Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural ne...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 39; no. 23; pp. 3573 - 3594 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 1467-8667 |
| DOI | 10.1111/mice.13164 |
Cover
| Abstract | One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (R2$R^{2}$), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending. |
|---|---|
| AbstractList | One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (R2$R^{2}$), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending. One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (R2$R^{2}$), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending. One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending. |
| Author | Mieloszyk, Magdalena Yoo, Doo‐Yeol Bagherzadeh, Faramarz Kazemi, Farzin Shafighfard, Torkan |
| Author_xml | – sequence: 1 givenname: Torkan surname: Shafighfard fullname: Shafighfard, Torkan organization: Polish Academy of Sciences – sequence: 2 givenname: Farzin surname: Kazemi fullname: Kazemi, Farzin organization: University College London – sequence: 3 givenname: Faramarz surname: Bagherzadeh fullname: Bagherzadeh, Faramarz email: fabagher@uni-bremen.de organization: University of Bremen – sequence: 4 givenname: Magdalena surname: Mieloszyk fullname: Mieloszyk, Magdalena organization: Polish Academy of Sciences – sequence: 5 givenname: Doo‐Yeol surname: Yoo fullname: Yoo, Doo‐Yeol email: dyyoo@yonsei.ac.kr organization: Yonsei University |
| BookMark | eNp9kMFu1DAQhi1UJNrChSewxA2UYsdee3NEqwKVirjA2ZqMJ9SVYwcnq2pvvANvyJPgEE4IdXzwP_b3j0b_BTtLORFjL6W4krXejgHpSipp9BN2LrWxzd4Ye1a16FTTmb19xi7m-V7U0lqds-VwByGR5yPgXRU8EpQU0jc-Zk-RD7nwqZAPuKyPMYPnCBNgWE4ckuf-WH_i2uWBzwutntBT-fXjZ6GQqh_rdMwJCy3Ee4Jxfs6eDhBnevH3vmRf319_OXxsbj9_uDm8u21QKasbKak1VkCHVemO9u0OTLcbLHit7V5h31rbevTa9OgJdwawE4JQ9oOoR12yN9vcY5rg9AAxuqmEEcrJSeHWwNwamPsTWKVfbfRU8vcjzYu7z8eS6oJOybZrVQ1MVEpsFJY8z4UGV6OAJeS0FAjx_4Nf_2N5dAu5wQ8h0ukR0n26OVxvnt9i152N |
| CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_109150 crossref_primary_10_3390_buildings14061711 crossref_primary_10_1007_s42107_024_01122_9 crossref_primary_10_1016_j_istruc_2024_107716 crossref_primary_10_1016_j_jobe_2024_110912 crossref_primary_10_1007_s13369_024_09096_1 crossref_primary_10_1016_j_asoc_2025_112783 crossref_primary_10_1016_j_soildyn_2024_108952 crossref_primary_10_21926_aeer_2404020 crossref_primary_10_3390_app14093563 crossref_primary_10_1016_j_asoc_2025_112878 crossref_primary_10_1016_j_rineng_2024_103421 crossref_primary_10_1016_j_engappai_2025_110109 crossref_primary_10_1016_j_engappai_2025_110527 crossref_primary_10_1016_j_mtcomm_2024_110667 crossref_primary_10_1016_j_ress_2024_110743 crossref_primary_10_3390_buildings14061807 crossref_primary_10_1016_j_engappai_2025_110544 crossref_primary_10_3390_buildings14041118 crossref_primary_10_1016_j_mtcomm_2024_111286 crossref_primary_10_3390_app14114530 crossref_primary_10_3390_buildings14051263 crossref_primary_10_1007_s43452_024_01067_5 crossref_primary_10_1016_j_eswa_2024_124897 crossref_primary_10_1016_j_cscm_2025_e04384 crossref_primary_10_3390_app14135611 crossref_primary_10_1109_ACCESS_2024_3504726 crossref_primary_10_3390_buildings15030452 crossref_primary_10_1111_mice_13357 crossref_primary_10_1007_s10661_024_13390_8 crossref_primary_10_1016_j_engappai_2025_110377 crossref_primary_10_1016_j_rineng_2025_104242 crossref_primary_10_1016_j_trgeo_2024_101332 crossref_primary_10_3390_buildings14092675 crossref_primary_10_3390_infrastructures10030057 crossref_primary_10_1016_j_istruc_2024_107482 crossref_primary_10_1016_j_engappai_2025_110616 crossref_primary_10_1016_j_rineng_2024_103110 crossref_primary_10_1016_j_engappai_2025_110512 crossref_primary_10_1002_pc_29648 crossref_primary_10_1038_s41598_024_65836_1 crossref_primary_10_1016_j_compstruc_2025_107657 crossref_primary_10_1016_j_engappai_2025_110458 crossref_primary_10_1016_j_mtcomm_2024_110813 crossref_primary_10_3390_buildings14040954 |
| Cites_doi | 10.1016/j.engstruct.2022.114202 10.1016/j.istruc.2022.04.046 10.1109/TNNLS.2017.2682102 10.1111/j.1467-8667.2011.00752.x 10.5772/3162 10.1016/j.jobe.2019.100878 10.1155/2019/8390345 10.1680/stbu.12.00068 10.1016/j.engstruct.2015.08.029 10.1016/j.compstruc.2022.106886 10.1007/s00521-019-04146-4 10.1016/j.istruc.2022.11.140 10.1016/j.conbuildmat.2023.130652 10.14359/51689360 10.1016/j.seta.2023.103040 10.1016/j.cscm.2022.e01655 10.1155/2018/7390798 10.1111/mice.12965 10.1016/j.conbuildmat.2018.03.225 10.3390/ma15010017 10.1111/mice.12753 10.1016/j.compstruct.2019.110926 10.1016/j.istruc.2022.09.052 10.1007/978-3-662-45620-0 10.1111/mice.12817 10.1016/j.aei.2020.101126 10.1111/mice.12456 10.1016/j.engstruct.2010.07.017 10.1016/j.engstruct.2022.114575 10.1111/mice.12564 10.1007/s00521-019-04359-7 10.1016/j.engstruct.2018.08.010 10.1016/j.compositesb.2012.06.003 10.1139/cjce-2015-0384 10.1007/s00158-016-1483-5 10.1061/(ASCE)0733-9445(2004)130:3(452) 10.1016/j.commatsci.2003.10.007 10.1016/j.conbuildmat.2015.08.032 10.1002/suco.201700129 10.1016/j.conbuildmat.2015.01.021 10.1016/j.istruc.2022.03.007 10.1016/j.jmrt.2022.10.153 10.1016/j.conbuildmat.2012.09.022 10.1002/suco.201800247 10.1111/mice.12844 10.1111/mice.12561 10.1016/j.engstruct.2012.04.032 10.14359/51689560 10.1016/j.cscm.2022.e01537 10.1111/mice.12773 10.1016/j.conbuildmat.2014.05.098 10.1111/mice.12447 10.1016/j.engstruct.2020.110927 10.15632/jtam-pl.55.4.1205 10.1016/j.istruc.2019.02.018 10.1016/j.addma.2020.101728 10.1016/j.istruc.2021.12.083 10.1029/2000JD900719 10.3390/ma13102225 10.1016/j.ymssp.2023.110315 10.1016/j.asoc.2017.05.029 10.1016/j.engstruct.2020.111221 10.1111/j.1467-8667.2006.00449.x 10.1016/j.conbuildmat.2018.08.099 10.1016/j.cemconcomp.2016.12.002 10.1016/j.conbuildmat.2005.01.047 10.1016/j.engstruct.2015.06.006 10.1109/TNNLS.2022.3190448 10.1109/TGRS.2023.3334867 10.1002/tal.1400 10.1016/j.conbuildmat.2014.12.003 10.1016/j.engstruct.2018.01.008 10.1111/mice.12915 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Editor. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Editor. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1111/mice.13164 |
| DatabaseName | Wiley Journal - Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 3594 |
| ExternalDocumentID | 10.1111/mice.13164 10_1111_mice_13164 MICE13164 |
| Genre | article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2021R1A2C4001503 – fundername: University of Bremen – fundername: Yonsei University funderid: 2023‐22‐0134 |
| GroupedDBID | ..I .3N .DC .GA 05W 0R~ 10A 1OC 24P 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAP EBS EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT .4S 1OB 31~ AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACUHS ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AHEFC AI. AIDQK AIDYY AIQQE ARCSS ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EAD EDO EJD EMK FEDTE HF~ HVGLF I-F LW6 MK~ PALCI RJQFR SAMSI TUS VH1 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3374-11e2670a9c11e49e825a695f7ad44783cb2772dcd46bcdec56ac900ec1bf0f0f3 |
| IEDL.DBID | DR2 |
| ISSN | 1093-9687 1467-8667 |
| IngestDate | Wed Oct 01 15:54:55 EDT 2025 Sat Jul 26 00:01:26 EDT 2025 Wed Oct 01 04:16:02 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jan 22 17:12:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3374-11e2670a9c11e49e825a695f7ad44783cb2772dcd46bcdec56ac900ec1bf0f0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13164 |
| PQID | 3129234430 |
| PQPubID | 2045171 |
| PageCount | 22 |
| ParticipantIDs | unpaywall_primary_10_1111_mice_13164 proquest_journals_3129234430 crossref_citationtrail_10_1111_mice_13164 crossref_primary_10_1111_mice_13164 wiley_primary_10_1111_mice_13164_MICE13164 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 1 December 2024 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 1 December 2024 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 78 2019; 2019 2018; 160 1989; 86 2012; 289 2004; 29 2015; 102 2023; 38 2015; 100 2017; 44 2015; 77 2024; 30 2020; 13 2022; 21 2017; 114 2014; 66 2001; 106 2021; 36 2018; 174 2017; 30 2021; 37 2006; 20 2018; 172 2019; 20 2006; 21 2023; 370 2022; 40 2004; 130 2017; 77 2019; 26 2016; 113 2022; 37 2020; 45 2012; 27 2020; 219 2017a; 28 2022; 39 2014; 167 2010; 32 2018; 188 2017b; 26 2023; 56 2019; 34 2015; 98 2016; 54 2022; 45 1993; 90 2020; 224 2020; 32 2018; 67 2012; 345 2023; 61 2019; 222 2022; 266 2018; 19 2021; 15 2018; 2018 2023; 47 2020; 2020 2013; 38 2022; 260 2023; 274 2017; 58 2023; 195 2017; 55 2022; 57 2017 2016 2015 2013 2012; 43 2022; 17 2012; 42 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 Koksal F. (e_1_2_9_37_1) 2012; 289 Smith C. (e_1_2_9_66_1) 2017 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 Qissab M. A. (e_1_2_9_54_1) 2018; 67 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 Kazemi F. (e_1_2_9_34_1) 2024; 30 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 Le T. T. (e_1_2_9_38_1) 2020; 2020 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Sedgwick P. (e_1_2_9_61_1) 2012; 345 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Ashour S. A. (e_1_2_9_11_1) 1993; 90 e_1_2_9_19_1 Singh H. (e_1_2_9_65_1) 2016 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_80_1 Shin S. W. (e_1_2_9_64_1) 1989; 86 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 Lundberg S. M. (e_1_2_9_40_1) 2017; 30 |
| References_xml | – volume: 260 year: 2022 article-title: Experimental and numerical investigation of lightweight foamed reinforced concrete deep beams with steel fibers publication-title: Engineering Structures – volume: 100 start-page: 164 year: 2015 end-page: 177 article-title: Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams publication-title: Engineering Structures – volume: 42 start-page: 387 year: 2012 end-page: 395 article-title: Deriving stress–strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement publication-title: Engineering Structures – volume: 32 start-page: 6393 year: 2020 end-page: 6404 article-title: FEMA: A finite element machine for fast learning publication-title: Neural Computing and Applications – volume: 54 start-page: 151 year: 2016 end-page: 164 article-title: Cost optimization of reinforced concrete flat slabs of arbitrary configuration in irregular highrise building structures publication-title: Structural and Multidisciplinary Optimization – volume: 32 start-page: 3478 issue: 11 year: 2010 end-page: 3487 article-title: Structural behavior of ultra high performance concrete beams subjected to bending publication-title: Engineering Structures – volume: 61 start-page: 1 year: 2023 end-page: 11 article-title: Ice core micro‐CT image segmentation with deep learning and Gaussian mixture model publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 224 year: 2020 article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams publication-title: Engineering Structures – volume: 77 start-page: 1 year: 2017 end-page: 13 article-title: Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions publication-title: Cement and Concrete Composites – volume: 77 start-page: 94 year: 2015 end-page: 109 article-title: High performance fiber reinforced concrete for the shear reinforcement: Experimental and numerical research publication-title: Construction and Building Materials – volume: 37 year: 2021 article-title: Additive manufacturing of compliance optimized variable stiffness composites through short fiber alignment along curvilinear paths publication-title: Additive Manufacturing – volume: 38 start-page: 1520 year: 2023 end-page: 1535 article-title: A knowledge transfer enhanced ensemble approach to predict the shear capacity of reinforced concrete deep beams without stirrups publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 56 year: 2023 article-title: Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge publication-title: Sustainable Energy Technologies and Assessments – volume: 30 start-page: 1 year: 2024 end-page: 30 article-title: Data‐driven modeling of mechanical properties of fiber‐reinforced concrete: A critical review publication-title: Archives of Computational Methods in Engineering – volume: 195 year: 2023 article-title: Prediction of maximum tensile stress in plain‐weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study publication-title: Mechanical Systems and Signal Processing – volume: 34 start-page: 822 issue: 9 year: 2019 end-page: 839 article-title: Vibration‐based structural state identification by a 1‐dimensional convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 174 start-page: 873 year: 2018 end-page: 884 article-title: Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups publication-title: Engineering Structures – volume: 106 start-page: 7183 issue: D7 year: 2001 end-page: 7192 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: Journal of Geophysical Research: Atmospheres – volume: 36 start-page: 47 issue: 1 year: 2021 end-page: 60 article-title: Generative adversarial network for road damage detection publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 66 start-page: 329 year: 2014 end-page: 335 article-title: Using artificial neural networks for modeling surface roughness of wood in machining process publication-title: Construction and Building Materials – volume: 36 start-page: 61 issue: 1 year: 2021 end-page: 72 article-title: Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 36 start-page: 1508 issue: 12 year: 2021 end-page: 1529 article-title: Deep reinforcement learning for automated design of reinforced concrete structures publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 219 year: 2020 article-title: Failure mode and effects analysis of RC members based on machine‐learning‐based SHapley Additive exPlanations (SHAP) approach publication-title: Engineering Structures – volume: 114 start-page: 237 issue: 2 year: 2017 article-title: Supervised deep restricted Boltzmann machine for estimation of concrete publication-title: ACI Materials Journal – volume: 2019 start-page: 1 year: 2019 end-page: 31 article-title: Experimental investigation on the effect of steel fibers on the flexural behavior and ductility of high‐strength concrete hollow beams publication-title: Advances in Civil Engineering – volume: 43 start-page: 2930 issue: 8 year: 2012 end-page: 2937 article-title: Flexural behaviour of RC beams in fibre reinforced concrete publication-title: Composites Part B: Engineering – volume: 30 start-page: 1 year: 2017 end-page: 31 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – volume: 222 year: 2019 article-title: Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: Analytical and experimental investigation publication-title: Composite Structures – volume: 58 start-page: 576 year: 2017 end-page: 585 article-title: Evolutionary learning based sustainable strain sensing model for structural health monitoring of high‐rise buildings publication-title: Applied Soft Computing – volume: 37 start-page: 1566 issue: 12 year: 2022 end-page: 1581 article-title: Multifidelity approach for data‐driven prediction models of structural behaviors with limited data publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 47 start-page: 1196 year: 2023 end-page: 1211 article-title: Shear strength prediction of reinforced concrete beams using machine learning publication-title: Structures – volume: 19 start-page: 670 issue: 3 year: 2018 end-page: 683 article-title: Load‐carrying capacity of steel fiber reinforced concrete beams at large deflections publication-title: Structural Concrete – volume: 37 start-page: 1809 issue: 14 year: 2022 end-page: 1833 article-title: Predicting early‐age stress evolution in restrained concrete by thermo‐chemo‐mechanical model and active ensemble learning publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 188 start-page: 237 year: 2018 end-page: 254 article-title: Effect of steel fibers on the flexural behavior of RC beams with very low reinforcement ratios publication-title: Construction and Building Materials – volume: 20 start-page: 1 year: 2019 end-page: 10 article-title: Effect of fiber type and content on the flexural behavior of high strength concrete beams with low reinforcement ratios publication-title: Structures – volume: 55 start-page: 1205 issue: 4 year: 2017 end-page: 1217 article-title: An experimental study on the shear strength of SFRC beams without stirrups publication-title: Journal of Theoretical and Applied Mechanics – volume: 2020 start-page: 1 year: 2020 end-page: 16 article-title: Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method publication-title: Advances in Civil Engineering – volume: 34 start-page: 935 issue: 11 year: 2019 end-page: 950 article-title: A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 26 year: 2019 article-title: Determination of moment, shear and ductility capacities of spiral columns using an artificial neural network publication-title: Journal of Building Engineering – volume: 172 start-page: 562 year: 2018 end-page: 573 article-title: Flexural behavior of reinforced concrete beams externally strengthened with hardwire steel‐fiber sheets publication-title: Construction and Building Materials – volume: 102 start-page: 409 year: 2015 end-page: 423 article-title: Structural performance of ultra‐high‐performance concrete beams with different steel fibers publication-title: Engineering Structures – volume: 27 start-page: 333 issue: 5 year: 2012 end-page: 346 article-title: Strengthening and rehabilitation of reinforced concrete slabs with carbon‐fiber reinforced polymers using a refined bond model publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 370 year: 2023 article-title: Standardized RC beam tests for modeling the fiber bridging effect in SFRC publication-title: Construction and Building Materials – volume: 113 start-page: 781 issue: 6 year: 2016 end-page: 789 article-title: Neural network, machine learning, and evolutionary approaches for concrete material characterization publication-title: ACI Materials Journal – volume: 20 start-page: 1051 issue: 3 year: 2019 end-page: 1063 article-title: Static and dynamic mechanical properties of eco‐friendly polyvinyl alcohol fiber‐reinforced ultra‐high‐strength concrete publication-title: Structural Concrete – volume: 167 start-page: 544 issue: 9 year: 2014 end-page: 558 article-title: Shear behaviour of steel‐fibre‐reinforced concrete simply supported beams publication-title: Proceedings of the Institution of Civil Engineers‐Structures and Buildings – volume: 37 start-page: 1875 issue: 14 year: 2022 end-page: 1890 article-title: A sigmoid‐optimized encoder–decoder network for crack segmentation with copy‐edit‐paste transfer learning publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2015 – volume: 44 start-page: 18 issue: 1 year: 2017 end-page: 28 article-title: Experimental and numerical study on flexural behavior of ultra‐high‐performance fiber‐reinforced concrete beams with low reinforcement ratios publication-title: Canadian Journal of Civil Engineering – volume: 45 start-page: 773 year: 2022 end-page: 786 article-title: A flexural ductility model for UHPC beams reinforced with FRP bars publication-title: Structures – volume: 45 year: 2020 article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm publication-title: Advanced Engineering Informatics – volume: 274 year: 2023 article-title: Machine learning‐based prediction of seismic limit‐state capacity of steel moment‐resisting frames considering soil‐structure interaction publication-title: Computers & Structures – volume: 67 start-page: 347 issue: 4 year: 2018 end-page: 358 article-title: Shear strength of non‐prismatic steel fiber reinforced concrete beams without stirrups publication-title: Structural Engineering and Mechanics – volume: 86 start-page: 394 issue: 4 year: 1989 end-page: 400 article-title: Flexural ductility of ultra‐high‐strength concrete members publication-title: Structural Journal – volume: 130 start-page: 452 issue: 3 year: 2004 end-page: 459 article-title: Neutral axis depth versus flexural ductility in high‐strength concrete beams publication-title: Journal of Structural Engineering – volume: 266 year: 2022 article-title: Mesoscale analysis of fiber‐reinforced concrete beams publication-title: Engineering Structures – volume: 17 year: 2022 article-title: Flexural performance of reinforced concrete (RC) beam strengthened by UHPC layer publication-title: Case Studies in Construction Materials – volume: 21 start-page: 3777 year: 2022 end-page: 3794 article-title: Data‐driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms publication-title: Journal of Materials Research and Technology – volume: 17 year: 2022 article-title: Ensemble machine learning approach for evaluating the material characterization of carbon nanotube‐reinforced cementitious composites publication-title: Case Studies in Construction Materials – volume: 28 start-page: 3074 issue: 12 year: 2017a end-page: 3083 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 36 start-page: 1568 issue: 12 year: 2021 end-page: 1584 article-title: Crack detection using fusion features‐based broad learning system and image processing publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 29 start-page: 315 issue: 3 year: 2004 end-page: 333 article-title: Modeling of the APS plasma spray process using artificial neural networks: Basis, requirements and an example publication-title: Computational Materials Science – volume: 78 start-page: 271 year: 2015 end-page: 280 article-title: Flexural and shear behavior of geo‐grid confined RC beams with steel fiber reinforced concrete publication-title: Construction and Building materials – year: 2016 – volume: 20 start-page: 801 issue: 9 year: 2006 end-page: 811 article-title: Prediction of shear strength of steel fiber RC beams using neural networks publication-title: Construction and Building Materials – volume: 13 start-page: 2225 issue: 10 year: 2020 article-title: An experimental study on the ductility and flexural toughness of ultrahigh‐performance concrete beams subjected to bending publication-title: Materials – volume: 15 start-page: 17 issue: 1 year: 2021 article-title: Shear strengthening of high strength concrete beams that contain hooked‐end steel fiber publication-title: Materials – volume: 57 start-page: 1 year: 2022 end-page: 15 article-title: Self‐supervised learning for electroencephalography publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 38 start-page: 575 year: 2013 end-page: 581 article-title: Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete publication-title: Construction and Building Materials – volume: 39 start-page: 405 year: 2022 end-page: 418 article-title: Effect of steel fiber on flexural performance of bilayer concrete beams with steel and GFRP rebars: Experiments and predictions publication-title: Structures – volume: 21 start-page: 450 issue: 6 year: 2006 end-page: 464 article-title: Damage detection in a girder bridge by artificial neural network technique publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 90 start-page: 279 issue: 3 year: 1993 end-page: 287 article-title: Flexural behavior of high‐strength fiber reinforced concrete beams publication-title: Structural Journal – volume: 26 issue: 18 year: 2017b article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures publication-title: The Structural Design of Tall and Special Buildings – volume: 40 start-page: 513 year: 2022 end-page: 523 article-title: Reinforcement of new and existing reinforced concrete beams with fiber‐reinforced polymer bars and sheets—A numerical analysis publication-title: Structures – volume: 2018 start-page: 49 year: 2018 end-page: 64 article-title: A comparative experimental study on the flexural behavior of high‐strength fiber‐reinforced concrete and high‐strength concrete beams publication-title: Advances in Materials Science and Engineering – volume: 32 start-page: 8675 year: 2020 end-page: 8690 article-title: A dynamic ensemble learning algorithm for neural networks publication-title: Neural Computing and Applications – volume: 345 start-page: 41 year: 2012 end-page: 56 article-title: Pearson's correlation coefficient publication-title: British Medical Journal – year: 2017 – volume: 289 start-page: 1 year: 2012 end-page: 15 article-title: Effect of steel fiber tensile strength on mechanical properties of steel fiber reinforced concretes publication-title: Special Publication – volume: 98 start-page: 185 year: 2015 end-page: 193 article-title: Flexural behavior of lightly and heavily reinforced steel fiber concrete beams publication-title: Construction and Building Materials – volume: 37 start-page: 69 year: 2022 end-page: 81 article-title: A comparison of machine learning‐and regression‐based models for predicting ductility ratio of RC beam‐column joints publication-title: Structures – volume: 160 start-page: 85 year: 2018 end-page: 94 article-title: Classification of failure mode and prediction of shear strength for reinforced concrete beam‐column joints using machine learning techniques publication-title: Engineering Structures – year: 2013 – volume: 289 start-page: 1 year: 2012 ident: e_1_2_9_37_1 article-title: Effect of steel fiber tensile strength on mechanical properties of steel fiber reinforced concretes publication-title: Special Publication – ident: e_1_2_9_45_1 doi: 10.1016/j.engstruct.2022.114202 – ident: e_1_2_9_32_1 doi: 10.1016/j.istruc.2022.04.046 – ident: e_1_2_9_55_1 doi: 10.1109/TNNLS.2017.2682102 – ident: e_1_2_9_25_1 doi: 10.1111/j.1467-8667.2011.00752.x – ident: e_1_2_9_46_1 doi: 10.5772/3162 – ident: e_1_2_9_35_1 doi: 10.1016/j.jobe.2019.100878 – ident: e_1_2_9_3_1 doi: 10.1155/2019/8390345 – ident: e_1_2_9_2_1 doi: 10.1680/stbu.12.00068 – volume: 86 start-page: 394 issue: 4 year: 1989 ident: e_1_2_9_64_1 article-title: Flexural ductility of ultra‐high‐strength concrete members publication-title: Structural Journal – ident: e_1_2_9_80_1 doi: 10.1016/j.engstruct.2015.08.029 – ident: e_1_2_9_33_1 doi: 10.1016/j.compstruc.2022.106886 – ident: e_1_2_9_53_1 doi: 10.1007/s00521-019-04146-4 – ident: e_1_2_9_60_1 doi: 10.1016/j.istruc.2022.11.140 – ident: e_1_2_9_27_1 doi: 10.1016/j.conbuildmat.2023.130652 – ident: e_1_2_9_58_1 doi: 10.14359/51689360 – ident: e_1_2_9_5_1 doi: 10.1016/j.seta.2023.103040 – ident: e_1_2_9_49_1 doi: 10.1016/j.cscm.2022.e01655 – ident: e_1_2_9_76_1 doi: 10.1155/2018/7390798 – ident: e_1_2_9_52_1 doi: 10.1111/mice.12965 – ident: e_1_2_9_30_1 doi: 10.1016/j.conbuildmat.2018.03.225 – ident: e_1_2_9_81_1 doi: 10.3390/ma15010017 – volume-title: Steel fiber reinforced concrete: Behavior, modelling and design year: 2016 ident: e_1_2_9_65_1 – ident: e_1_2_9_84_1 doi: 10.1111/mice.12753 – ident: e_1_2_9_17_1 doi: 10.1016/j.compstruct.2019.110926 – ident: e_1_2_9_70_1 doi: 10.1016/j.istruc.2022.09.052 – ident: e_1_2_9_69_1 doi: 10.1007/978-3-662-45620-0 – ident: e_1_2_9_19_1 doi: 10.1111/mice.12817 – ident: e_1_2_9_24_1 doi: 10.1016/j.aei.2020.101126 – ident: e_1_2_9_41_1 doi: 10.1111/mice.12456 – ident: e_1_2_9_75_1 doi: 10.1016/j.engstruct.2010.07.017 – ident: e_1_2_9_6_1 doi: 10.1016/j.engstruct.2022.114575 – ident: e_1_2_9_21_1 doi: 10.1111/mice.12564 – ident: e_1_2_9_7_1 doi: 10.1007/s00521-019-04359-7 – ident: e_1_2_9_36_1 doi: 10.1016/j.engstruct.2018.08.010 – ident: e_1_2_9_47_1 doi: 10.1016/j.compositesb.2012.06.003 – ident: e_1_2_9_78_1 doi: 10.1139/cjce-2015-0384 – ident: e_1_2_9_8_1 doi: 10.1007/s00158-016-1483-5 – ident: e_1_2_9_15_1 doi: 10.1061/(ASCE)0733-9445(2004)130:3(452) – ident: e_1_2_9_28_1 doi: 10.1016/j.commatsci.2003.10.007 – ident: e_1_2_9_48_1 doi: 10.1016/j.conbuildmat.2015.08.032 – ident: e_1_2_9_73_1 doi: 10.1002/suco.201700129 – ident: e_1_2_9_20_1 doi: 10.1016/j.conbuildmat.2015.01.021 – ident: e_1_2_9_23_1 doi: 10.1016/j.istruc.2022.03.007 – ident: e_1_2_9_62_1 doi: 10.1016/j.jmrt.2022.10.153 – ident: e_1_2_9_9_1 doi: 10.1016/j.conbuildmat.2012.09.022 – ident: e_1_2_9_82_1 doi: 10.1002/suco.201800247 – ident: e_1_2_9_18_1 doi: 10.1111/mice.12844 – volume: 30 start-page: 1 year: 2017 ident: e_1_2_9_40_1 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_42_1 doi: 10.1111/mice.12561 – volume: 345 start-page: 41 year: 2012 ident: e_1_2_9_61_1 article-title: Pearson's correlation coefficient publication-title: British Medical Journal – volume: 90 start-page: 279 issue: 3 year: 1993 ident: e_1_2_9_11_1 article-title: Flexural behavior of high‐strength fiber reinforced concrete beams publication-title: Structural Journal – ident: e_1_2_9_26_1 doi: 10.1016/j.engstruct.2012.04.032 – ident: e_1_2_9_59_1 doi: 10.14359/51689560 – ident: e_1_2_9_13_1 doi: 10.1016/j.cscm.2022.e01537 – ident: e_1_2_9_31_1 doi: 10.1111/mice.12773 – ident: e_1_2_9_72_1 doi: 10.1016/j.conbuildmat.2014.05.098 – ident: e_1_2_9_83_1 doi: 10.1111/mice.12447 – ident: e_1_2_9_43_1 doi: 10.1016/j.engstruct.2020.110927 – volume-title: Decision trees and random forests: A visual introduction for beginners year: 2017 ident: e_1_2_9_66_1 – ident: e_1_2_9_10_1 doi: 10.15632/jtam-pl.55.4.1205 – ident: e_1_2_9_29_1 doi: 10.1016/j.istruc.2019.02.018 – ident: e_1_2_9_63_1 doi: 10.1016/j.addma.2020.101728 – ident: e_1_2_9_22_1 doi: 10.1016/j.istruc.2021.12.083 – ident: e_1_2_9_71_1 doi: 10.1029/2000JD900719 – ident: e_1_2_9_77_1 doi: 10.3390/ma13102225 – ident: e_1_2_9_14_1 doi: 10.1016/j.ymssp.2023.110315 – ident: e_1_2_9_51_1 doi: 10.1016/j.asoc.2017.05.029 – ident: e_1_2_9_67_1 doi: 10.1016/j.engstruct.2020.111221 – ident: e_1_2_9_74_1 doi: 10.1111/j.1467-8667.2006.00449.x – ident: e_1_2_9_79_1 doi: 10.1016/j.conbuildmat.2018.08.099 – ident: e_1_2_9_16_1 doi: 10.1016/j.cemconcomp.2016.12.002 – ident: e_1_2_9_4_1 doi: 10.1016/j.conbuildmat.2005.01.047 – ident: e_1_2_9_50_1 doi: 10.1016/j.engstruct.2015.06.006 – volume: 67 start-page: 347 issue: 4 year: 2018 ident: e_1_2_9_54_1 article-title: Shear strength of non‐prismatic steel fiber reinforced concrete beams without stirrups publication-title: Structural Engineering and Mechanics – ident: e_1_2_9_57_1 doi: 10.1109/TNNLS.2022.3190448 – ident: e_1_2_9_12_1 doi: 10.1109/TGRS.2023.3334867 – ident: e_1_2_9_56_1 doi: 10.1002/tal.1400 – ident: e_1_2_9_68_1 doi: 10.1016/j.conbuildmat.2014.12.003 – ident: e_1_2_9_44_1 doi: 10.1016/j.engstruct.2018.01.008 – volume: 30 start-page: 1 year: 2024 ident: e_1_2_9_34_1 article-title: Data‐driven modeling of mechanical properties of fiber‐reinforced concrete: A critical review publication-title: Archives of Computational Methods in Engineering – ident: e_1_2_9_39_1 doi: 10.1111/mice.12915 – volume: 2020 start-page: 1 year: 2020 ident: e_1_2_9_38_1 article-title: Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method publication-title: Advances in Civil Engineering |
| SSID | ssj0000443 |
| Score | 2.6475246 |
| Snippet | One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3573 |
| SubjectTerms | Algorithms Artificial neural networks Ductility Ductility tests Elastic properties Error analysis Machine learning Modulus of elasticity Peak load Predictions Reinforced concrete Reinforcing steels Root-mean-square errors Steel fiber reinforced concretes Steel fibers |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SzaH0kDQfJRvSIkguDXgrW7K0PoaQEAoJPXQhPRl9OYVuvMuul5Cc8h_yD_tLOpLlbbaUUCi-yEIWtjwjvbHG7wEcca2EVdL7d2oTLrlNNLUsMZSximVDK4IYzOWVuBjxz9f59bO_-Ft-iOUHN-8ZYb72Dj61VTvPd67-ySu2D1KGkP8VrIsc0XgP1kdXX06-hU3OgiWFCBp5YT4YCiEjQ-nqxatr0m-g-XpRT9X9nRqPV6FrWHvON0F1d92mnPwYLBo9MA9_EDr-z2O9hY0ITMlJa0lbsObqbdiMIJXEKWCOVZ0ORFe3DW-ekRruQHP6XeGZJbchT9ORKExxQ4LqDkGUTKYzvz_kM67JeKIsMbhkG4wHiKot8Qy0PmP3nkwqgkbor_F5LT8fn2YuEL0a7B3jeAS8jSPaqdv5LozOz76eXiRR2yExjEmepKnLhKSqMFjihcNAVYkir6SynMshMzpD3G-N5UIb60wulCkodSbVFcWDvYNePandHhCu0K6cpFJhqJqJTNNC5ZnD0M85UblhHz52b7c0kfjc62-Myy4A8uNdhvHuw-Gy7bSl-_hrq4POSMro8vOSIXLKGOeM9uFoaTgv9nIcDOGFJiW64lko7f9bnwfQa2YL9x6BUqM_RF_4Bc4VFZ4 priority: 102 providerName: Unpaywall |
| Title | Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13164 https://www.proquest.com/docview/3129234430 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13164 |
| UnpaywallVersion | publishedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1467-8667 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFL3U-qA-WK0WV9slYF8UZskk2WQHfCmlpQiWIi7UBxnyNQrdzi67s0h98j_4D_0l3mQy222RgjIvmZCEmcy9ybkzZ84F2BdGS6dV8O_cZUIJlxnqeGYp5xVnIydjMpgPp_JkLN6fD8834F33L0yrD7F64RY8I67XwcG1Waw5ecjWPsg5wn1cgHMuYzz1cU07SiR2fcGzQo5U0iYNNJ7rrjd3o2uI-WBZz_TVdz2Z3AStcdc53oIv3fW2ZJOLwbIxA_vjlpTj_97QE3ic4Cg5aO3nKWz4ehu2EjQlyfEXWNVlf-jqtuHRmpThM2gOv2k8c-QysjM9SekovpKYa4cgNiazefgqFHjWZDLVjljcqC1GAUTXjgTd2cDTvSLTiqDphT6BzfL756-5j_KuFkfH6B1hbuOJ8fpy8RzGx0efDk-ylNEhs5wrkeW5Z1JRXVgsicJjeKplMayUdkKoEbeGIdp31glprPN2KLUtKPU2NxXFg-_AZj2t_QsgQqM1eUWVxgCVSWZooYfMY8Dnvaz8qAdvuidb2iR3HrJuTMou7AnzXcb57sHrVdtZK_Lx11a7nYGUydEXJUe8xDiaGu3B_spo7hzlbTSCO5qU6IBHsfTyXxq_gocMEVfLtdmFzWa-9HuImBrTh3tMnPWjf_Th_vj07ODzH7i9Fdo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB2x5dDlwEcBUVjAEr2AFOTYrt0c0WpXBbYVh1bqLXJsZ_eQplU_hHrjP_AP-SWMXafdldBKKBfHGueQ8dhvnJc3AD1RaGm18vGd2kQoYZOCWp4YynnJ2cDKUAxmNJbDqfg2688iN8f_C7PXhzgcuPnICOu1D3B_IH0ryn259s8pR7x_Ag-FTKXPvZj4cVyIReTXZzzJ5EBFdVJP5DmOvbsfHUFme1sv9e6nrqq7sDXsO5dP4XEEjOTL3sPP4IGrO_AkgkcSQ3ONXU19hqavA49uiQ0-h835jcY7S-aBP-lILBhxTUI1HILolSxX_ruNZ0KTaqEtMbiVGsTpRNeWeGVYz6TdkUVJcHL4MZ5v8ufX75ULAqwGn475NQLRjSOF0_P1C5heXkzOh0msuZAYzpVI0tQxqajODLZE5jCB1DLrl0pbIdSAm4IhHrfGClkY60xfapNR6kxalBQv_hJa9aJ2r4AIjf52iiqNKSSTrKCZ7jOHKZlzsnSDLnxs3nxuoiC5r4tR5U1i4r2UBy914cPBdrmX4fin1VnjwDyG4jrniGgYx6lAu9A7OPXep3wK_r7HJMcQuQit1_9j_B7aw8noKr_6Ov7-Bk4Z4qM9M-YMWpvV1r1FfLMp3oVZ_Beq8fZS |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSFAOFAoVCwUs0QtIWTmxYydH1HZVviqEqNRb5I8JlbrNrnazQuXU_9B_yC9h7DjbLUKVQLk41thSnJn4TfLyhpAdYbR0Wvn4Tl0ilHCJYY4nlnFe86xwMhSD-XwoD47Eh-P8OHJz_L8wnT7E8oWbj4zwvPYBDlNXr0S5L9c-TDni_dvkjsjLwjP69r6uqEeJyK8veVLKQkV1Uk_kuRp7fT-6Apn3Fs1Un__Q4_F12Br2ndFGV1x1HuQKPd3kdLhozdD-_EPM8b8v6SF5EBEpfde50CNyC5pNshHRKY2xP8euvgBE37dJ7q-oGT4m7e6JxjNHzwJBE2isSPGdhnI7FOExnc78hyFPtabjiXbU4l5tMRGgunHUS896qu45ndQUvc-P8YSWXxeXMwgKrxZnxwQekW4L1IA-mz8hR6P9b7sHSSzqkFjOlUjSFDKpmC4ttkQJmKFqWea10k4IVXBrMgT8zjohjXVgc6ltyRjY1NQMD75F1ppJA08JFRodChRTGnPUTGaGlTrPAHM-AFlDMSBv-ltb2ah47gtvjKs-8_HrXYX1HpDXS9tpp_PxV6vt3kOqGOvziiNkyjj6GhuQnaXX3DjL2-AFN5hUGIP7ofXsX4xfkbtf9kbVp_eHH5-T9QzxV8e82SZr7WwBLxA_teZliJLfUo8W-A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SzaH0kDQfJRvSIkguDXgrW7K0PoaQEAoJPXQhPRl9OYVuvMuul5Cc8h_yD_tLOpLlbbaUUCi-yEIWtjwjvbHG7wEcca2EVdL7d2oTLrlNNLUsMZSximVDK4IYzOWVuBjxz9f59bO_-Ft-iOUHN-8ZYb72Dj61VTvPd67-ySu2D1KGkP8VrIsc0XgP1kdXX06-hU3OgiWFCBp5YT4YCiEjQ-nqxatr0m-g-XpRT9X9nRqPV6FrWHvON0F1d92mnPwYLBo9MA9_EDr-z2O9hY0ITMlJa0lbsObqbdiMIJXEKWCOVZ0ORFe3DW-ekRruQHP6XeGZJbchT9ORKExxQ4LqDkGUTKYzvz_kM67JeKIsMbhkG4wHiKot8Qy0PmP3nkwqgkbor_F5LT8fn2YuEL0a7B3jeAS8jSPaqdv5LozOz76eXiRR2yExjEmepKnLhKSqMFjihcNAVYkir6SynMshMzpD3G-N5UIb60wulCkodSbVFcWDvYNePandHhCu0K6cpFJhqJqJTNNC5ZnD0M85UblhHz52b7c0kfjc62-Myy4A8uNdhvHuw-Gy7bSl-_hrq4POSMro8vOSIXLKGOeM9uFoaTgv9nIcDOGFJiW64lko7f9bnwfQa2YL9x6BUqM_RF_4Bc4VFZ4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chained+machine+learning+model+for+predicting+load+capacity+and+ductility+of+steel+fiber%E2%80%93reinforced+concrete+beams&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Shafighfard%2C+Torkan&rft.au=Kazemi%2C+Farzin&rft.au=Bagherzadeh%2C+Faramarz&rft.au=Mieloszyk%2C+Magdalena&rft.date=2024-12-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=23&rft.spage=3573&rft.epage=3594&rft_id=info:doi/10.1111%2Fmice.13164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |