42600.2020.00493 – ident: e_1_2_8_64_1 doi: 10.1061/(ASCE)CO.1943-7862.0002260 – ident: e_1_2_8_36_1 doi: 10.1109/ICCV.2019.00695 – ident: e_1_2_8_30_1 doi: 10.1016/j.autcon.2021.104092 – ident: e_1_2_8_31_1 doi: 10.1016/j.autcon.2021.103812 – ident: e_1_2_8_47_1 doi: 10.1109/CVPR.2017.272 – ident: e_1_2_8_7_1 doi: 10.1109/TPAMI.2017.2699184 – ident: e_1_2_8_18_1 doi: 10.1109/CVPR42600.2020.00257 – ident: e_1_2_8_63_1 doi: 10.1007/978-3-030-01216-8_7 – ident: e_1_2_8_24_1 doi: 10.1109/CVPR.2014.59 – ident: e_1_2_8_16_1 doi: 10.1561/0600000052 – volume-title: Advances in Neural Information Processing Systems year: 2014 ident: e_1_2_8_38_1 – ident: e_1_2_8_26_1 doi: 10.3390/ijgi9050330 – ident: e_1_2_8_29_1 – ident: e_1_2_8_56_1 doi: 10.1111/mice.12715 – volume: 1412 start-page: 7755 year: 2014 ident: e_1_2_8_5_1 article-title: Multiple object recognition with visual attention publication-title: arXiv preprint arXiv – volume: 1812 year: 2018 ident: e_1_2_8_15_1 article-title: Rapid 3D reconstruction of indoor environments to generate virtual reality serious games scenarios publication-title: arXiv preprint arXiv – ident: e_1_2_8_4_1 doi: 10.1109/CLOUDCOMP.2015.7149628 – volume-title: Advances in Neural Information Processing Systems year: 2015 ident: e_1_2_8_23_1 – ident: e_1_2_8_48_1 doi: 10.1109/CVPR.2006.19 – ident: e_1_2_8_20_1 doi: 10.1109/TPAMI.2007.1166 – ident: e_1_2_8_52_1 doi: 10.1016/j.autcon.2023.104810 – ident: e_1_2_8_53_1 doi: 10.1016/j.autcon.2022.104625 – ident: e_1_2_8_35_1 doi: 10.1109/CVPR42600.2020.00166 – ident: e_1_2_8_3_1 doi: 10.1111/j.1467-8667.1989.tb00026.x – ident: e_1_2_8_12_1 doi: 10.3390/rs11010058 – ident: e_1_2_8_44_1 doi: 10.1061/(ASCE)CO.1943-7862.0001047 – ident: e_1_2_8_33_1 doi: 10.1111/mice.12501 – volume-title: An introduction to 3D computer vision techniques and algorithms year: 2011 ident: e_1_2_8_9_1 – ident: e_1_2_8_59_1 doi: 10.1016/j.autcon.2012.09.017 – volume: 2010 year: 2020 ident: e_1_2_8_14_1 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv preprint arXiv – ident: e_1_2_8_22_1 doi: 10.1109/ICIP42928.2021.9506469 – ident: e_1_2_8_55_1 – ident: e_1_2_8_45_1 doi: 10.1016/j.engstruct.2017.10.070 – ident: e_1_2_8_50_1 doi: 10.1109/CVPR.2008.4587706 – ident: e_1_2_8_41_1 doi: 10.1111/j.1467-8667.2006.00466.x – ident: e_1_2_8_54_1 doi: 10.1007/978-3-030-01234-2_1 – ident: e_1_2_8_57_1 doi: 10.1609/aaai.v35i4.16411 – ident: e_1_2_8_11_1 doi: 10.1109/CVPR52688.2022.00839 – ident: e_1_2_8_43_1 doi: 10.1061/(ASCE)CO.1943-7862.0001570 – ident: e_1_2_8_17_1 doi: 10.1109/ICCV.2015.106 – ident: e_1_2_8_32_1 doi: 10.1145/3072959.3073599 – ident: e_1_2_8_37_1 doi: 10.1109/ICCVW.2011.6130280 – ident: e_1_2_8_42_1 doi: 10.1111/cgf.14021 – ident: e_1_2_8_34_1 doi: 10.1109/ICCV.1999.790410 – ident: e_1_2_8_51_1 doi: 10.1109/CVPR46437.2021.01397 – ident: e_1_2_8_62_1 doi: 10.1109/CVPR42600.2020.00186 – ident: e_1_2_8_6_1 doi: 10.1080/19648189.2012.676365 – ident: e_1_2_8_21_1 doi: 10.1111/mice.12568 |
| SSID | ssj0000443 |
| Score | 2.4533226 |
| Snippet | A 3D reconstruction enables an effective geometric representation to support various applications. Recently, learning‐based multi‐view stereo (MVS) algorithms... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1469 |
| SubjectTerms | Algorithms Artificial neural networks Data recovery Deep learning Feature maps Image reconstruction Indoor environments Machine learning Representations |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ofFAfnFecTinoi0LnuqTJ8ubQjSE4fHAwn0ouDYijG7ox5pM_wd_oLzFJ2-lEhuBLKSE9tDmXfGlOvgNwqsNQUMKpz3Wd-Rgr7XMpiXF3qnFVBfU0N-e2Q9pdfNMLe99O8af8ELMfbtYzXLy2Dj5UOo3zuatf2IrtlQAZlL8MKyQ0aLwAK93OXePBbXIy5DPiauS5eFAnhGYMpfMPz89JX0BzdZwM-XTC-_156OrmnlYReP7WacrJU2U8EhX5-oPQ8T-ftQkbGTD1GqklbcFSnGxDMQOpXhYCXkxTXgcib9uG9W-khjtw6c70fry9200Hz_IwxAPPQGNvEvOn_tSzqSbjZyPzMVED04yuPbcqnzHZ7kK31by_avtZnQZfIkSZrwSjItREkboOiTaXaiyNrhVmShBBGbc0hIywIMZKhAgLLYWqVoXUZrEUKLQHhWSQxPvgESkYwjyk0gC5Gg0EwUEtRkIojqmBqiU4yzUVyYzE3NbS6Ef5YsaOXeTGrgQns77DlLrj117lXOFR5r4vkd17tNxkmJTgdGYEC6WcO6Uu6BIZt2q6u4O_yTyEtZpBUGl2ZRkKRgvxkUFAI3GcGfknwC4Fgw priority: 102 providerName: Unpaywall |
| Title | Multi‐view stereo for weakly textured indoor 3D reconstruction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13149 https://www.proquest.com/docview/3049557046 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13149 |
| UnpaywallVersion | publishedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241104 omitProxy: true ssIdentifier: ssj0000443 issn: 1467-8667 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241104 omitProxy: false ssIdentifier: ssj0000443 issn: 1467-8667 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1467-8667 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HtSDj6pYrWVBLwor3U02acCDYltEsIhYqKclj83F0hZrEW_-BH-jv8TJPvoAKXgJS5jkkJlJvtlMvgE4s1GkOJPcl7YhfEqN9aXWDN2dW1o3QSPLzXnosLsuve9FvRW4Kt7CZPwQ0x9uzjPS_do5uFTjOSd31dovA4IIfxXWAgQyzr5D-jjbh2meXi-IL1iD5-SkLo9nNnbxOJphzPXJYCQ_P2S_v4ha02OnvQNbOV70bjIF78JKMijDdo4dvdwzx9hVlGco-sqwOcc1uAfX6VPbn69vdxfgOXqEZOghYvU-Evna__RcBsjkDefEIH2I3aTppcHylGB2H7rt1vPtnZ-XT_A1IVz4RgmuIssMa9iIWWzqiUYVGCqMYooL6dgBBRNBQo2KCFVWK1OvK20xhgkMOYDSYDhIDsFjWglCZcQ14quQB4rRIEyIUkZSjgiyAufFKsY65xZ3JS76cRFjuBWP0xWvwOlUdpQxavwpVS2UEedeNY7dlaCjDKOsAmdTBS2d5SLV3RKRGK29lX4d_Uf4GDZChDdZ6mMVSqiL5AThybuqpVaIbfMprMFat_N48_ILs2vjWQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHtCDD9SIom4iF03WsLTb0ptGJahAPEDCbdPH9iIBIhLCzZ_gb_SX2O52eSSGxMtm00x7mOm037TTbwDKOgwFJZz6XNeYj7HSPpeSGHenGldUUEtzc1pt0ujil17Yc7k59i1Myg8xP3CznpGs19bB7YH0kpfbcu23ATIQfxO2MAmIjb2q-G2xEGOXX8-Qz0iNOnZSm8iz6Lu6Hy1AZn4yGPHZlPf7q7A12Xfq-7DrAKN3n1r4ADbiQQH2HHj0nGuOTVNWnyFrK8DOEtngIdwlb21_vr7tZYBn-RHioWcgqzeN-Xt_5tkUkMmHGdNE6UPTjB69JFqeM8weQbf-1Hlo-K5-gi8RosxXglERaqJITYdEm08llsYGCjMliKCMW3pARlgQYyVChIWWQlUqQmoTxAQKHUNuMBzEJ-ARKRjCPKTSAKwqDQTBQTVGQiiOqYGQRbjOtBhJRy5ua1z0oyzIsBqPEo0X4WouO0opNf6UKmXGiJxbjSN7J2g5wzApQnluoLWj3CS2WyMSmen-lPyd_kf4EvKNTqsZNZ_br2ewXTVYJ82DLEHO2CU-N1jlU1wkM_IXgW7kLA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSyMxFD6sXfDysF1v2F3XHdAXhSmdJpNM3ly2Ft1VEVHwbcgVpGVabIvokz_B37i_xCSTqe2yCO7LMIQzgck5Z_Jl8uU7AHsmTQUlnMbcZCzGWJmYS0lsulODWyrJSm7O2Tk5vsa_btKbwM1xZ2FKfYjpDzeXGf577RJcD5WZyXJXrr2ZIAvxF-AjTlnmGH2dyxn1KBz49QzFjGQ0qJM6Is_rs_Pz0SvIXJoUQ_5wz_v9edjq551uvSyuOvJyhY5u0mtOxqIpH_8Sc_zvV_oMnwIijX6UIbQKH3SxBvWATqOQ-yPbVBWAqNrWYGVGzXAdDv1h3j9Pz263IXICDHoQWUwc3Wve6z9EjmMyubN93hZqYJtRJ_LL8amE7QZcd4-ufh7HoUBDLBGiLFaCUZEaokhmUmLspaWldbLCTAkiKONOf5ARlmisRIqwMFKoVktIY1dJiUKbUCsGhd6CiEjBEOYplRbBtWkiCE7aGgmhOKYWozZgv3JTLoN6uSui0c-rVYwbu9yPXQN2p7bDUrPjn1bblbfzkLej3G06OlEyTBqwN42AN3s58B59wyS3-XTk7768x_g7LF50uvnpyfnvr7Dctliq5FluQ826RX-zWGgsdnzEvwDLswTV |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ofFAfnFecTinoi0LnuqTJ8ubQjSE4fHAwn0ouDYijG7ox5pM_wd_oLzFJ2-lEhuBLKSE9tDmXfGlOvgNwqsNQUMKpz3Wd-Rgr7XMpiXF3qnFVBfU0N-e2Q9pdfNMLe99O8af8ELMfbtYzXLy2Dj5UOo3zuatf2IrtlQAZlL8MKyQ0aLwAK93OXePBbXIy5DPiauS5eFAnhGYMpfMPz89JX0BzdZwM-XTC-_156OrmnlYReP7WacrJU2U8EhX5-oPQ8T-ftQkbGTD1GqklbcFSnGxDMQOpXhYCXkxTXgcib9uG9W-khjtw6c70fry9200Hz_IwxAPPQGNvEvOn_tSzqSbjZyPzMVED04yuPbcqnzHZ7kK31by_avtZnQZfIkSZrwSjItREkboOiTaXaiyNrhVmShBBGbc0hIywIMZKhAgLLYWqVoXUZrEUKLQHhWSQxPvgESkYwjyk0gC5Gg0EwUEtRkIojqmBqiU4yzUVyYzE3NbS6Ef5YsaOXeTGrgQns77DlLrj117lXOFR5r4vkd17tNxkmJTgdGYEC6WcO6Uu6BIZt2q6u4O_yTyEtZpBUGl2ZRkKRgvxkUFAI3GcGfknwC4Fgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90view+stereo+for+weakly+textured+indoor+3D+reconstruction&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Wang%2C+Tao&rft.au=Gan%2C+Vincent+J.+L.&rft.date=2024-05-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=10&rft.spage=1469&rft.epage=1489&rft_id=info:doi/10.1111%2Fmice.13149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |