Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams

One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural ne...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 39; no. 23; pp. 3573 - 3594
Main Authors Shafighfard, Torkan, Kazemi, Farzin, Bagherzadeh, Faramarz, Mieloszyk, Magdalena, Yoo, Doo‐Yeol
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
1467-8667
DOI10.1111/mice.13164

Cover

Abstract One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (R2$R^{2}$), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending.
AbstractList One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (R2$R^{2}$), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending.
One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (R2$R^{2}$), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending.
One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was assessed based on 193 experimental specimens from real‐life beam models. The ML techniques were applied to predict SFRC beam responses to bending load as functions of the steel fiber properties, concrete elastic modulus, beam dimensions, and reinforcement details. The accuracy of the models was evaluated using the coefficient of determination (), mean absolute error (MAE), and root mean square error (RMSE) of actual versus predicted values. The findings revealed that the proposed technique exhibited notably superior performance, delivering faster and more accurate predictions compared to both the ANNs and parallel models. Shapley diagrams were used to analyze variable contributions quantitatively. Shapley values show that the chained model prediction of ductility index is highly affected by two other targets (peak load and peak deflection) that show the chained algorithm utilizing the prediction of previous steps for enhancing the prediction of the target feature. The proposed model can be viewed as a function of significant input variables that permit the quick assessment of the likely performance of SFRC beams in bending.
Author Mieloszyk, Magdalena
Yoo, Doo‐Yeol
Bagherzadeh, Faramarz
Kazemi, Farzin
Shafighfard, Torkan
Author_xml – sequence: 1
  givenname: Torkan
  surname: Shafighfard
  fullname: Shafighfard, Torkan
  organization: Polish Academy of Sciences
– sequence: 2
  givenname: Farzin
  surname: Kazemi
  fullname: Kazemi, Farzin
  organization: University College London
– sequence: 3
  givenname: Faramarz
  surname: Bagherzadeh
  fullname: Bagherzadeh, Faramarz
  email: fabagher@uni-bremen.de
  organization: University of Bremen
– sequence: 4
  givenname: Magdalena
  surname: Mieloszyk
  fullname: Mieloszyk, Magdalena
  organization: Polish Academy of Sciences
– sequence: 5
  givenname: Doo‐Yeol
  surname: Yoo
  fullname: Yoo, Doo‐Yeol
  email: dyyoo@yonsei.ac.kr
  organization: Yonsei University
BookMark eNp9kMFu1DAQhi1UJNrChSewxA2UYsdee3NEqwKVirjA2ZqMJ9SVYwcnq2pvvANvyJPgEE4IdXzwP_b3j0b_BTtLORFjL6W4krXejgHpSipp9BN2LrWxzd4Ye1a16FTTmb19xi7m-V7U0lqds-VwByGR5yPgXRU8EpQU0jc-Zk-RD7nwqZAPuKyPMYPnCBNgWE4ckuf-WH_i2uWBzwutntBT-fXjZ6GQqh_rdMwJCy3Ee4Jxfs6eDhBnevH3vmRf319_OXxsbj9_uDm8u21QKasbKak1VkCHVemO9u0OTLcbLHit7V5h31rbevTa9OgJdwawE4JQ9oOoR12yN9vcY5rg9AAxuqmEEcrJSeHWwNwamPsTWKVfbfRU8vcjzYu7z8eS6oJOybZrVQ1MVEpsFJY8z4UGV6OAJeS0FAjx_4Nf_2N5dAu5wQ8h0ukR0n26OVxvnt9i152N
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_109150
crossref_primary_10_3390_buildings14061711
crossref_primary_10_1007_s42107_024_01122_9
crossref_primary_10_1016_j_istruc_2024_107716
crossref_primary_10_1016_j_jobe_2024_110912
crossref_primary_10_1007_s13369_024_09096_1
crossref_primary_10_1016_j_asoc_2025_112783
crossref_primary_10_1016_j_soildyn_2024_108952
crossref_primary_10_21926_aeer_2404020
crossref_primary_10_3390_app14093563
crossref_primary_10_1016_j_asoc_2025_112878
crossref_primary_10_1016_j_rineng_2024_103421
crossref_primary_10_1016_j_engappai_2025_110109
crossref_primary_10_1016_j_engappai_2025_110527
crossref_primary_10_1016_j_mtcomm_2024_110667
crossref_primary_10_1016_j_ress_2024_110743
crossref_primary_10_3390_buildings14061807
crossref_primary_10_1016_j_engappai_2025_110544
crossref_primary_10_3390_buildings14041118
crossref_primary_10_1016_j_mtcomm_2024_111286
crossref_primary_10_3390_app14114530
crossref_primary_10_3390_buildings14051263
crossref_primary_10_1007_s43452_024_01067_5
crossref_primary_10_1016_j_eswa_2024_124897
crossref_primary_10_1016_j_cscm_2025_e04384
crossref_primary_10_3390_app14135611
crossref_primary_10_1109_ACCESS_2024_3504726
crossref_primary_10_3390_buildings15030452
crossref_primary_10_1111_mice_13357
crossref_primary_10_1007_s10661_024_13390_8
crossref_primary_10_1016_j_engappai_2025_110377
crossref_primary_10_1016_j_rineng_2025_104242
crossref_primary_10_1016_j_trgeo_2024_101332
crossref_primary_10_3390_buildings14092675
crossref_primary_10_3390_infrastructures10030057
crossref_primary_10_1016_j_istruc_2024_107482
crossref_primary_10_1016_j_engappai_2025_110616
crossref_primary_10_1016_j_rineng_2024_103110
crossref_primary_10_1016_j_engappai_2025_110512
crossref_primary_10_1002_pc_29648
crossref_primary_10_1038_s41598_024_65836_1
crossref_primary_10_1016_j_compstruc_2025_107657
crossref_primary_10_1016_j_engappai_2025_110458
crossref_primary_10_1016_j_mtcomm_2024_110813
crossref_primary_10_3390_buildings14040954
Cites_doi 10.1016/j.engstruct.2022.114202
10.1016/j.istruc.2022.04.046
10.1109/TNNLS.2017.2682102
10.1111/j.1467-8667.2011.00752.x
10.5772/3162
10.1016/j.jobe.2019.100878
10.1155/2019/8390345
10.1680/stbu.12.00068
10.1016/j.engstruct.2015.08.029
10.1016/j.compstruc.2022.106886
10.1007/s00521-019-04146-4
10.1016/j.istruc.2022.11.140
10.1016/j.conbuildmat.2023.130652
10.14359/51689360
10.1016/j.seta.2023.103040
10.1016/j.cscm.2022.e01655
10.1155/2018/7390798
10.1111/mice.12965
10.1016/j.conbuildmat.2018.03.225
10.3390/ma15010017
10.1111/mice.12753
10.1016/j.compstruct.2019.110926
10.1016/j.istruc.2022.09.052
10.1007/978-3-662-45620-0
10.1111/mice.12817
10.1016/j.aei.2020.101126
10.1111/mice.12456
10.1016/j.engstruct.2010.07.017
10.1016/j.engstruct.2022.114575
10.1111/mice.12564
10.1007/s00521-019-04359-7
10.1016/j.engstruct.2018.08.010
10.1016/j.compositesb.2012.06.003
10.1139/cjce-2015-0384
10.1007/s00158-016-1483-5
10.1061/(ASCE)0733-9445(2004)130:3(452)
10.1016/j.commatsci.2003.10.007
10.1016/j.conbuildmat.2015.08.032
10.1002/suco.201700129
10.1016/j.conbuildmat.2015.01.021
10.1016/j.istruc.2022.03.007
10.1016/j.jmrt.2022.10.153
10.1016/j.conbuildmat.2012.09.022
10.1002/suco.201800247
10.1111/mice.12844
10.1111/mice.12561
10.1016/j.engstruct.2012.04.032
10.14359/51689560
10.1016/j.cscm.2022.e01537
10.1111/mice.12773
10.1016/j.conbuildmat.2014.05.098
10.1111/mice.12447
10.1016/j.engstruct.2020.110927
10.15632/jtam-pl.55.4.1205
10.1016/j.istruc.2019.02.018
10.1016/j.addma.2020.101728
10.1016/j.istruc.2021.12.083
10.1029/2000JD900719
10.3390/ma13102225
10.1016/j.ymssp.2023.110315
10.1016/j.asoc.2017.05.029
10.1016/j.engstruct.2020.111221
10.1111/j.1467-8667.2006.00449.x
10.1016/j.conbuildmat.2018.08.099
10.1016/j.cemconcomp.2016.12.002
10.1016/j.conbuildmat.2005.01.047
10.1016/j.engstruct.2015.06.006
10.1109/TNNLS.2022.3190448
10.1109/TGRS.2023.3334867
10.1002/tal.1400
10.1016/j.conbuildmat.2014.12.003
10.1016/j.engstruct.2018.01.008
10.1111/mice.12915
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Editor.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of Editor.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1111/mice.13164
DatabaseName Wiley Journal - Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 3594
ExternalDocumentID 10.1111/mice.13164
10_1111_mice_13164
MICE13164
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2021R1A2C4001503
– fundername: University of Bremen
– fundername: Yonsei University
  funderid: 2023‐22‐0134
GroupedDBID ..I
.3N
.DC
.GA
05W
0R~
10A
1OC
24P
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAP
EBS
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.4S
1OB
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ARCSS
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EAD
EDO
EJD
EMK
FEDTE
HF~
HVGLF
I-F
LW6
MK~
PALCI
RJQFR
SAMSI
TUS
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c3374-11e2670a9c11e49e825a695f7ad44783cb2772dcd46bcdec56ac900ec1bf0f0f3
IEDL.DBID DR2
ISSN 1093-9687
1467-8667
IngestDate Wed Oct 01 15:54:55 EDT 2025
Sat Jul 26 00:01:26 EDT 2025
Wed Oct 01 04:16:02 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Jan 22 17:12:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Attribution-NonCommercial-NoDerivs
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3374-11e2670a9c11e49e825a695f7ad44783cb2772dcd46bcdec56ac900ec1bf0f0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13164
PQID 3129234430
PQPubID 2045171
PageCount 22
ParticipantIDs unpaywall_primary_10_1111_mice_13164
proquest_journals_3129234430
crossref_citationtrail_10_1111_mice_13164
crossref_primary_10_1111_mice_13164
wiley_primary_10_1111_mice_13164_MICE13164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 December 2024
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 1 December 2024
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 78
2019; 2019
2018; 160
1989; 86
2012; 289
2004; 29
2015; 102
2023; 38
2015; 100
2017; 44
2015; 77
2024; 30
2020; 13
2022; 21
2017; 114
2014; 66
2001; 106
2021; 36
2018; 174
2017; 30
2021; 37
2006; 20
2018; 172
2019; 20
2006; 21
2023; 370
2022; 40
2004; 130
2017; 77
2019; 26
2016; 113
2022; 37
2020; 45
2012; 27
2020; 219
2017a; 28
2022; 39
2014; 167
2010; 32
2018; 188
2017b; 26
2023; 56
2019; 34
2015; 98
2016; 54
2022; 45
1993; 90
2020; 224
2020; 32
2018; 67
2012; 345
2023; 61
2019; 222
2022; 266
2018; 19
2021; 15
2018; 2018
2023; 47
2020; 2020
2013; 38
2022; 260
2023; 274
2017; 58
2023; 195
2017; 55
2022; 57
2017
2016
2015
2013
2012; 43
2022; 17
2012; 42
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
Koksal F. (e_1_2_9_37_1) 2012; 289
Smith C. (e_1_2_9_66_1) 2017
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
Qissab M. A. (e_1_2_9_54_1) 2018; 67
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
Kazemi F. (e_1_2_9_34_1) 2024; 30
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
Le T. T. (e_1_2_9_38_1) 2020; 2020
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Sedgwick P. (e_1_2_9_61_1) 2012; 345
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Ashour S. A. (e_1_2_9_11_1) 1993; 90
e_1_2_9_19_1
Singh H. (e_1_2_9_65_1) 2016
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_80_1
Shin S. W. (e_1_2_9_64_1) 1989; 86
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Lundberg S. M. (e_1_2_9_40_1) 2017; 30
References_xml – volume: 260
  year: 2022
  article-title: Experimental and numerical investigation of lightweight foamed reinforced concrete deep beams with steel fibers
  publication-title: Engineering Structures
– volume: 100
  start-page: 164
  year: 2015
  end-page: 177
  article-title: Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams
  publication-title: Engineering Structures
– volume: 42
  start-page: 387
  year: 2012
  end-page: 395
  article-title: Deriving stress–strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement
  publication-title: Engineering Structures
– volume: 32
  start-page: 6393
  year: 2020
  end-page: 6404
  article-title: FEMA: A finite element machine for fast learning
  publication-title: Neural Computing and Applications
– volume: 54
  start-page: 151
  year: 2016
  end-page: 164
  article-title: Cost optimization of reinforced concrete flat slabs of arbitrary configuration in irregular highrise building structures
  publication-title: Structural and Multidisciplinary Optimization
– volume: 32
  start-page: 3478
  issue: 11
  year: 2010
  end-page: 3487
  article-title: Structural behavior of ultra high performance concrete beams subjected to bending
  publication-title: Engineering Structures
– volume: 61
  start-page: 1
  year: 2023
  end-page: 11
  article-title: Ice core micro‐CT image segmentation with deep learning and Gaussian mixture model
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 224
  year: 2020
  article-title: Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
  publication-title: Engineering Structures
– volume: 77
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions
  publication-title: Cement and Concrete Composites
– volume: 77
  start-page: 94
  year: 2015
  end-page: 109
  article-title: High performance fiber reinforced concrete for the shear reinforcement: Experimental and numerical research
  publication-title: Construction and Building Materials
– volume: 37
  year: 2021
  article-title: Additive manufacturing of compliance optimized variable stiffness composites through short fiber alignment along curvilinear paths
  publication-title: Additive Manufacturing
– volume: 38
  start-page: 1520
  year: 2023
  end-page: 1535
  article-title: A knowledge transfer enhanced ensemble approach to predict the shear capacity of reinforced concrete deep beams without stirrups
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 56
  year: 2023
  article-title: Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
  publication-title: Sustainable Energy Technologies and Assessments
– volume: 30
  start-page: 1
  year: 2024
  end-page: 30
  article-title: Data‐driven modeling of mechanical properties of fiber‐reinforced concrete: A critical review
  publication-title: Archives of Computational Methods in Engineering
– volume: 195
  year: 2023
  article-title: Prediction of maximum tensile stress in plain‐weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
  publication-title: Mechanical Systems and Signal Processing
– volume: 34
  start-page: 822
  issue: 9
  year: 2019
  end-page: 839
  article-title: Vibration‐based structural state identification by a 1‐dimensional convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 174
  start-page: 873
  year: 2018
  end-page: 884
  article-title: Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups
  publication-title: Engineering Structures
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  end-page: 7192
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 36
  start-page: 47
  issue: 1
  year: 2021
  end-page: 60
  article-title: Generative adversarial network for road damage detection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 66
  start-page: 329
  year: 2014
  end-page: 335
  article-title: Using artificial neural networks for modeling surface roughness of wood in machining process
  publication-title: Construction and Building Materials
– volume: 36
  start-page: 61
  issue: 1
  year: 2021
  end-page: 72
  article-title: Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 36
  start-page: 1508
  issue: 12
  year: 2021
  end-page: 1529
  article-title: Deep reinforcement learning for automated design of reinforced concrete structures
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 219
  year: 2020
  article-title: Failure mode and effects analysis of RC members based on machine‐learning‐based SHapley Additive exPlanations (SHAP) approach
  publication-title: Engineering Structures
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 31
  article-title: Experimental investigation on the effect of steel fibers on the flexural behavior and ductility of high‐strength concrete hollow beams
  publication-title: Advances in Civil Engineering
– volume: 43
  start-page: 2930
  issue: 8
  year: 2012
  end-page: 2937
  article-title: Flexural behaviour of RC beams in fibre reinforced concrete
  publication-title: Composites Part B: Engineering
– volume: 30
  start-page: 1
  year: 2017
  end-page: 31
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– volume: 222
  year: 2019
  article-title: Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: Analytical and experimental investigation
  publication-title: Composite Structures
– volume: 58
  start-page: 576
  year: 2017
  end-page: 585
  article-title: Evolutionary learning based sustainable strain sensing model for structural health monitoring of high‐rise buildings
  publication-title: Applied Soft Computing
– volume: 37
  start-page: 1566
  issue: 12
  year: 2022
  end-page: 1581
  article-title: Multifidelity approach for data‐driven prediction models of structural behaviors with limited data
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 47
  start-page: 1196
  year: 2023
  end-page: 1211
  article-title: Shear strength prediction of reinforced concrete beams using machine learning
  publication-title: Structures
– volume: 19
  start-page: 670
  issue: 3
  year: 2018
  end-page: 683
  article-title: Load‐carrying capacity of steel fiber reinforced concrete beams at large deflections
  publication-title: Structural Concrete
– volume: 37
  start-page: 1809
  issue: 14
  year: 2022
  end-page: 1833
  article-title: Predicting early‐age stress evolution in restrained concrete by thermo‐chemo‐mechanical model and active ensemble learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 188
  start-page: 237
  year: 2018
  end-page: 254
  article-title: Effect of steel fibers on the flexural behavior of RC beams with very low reinforcement ratios
  publication-title: Construction and Building Materials
– volume: 20
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Effect of fiber type and content on the flexural behavior of high strength concrete beams with low reinforcement ratios
  publication-title: Structures
– volume: 55
  start-page: 1205
  issue: 4
  year: 2017
  end-page: 1217
  article-title: An experimental study on the shear strength of SFRC beams without stirrups
  publication-title: Journal of Theoretical and Applied Mechanics
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 16
  article-title: Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method
  publication-title: Advances in Civil Engineering
– volume: 34
  start-page: 935
  issue: 11
  year: 2019
  end-page: 950
  article-title: A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 26
  year: 2019
  article-title: Determination of moment, shear and ductility capacities of spiral columns using an artificial neural network
  publication-title: Journal of Building Engineering
– volume: 172
  start-page: 562
  year: 2018
  end-page: 573
  article-title: Flexural behavior of reinforced concrete beams externally strengthened with hardwire steel‐fiber sheets
  publication-title: Construction and Building Materials
– volume: 102
  start-page: 409
  year: 2015
  end-page: 423
  article-title: Structural performance of ultra‐high‐performance concrete beams with different steel fibers
  publication-title: Engineering Structures
– volume: 27
  start-page: 333
  issue: 5
  year: 2012
  end-page: 346
  article-title: Strengthening and rehabilitation of reinforced concrete slabs with carbon‐fiber reinforced polymers using a refined bond model
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 370
  year: 2023
  article-title: Standardized RC beam tests for modeling the fiber bridging effect in SFRC
  publication-title: Construction and Building Materials
– volume: 113
  start-page: 781
  issue: 6
  year: 2016
  end-page: 789
  article-title: Neural network, machine learning, and evolutionary approaches for concrete material characterization
  publication-title: ACI Materials Journal
– volume: 20
  start-page: 1051
  issue: 3
  year: 2019
  end-page: 1063
  article-title: Static and dynamic mechanical properties of eco‐friendly polyvinyl alcohol fiber‐reinforced ultra‐high‐strength concrete
  publication-title: Structural Concrete
– volume: 167
  start-page: 544
  issue: 9
  year: 2014
  end-page: 558
  article-title: Shear behaviour of steel‐fibre‐reinforced concrete simply supported beams
  publication-title: Proceedings of the Institution of Civil Engineers‐Structures and Buildings
– volume: 37
  start-page: 1875
  issue: 14
  year: 2022
  end-page: 1890
  article-title: A sigmoid‐optimized encoder–decoder network for crack segmentation with copy‐edit‐paste transfer learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2015
– volume: 44
  start-page: 18
  issue: 1
  year: 2017
  end-page: 28
  article-title: Experimental and numerical study on flexural behavior of ultra‐high‐performance fiber‐reinforced concrete beams with low reinforcement ratios
  publication-title: Canadian Journal of Civil Engineering
– volume: 45
  start-page: 773
  year: 2022
  end-page: 786
  article-title: A flexural ductility model for UHPC beams reinforced with FRP bars
  publication-title: Structures
– volume: 45
  year: 2020
  article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
  publication-title: Advanced Engineering Informatics
– volume: 274
  year: 2023
  article-title: Machine learning‐based prediction of seismic limit‐state capacity of steel moment‐resisting frames considering soil‐structure interaction
  publication-title: Computers & Structures
– volume: 67
  start-page: 347
  issue: 4
  year: 2018
  end-page: 358
  article-title: Shear strength of non‐prismatic steel fiber reinforced concrete beams without stirrups
  publication-title: Structural Engineering and Mechanics
– volume: 86
  start-page: 394
  issue: 4
  year: 1989
  end-page: 400
  article-title: Flexural ductility of ultra‐high‐strength concrete members
  publication-title: Structural Journal
– volume: 130
  start-page: 452
  issue: 3
  year: 2004
  end-page: 459
  article-title: Neutral axis depth versus flexural ductility in high‐strength concrete beams
  publication-title: Journal of Structural Engineering
– volume: 266
  year: 2022
  article-title: Mesoscale analysis of fiber‐reinforced concrete beams
  publication-title: Engineering Structures
– volume: 17
  year: 2022
  article-title: Flexural performance of reinforced concrete (RC) beam strengthened by UHPC layer
  publication-title: Case Studies in Construction Materials
– volume: 21
  start-page: 3777
  year: 2022
  end-page: 3794
  article-title: Data‐driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: Journal of Materials Research and Technology
– volume: 17
  year: 2022
  article-title: Ensemble machine learning approach for evaluating the material characterization of carbon nanotube‐reinforced cementitious composites
  publication-title: Case Studies in Construction Materials
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017a
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 36
  start-page: 1568
  issue: 12
  year: 2021
  end-page: 1584
  article-title: Crack detection using fusion features‐based broad learning system and image processing
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 29
  start-page: 315
  issue: 3
  year: 2004
  end-page: 333
  article-title: Modeling of the APS plasma spray process using artificial neural networks: Basis, requirements and an example
  publication-title: Computational Materials Science
– volume: 78
  start-page: 271
  year: 2015
  end-page: 280
  article-title: Flexural and shear behavior of geo‐grid confined RC beams with steel fiber reinforced concrete
  publication-title: Construction and Building materials
– year: 2016
– volume: 20
  start-page: 801
  issue: 9
  year: 2006
  end-page: 811
  article-title: Prediction of shear strength of steel fiber RC beams using neural networks
  publication-title: Construction and Building Materials
– volume: 13
  start-page: 2225
  issue: 10
  year: 2020
  article-title: An experimental study on the ductility and flexural toughness of ultrahigh‐performance concrete beams subjected to bending
  publication-title: Materials
– volume: 15
  start-page: 17
  issue: 1
  year: 2021
  article-title: Shear strengthening of high strength concrete beams that contain hooked‐end steel fiber
  publication-title: Materials
– volume: 57
  start-page: 1
  year: 2022
  end-page: 15
  article-title: Self‐supervised learning for electroencephalography
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 38
  start-page: 575
  year: 2013
  end-page: 581
  article-title: Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete
  publication-title: Construction and Building Materials
– volume: 39
  start-page: 405
  year: 2022
  end-page: 418
  article-title: Effect of steel fiber on flexural performance of bilayer concrete beams with steel and GFRP rebars: Experiments and predictions
  publication-title: Structures
– volume: 21
  start-page: 450
  issue: 6
  year: 2006
  end-page: 464
  article-title: Damage detection in a girder bridge by artificial neural network technique
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 90
  start-page: 279
  issue: 3
  year: 1993
  end-page: 287
  article-title: Flexural behavior of high‐strength fiber reinforced concrete beams
  publication-title: Structural Journal
– volume: 26
  issue: 18
  year: 2017b
  article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 40
  start-page: 513
  year: 2022
  end-page: 523
  article-title: Reinforcement of new and existing reinforced concrete beams with fiber‐reinforced polymer bars and sheets—A numerical analysis
  publication-title: Structures
– volume: 2018
  start-page: 49
  year: 2018
  end-page: 64
  article-title: A comparative experimental study on the flexural behavior of high‐strength fiber‐reinforced concrete and high‐strength concrete beams
  publication-title: Advances in Materials Science and Engineering
– volume: 32
  start-page: 8675
  year: 2020
  end-page: 8690
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural Computing and Applications
– volume: 345
  start-page: 41
  year: 2012
  end-page: 56
  article-title: Pearson's correlation coefficient
  publication-title: British Medical Journal
– year: 2017
– volume: 289
  start-page: 1
  year: 2012
  end-page: 15
  article-title: Effect of steel fiber tensile strength on mechanical properties of steel fiber reinforced concretes
  publication-title: Special Publication
– volume: 98
  start-page: 185
  year: 2015
  end-page: 193
  article-title: Flexural behavior of lightly and heavily reinforced steel fiber concrete beams
  publication-title: Construction and Building Materials
– volume: 37
  start-page: 69
  year: 2022
  end-page: 81
  article-title: A comparison of machine learning‐and regression‐based models for predicting ductility ratio of RC beam‐column joints
  publication-title: Structures
– volume: 160
  start-page: 85
  year: 2018
  end-page: 94
  article-title: Classification of failure mode and prediction of shear strength for reinforced concrete beam‐column joints using machine learning techniques
  publication-title: Engineering Structures
– year: 2013
– volume: 289
  start-page: 1
  year: 2012
  ident: e_1_2_9_37_1
  article-title: Effect of steel fiber tensile strength on mechanical properties of steel fiber reinforced concretes
  publication-title: Special Publication
– ident: e_1_2_9_45_1
  doi: 10.1016/j.engstruct.2022.114202
– ident: e_1_2_9_32_1
  doi: 10.1016/j.istruc.2022.04.046
– ident: e_1_2_9_55_1
  doi: 10.1109/TNNLS.2017.2682102
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1467-8667.2011.00752.x
– ident: e_1_2_9_46_1
  doi: 10.5772/3162
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jobe.2019.100878
– ident: e_1_2_9_3_1
  doi: 10.1155/2019/8390345
– ident: e_1_2_9_2_1
  doi: 10.1680/stbu.12.00068
– volume: 86
  start-page: 394
  issue: 4
  year: 1989
  ident: e_1_2_9_64_1
  article-title: Flexural ductility of ultra‐high‐strength concrete members
  publication-title: Structural Journal
– ident: e_1_2_9_80_1
  doi: 10.1016/j.engstruct.2015.08.029
– ident: e_1_2_9_33_1
  doi: 10.1016/j.compstruc.2022.106886
– ident: e_1_2_9_53_1
  doi: 10.1007/s00521-019-04146-4
– ident: e_1_2_9_60_1
  doi: 10.1016/j.istruc.2022.11.140
– ident: e_1_2_9_27_1
  doi: 10.1016/j.conbuildmat.2023.130652
– ident: e_1_2_9_58_1
  doi: 10.14359/51689360
– ident: e_1_2_9_5_1
  doi: 10.1016/j.seta.2023.103040
– ident: e_1_2_9_49_1
  doi: 10.1016/j.cscm.2022.e01655
– ident: e_1_2_9_76_1
  doi: 10.1155/2018/7390798
– ident: e_1_2_9_52_1
  doi: 10.1111/mice.12965
– ident: e_1_2_9_30_1
  doi: 10.1016/j.conbuildmat.2018.03.225
– ident: e_1_2_9_81_1
  doi: 10.3390/ma15010017
– volume-title: Steel fiber reinforced concrete: Behavior, modelling and design
  year: 2016
  ident: e_1_2_9_65_1
– ident: e_1_2_9_84_1
  doi: 10.1111/mice.12753
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compstruct.2019.110926
– ident: e_1_2_9_70_1
  doi: 10.1016/j.istruc.2022.09.052
– ident: e_1_2_9_69_1
  doi: 10.1007/978-3-662-45620-0
– ident: e_1_2_9_19_1
  doi: 10.1111/mice.12817
– ident: e_1_2_9_24_1
  doi: 10.1016/j.aei.2020.101126
– ident: e_1_2_9_41_1
  doi: 10.1111/mice.12456
– ident: e_1_2_9_75_1
  doi: 10.1016/j.engstruct.2010.07.017
– ident: e_1_2_9_6_1
  doi: 10.1016/j.engstruct.2022.114575
– ident: e_1_2_9_21_1
  doi: 10.1111/mice.12564
– ident: e_1_2_9_7_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_9_36_1
  doi: 10.1016/j.engstruct.2018.08.010
– ident: e_1_2_9_47_1
  doi: 10.1016/j.compositesb.2012.06.003
– ident: e_1_2_9_78_1
  doi: 10.1139/cjce-2015-0384
– ident: e_1_2_9_8_1
  doi: 10.1007/s00158-016-1483-5
– ident: e_1_2_9_15_1
  doi: 10.1061/(ASCE)0733-9445(2004)130:3(452)
– ident: e_1_2_9_28_1
  doi: 10.1016/j.commatsci.2003.10.007
– ident: e_1_2_9_48_1
  doi: 10.1016/j.conbuildmat.2015.08.032
– ident: e_1_2_9_73_1
  doi: 10.1002/suco.201700129
– ident: e_1_2_9_20_1
  doi: 10.1016/j.conbuildmat.2015.01.021
– ident: e_1_2_9_23_1
  doi: 10.1016/j.istruc.2022.03.007
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jmrt.2022.10.153
– ident: e_1_2_9_9_1
  doi: 10.1016/j.conbuildmat.2012.09.022
– ident: e_1_2_9_82_1
  doi: 10.1002/suco.201800247
– ident: e_1_2_9_18_1
  doi: 10.1111/mice.12844
– volume: 30
  start-page: 1
  year: 2017
  ident: e_1_2_9_40_1
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_42_1
  doi: 10.1111/mice.12561
– volume: 345
  start-page: 41
  year: 2012
  ident: e_1_2_9_61_1
  article-title: Pearson's correlation coefficient
  publication-title: British Medical Journal
– volume: 90
  start-page: 279
  issue: 3
  year: 1993
  ident: e_1_2_9_11_1
  article-title: Flexural behavior of high‐strength fiber reinforced concrete beams
  publication-title: Structural Journal
– ident: e_1_2_9_26_1
  doi: 10.1016/j.engstruct.2012.04.032
– ident: e_1_2_9_59_1
  doi: 10.14359/51689560
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cscm.2022.e01537
– ident: e_1_2_9_31_1
  doi: 10.1111/mice.12773
– ident: e_1_2_9_72_1
  doi: 10.1016/j.conbuildmat.2014.05.098
– ident: e_1_2_9_83_1
  doi: 10.1111/mice.12447
– ident: e_1_2_9_43_1
  doi: 10.1016/j.engstruct.2020.110927
– volume-title: Decision trees and random forests: A visual introduction for beginners
  year: 2017
  ident: e_1_2_9_66_1
– ident: e_1_2_9_10_1
  doi: 10.15632/jtam-pl.55.4.1205
– ident: e_1_2_9_29_1
  doi: 10.1016/j.istruc.2019.02.018
– ident: e_1_2_9_63_1
  doi: 10.1016/j.addma.2020.101728
– ident: e_1_2_9_22_1
  doi: 10.1016/j.istruc.2021.12.083
– ident: e_1_2_9_71_1
  doi: 10.1029/2000JD900719
– ident: e_1_2_9_77_1
  doi: 10.3390/ma13102225
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ymssp.2023.110315
– ident: e_1_2_9_51_1
  doi: 10.1016/j.asoc.2017.05.029
– ident: e_1_2_9_67_1
  doi: 10.1016/j.engstruct.2020.111221
– ident: e_1_2_9_74_1
  doi: 10.1111/j.1467-8667.2006.00449.x
– ident: e_1_2_9_79_1
  doi: 10.1016/j.conbuildmat.2018.08.099
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cemconcomp.2016.12.002
– ident: e_1_2_9_4_1
  doi: 10.1016/j.conbuildmat.2005.01.047
– ident: e_1_2_9_50_1
  doi: 10.1016/j.engstruct.2015.06.006
– volume: 67
  start-page: 347
  issue: 4
  year: 2018
  ident: e_1_2_9_54_1
  article-title: Shear strength of non‐prismatic steel fiber reinforced concrete beams without stirrups
  publication-title: Structural Engineering and Mechanics
– ident: e_1_2_9_57_1
  doi: 10.1109/TNNLS.2022.3190448
– ident: e_1_2_9_12_1
  doi: 10.1109/TGRS.2023.3334867
– ident: e_1_2_9_56_1
  doi: 10.1002/tal.1400
– ident: e_1_2_9_68_1
  doi: 10.1016/j.conbuildmat.2014.12.003
– ident: e_1_2_9_44_1
  doi: 10.1016/j.engstruct.2018.01.008
– volume: 30
  start-page: 1
  year: 2024
  ident: e_1_2_9_34_1
  article-title: Data‐driven modeling of mechanical properties of fiber‐reinforced concrete: A critical review
  publication-title: Archives of Computational Methods in Engineering
– ident: e_1_2_9_39_1
  doi: 10.1111/mice.12915
– volume: 2020
  start-page: 1
  year: 2020
  ident: e_1_2_9_38_1
  article-title: Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method
  publication-title: Advances in Civil Engineering
SSID ssj0000443
Score 2.6475246
Snippet One of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3573
SubjectTerms Algorithms
Artificial neural networks
Ductility
Ductility tests
Elastic properties
Error analysis
Machine learning
Modulus of elasticity
Peak load
Predictions
Reinforced concrete
Reinforcing steels
Root-mean-square errors
Steel fiber reinforced concretes
Steel fibers
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SzaH0kDQfJRvSIkguDXgrW7K0PoaQEAoJPXQhPRl9OYVuvMuul5Cc8h_yD_tLOpLlbbaUUCi-yEIWtjwjvbHG7wEcca2EVdL7d2oTLrlNNLUsMZSximVDK4IYzOWVuBjxz9f59bO_-Ft-iOUHN-8ZYb72Dj61VTvPd67-ySu2D1KGkP8VrIsc0XgP1kdXX06-hU3OgiWFCBp5YT4YCiEjQ-nqxatr0m-g-XpRT9X9nRqPV6FrWHvON0F1d92mnPwYLBo9MA9_EDr-z2O9hY0ITMlJa0lbsObqbdiMIJXEKWCOVZ0ORFe3DW-ekRruQHP6XeGZJbchT9ORKExxQ4LqDkGUTKYzvz_kM67JeKIsMbhkG4wHiKot8Qy0PmP3nkwqgkbor_F5LT8fn2YuEL0a7B3jeAS8jSPaqdv5LozOz76eXiRR2yExjEmepKnLhKSqMFjihcNAVYkir6SynMshMzpD3G-N5UIb60wulCkodSbVFcWDvYNePandHhCu0K6cpFJhqJqJTNNC5ZnD0M85UblhHz52b7c0kfjc62-Myy4A8uNdhvHuw-Gy7bSl-_hrq4POSMro8vOSIXLKGOeM9uFoaTgv9nIcDOGFJiW64lko7f9bnwfQa2YL9x6BUqM_RF_4Bc4VFZ4
  priority: 102
  providerName: Unpaywall
Title Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13164
https://www.proquest.com/docview/3129234430
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13164
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-8667
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFL3U-qA-WK0WV9slYF8UZskk2WQHfCmlpQiWIi7UBxnyNQrdzi67s0h98j_4D_0l3mQy222RgjIvmZCEmcy9ybkzZ84F2BdGS6dV8O_cZUIJlxnqeGYp5xVnIydjMpgPp_JkLN6fD8834F33L0yrD7F64RY8I67XwcG1Waw5ecjWPsg5wn1cgHMuYzz1cU07SiR2fcGzQo5U0iYNNJ7rrjd3o2uI-WBZz_TVdz2Z3AStcdc53oIv3fW2ZJOLwbIxA_vjlpTj_97QE3ic4Cg5aO3nKWz4ehu2EjQlyfEXWNVlf-jqtuHRmpThM2gOv2k8c-QysjM9SekovpKYa4cgNiazefgqFHjWZDLVjljcqC1GAUTXjgTd2cDTvSLTiqDphT6BzfL756-5j_KuFkfH6B1hbuOJ8fpy8RzGx0efDk-ylNEhs5wrkeW5Z1JRXVgsicJjeKplMayUdkKoEbeGIdp31glprPN2KLUtKPU2NxXFg-_AZj2t_QsgQqM1eUWVxgCVSWZooYfMY8Dnvaz8qAdvuidb2iR3HrJuTMou7AnzXcb57sHrVdtZK_Lx11a7nYGUydEXJUe8xDiaGu3B_spo7hzlbTSCO5qU6IBHsfTyXxq_gocMEVfLtdmFzWa-9HuImBrTh3tMnPWjf_Th_vj07ODzH7i9Fdo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB2x5dDlwEcBUVjAEr2AFOTYrt0c0WpXBbYVh1bqLXJsZ_eQplU_hHrjP_AP-SWMXafdldBKKBfHGueQ8dhvnJc3AD1RaGm18vGd2kQoYZOCWp4YynnJ2cDKUAxmNJbDqfg2688iN8f_C7PXhzgcuPnICOu1D3B_IH0ryn259s8pR7x_Ag-FTKXPvZj4cVyIReTXZzzJ5EBFdVJP5DmOvbsfHUFme1sv9e6nrqq7sDXsO5dP4XEEjOTL3sPP4IGrO_AkgkcSQ3ONXU19hqavA49uiQ0-h835jcY7S-aBP-lILBhxTUI1HILolSxX_ruNZ0KTaqEtMbiVGsTpRNeWeGVYz6TdkUVJcHL4MZ5v8ufX75ULAqwGn475NQLRjSOF0_P1C5heXkzOh0msuZAYzpVI0tQxqajODLZE5jCB1DLrl0pbIdSAm4IhHrfGClkY60xfapNR6kxalBQv_hJa9aJ2r4AIjf52iiqNKSSTrKCZ7jOHKZlzsnSDLnxs3nxuoiC5r4tR5U1i4r2UBy914cPBdrmX4fin1VnjwDyG4jrniGgYx6lAu9A7OPXep3wK_r7HJMcQuQit1_9j_B7aw8noKr_6Ov7-Bk4Z4qM9M-YMWpvV1r1FfLMp3oVZ_Beq8fZS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSFAOFAoVCwUs0QtIWTmxYydH1HZVviqEqNRb5I8JlbrNrnazQuXU_9B_yC9h7DjbLUKVQLk41thSnJn4TfLyhpAdYbR0Wvn4Tl0ilHCJYY4nlnFe86xwMhSD-XwoD47Eh-P8OHJz_L8wnT7E8oWbj4zwvPYBDlNXr0S5L9c-TDni_dvkjsjLwjP69r6uqEeJyK8veVLKQkV1Uk_kuRp7fT-6Apn3Fs1Un__Q4_F12Br2ndFGV1x1HuQKPd3kdLhozdD-_EPM8b8v6SF5EBEpfde50CNyC5pNshHRKY2xP8euvgBE37dJ7q-oGT4m7e6JxjNHzwJBE2isSPGdhnI7FOExnc78hyFPtabjiXbU4l5tMRGgunHUS896qu45ndQUvc-P8YSWXxeXMwgKrxZnxwQekW4L1IA-mz8hR6P9b7sHSSzqkFjOlUjSFDKpmC4ttkQJmKFqWea10k4IVXBrMgT8zjohjXVgc6ltyRjY1NQMD75F1ppJA08JFRodChRTGnPUTGaGlTrPAHM-AFlDMSBv-ltb2ah47gtvjKs-8_HrXYX1HpDXS9tpp_PxV6vt3kOqGOvziiNkyjj6GhuQnaXX3DjL2-AFN5hUGIP7ofXsX4xfkbtf9kbVp_eHH5-T9QzxV8e82SZr7WwBLxA_teZliJLfUo8W-A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SzaH0kDQfJRvSIkguDXgrW7K0PoaQEAoJPXQhPRl9OYVuvMuul5Cc8h_yD_tLOpLlbbaUUCi-yEIWtjwjvbHG7wEcca2EVdL7d2oTLrlNNLUsMZSximVDK4IYzOWVuBjxz9f59bO_-Ft-iOUHN-8ZYb72Dj61VTvPd67-ySu2D1KGkP8VrIsc0XgP1kdXX06-hU3OgiWFCBp5YT4YCiEjQ-nqxatr0m-g-XpRT9X9nRqPV6FrWHvON0F1d92mnPwYLBo9MA9_EDr-z2O9hY0ITMlJa0lbsObqbdiMIJXEKWCOVZ0ORFe3DW-ekRruQHP6XeGZJbchT9ORKExxQ4LqDkGUTKYzvz_kM67JeKIsMbhkG4wHiKot8Qy0PmP3nkwqgkbor_F5LT8fn2YuEL0a7B3jeAS8jSPaqdv5LozOz76eXiRR2yExjEmepKnLhKSqMFjihcNAVYkir6SynMshMzpD3G-N5UIb60wulCkodSbVFcWDvYNePandHhCu0K6cpFJhqJqJTNNC5ZnD0M85UblhHz52b7c0kfjc62-Myy4A8uNdhvHuw-Gy7bSl-_hrq4POSMro8vOSIXLKGOeM9uFoaTgv9nIcDOGFJiW64lko7f9bnwfQa2YL9x6BUqM_RF_4Bc4VFZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chained+machine+learning+model+for+predicting+load+capacity+and+ductility+of+steel+fiber%E2%80%93reinforced+concrete+beams&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Shafighfard%2C+Torkan&rft.au=Kazemi%2C+Farzin&rft.au=Bagherzadeh%2C+Faramarz&rft.au=Mieloszyk%2C+Magdalena&rft.date=2024-12-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=23&rft.spage=3573&rft.epage=3594&rft_id=info:doi/10.1111%2Fmice.13164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon