A lightweight encoder–decoder network for automatic pavement crack detection
Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 39; no. 12; pp. 1743 - 1765 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 1467-8667 |
| DOI | 10.1111/mice.13103 |
Cover
| Abstract | Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this paper proposes an efficient lightweight encoder–decoder network for automatically detecting pavement cracks at the pixel level. Taking advantage of a novel encoder–decoder architecture integrating a new type of hybrid attention blocks and residual blocks (RBs), the proposed network can achieve an extremely lightweight model with more accurate detection of pavement crack pixels. An image dataset consisting of 789 images of pavement cracks acquired by a self‐designed mobile robot is built and utilized to train and evaluate the proposed network. Comprehensive experiments demonstrate that the proposed network performs better than the state‐of‐the‐art methods on the self‐built dataset as well as three other public datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation studies validate the effectiveness of integrating the RBs and the proposed hybrid attention mechanisms. By introducing depth‐wise separable convolutions, an even more lightweight version of the proposed network is created, which has a comparable performance and achieves the fastest inference speed with a model parameter size of only 0.57 M. The developed mobile robot system can effectively detect pavement cracks in real scenarios at a speed of 25 frames per second. |
|---|---|
| AbstractList | Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this paper proposes an efficient lightweight encoder–decoder network for automatically detecting pavement cracks at the pixel level. Taking advantage of a novel encoder–decoder architecture integrating a new type of hybrid attention blocks and residual blocks (RBs), the proposed network can achieve an extremely lightweight model with more accurate detection of pavement crack pixels. An image dataset consisting of 789 images of pavement cracks acquired by a self‐designed mobile robot is built and utilized to train and evaluate the proposed network. Comprehensive experiments demonstrate that the proposed network performs better than the state‐of‐the‐art methods on the self‐built dataset as well as three other public datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation studies validate the effectiveness of integrating the RBs and the proposed hybrid attention mechanisms. By introducing depth‐wise separable convolutions, an even more lightweight version of the proposed network is created, which has a comparable performance and achieves the fastest inference speed with a model parameter size of only 0.57 M. The developed mobile robot system can effectively detect pavement cracks in real scenarios at a speed of 25 frames per second. Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this paper proposes an efficient lightweight encoder–decoder network for automatically detecting pavement cracks at the pixel level. Taking advantage of a novel encoder–decoder architecture integrating a new type of hybrid attention blocks and residual blocks (RBs), the proposed network can achieve an extremely lightweight model with more accurate detection of pavement crack pixels. An image dataset consisting of 789 images of pavement cracks acquired by a self‐designed mobile robot is built and utilized to train and evaluate the proposed network. Comprehensive experiments demonstrate that the proposed network performs better than the state‐of‐the‐art methods on the self‐built dataset as well as three other public datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation studies validate the effectiveness of integrating the RBs and the proposed hybrid attention mechanisms. By introducing depth‐wise separable convolutions, an even more lightweight version of the proposed network is created, which has a comparable performance and achieves the fastest inference speed with a model parameter size of only 0.57 M. The developed mobile robot system can effectively detect pavement cracks in real scenarios at a speed of 25 frames per second. |
| Author | Ma, Peili Wang, Meihua Liu, Jiacheng Fan, Zhun Wang, Kelvin C. P. Yuan, Duan Zhu, Guijie Sheng, Weihua |
| Author_xml | – sequence: 1 givenname: Guijie surname: Zhu fullname: Zhu, Guijie organization: Shantou University – sequence: 2 givenname: Jiacheng surname: Liu fullname: Liu, Jiacheng organization: Shantou University – sequence: 3 givenname: Zhun surname: Fan fullname: Fan, Zhun email: zfan@stu.edu.cn organization: Shantou University – sequence: 4 givenname: Duan surname: Yuan fullname: Yuan, Duan organization: Shantou University – sequence: 5 givenname: Peili surname: Ma fullname: Ma, Peili organization: Shantou University – sequence: 6 givenname: Meihua surname: Wang fullname: Wang, Meihua email: wangmeihua@scau.edu.cn organization: South China Agricultural University – sequence: 7 givenname: Weihua surname: Sheng fullname: Sheng, Weihua organization: Oklahoma – sequence: 8 givenname: Kelvin C. P. surname: Wang fullname: Wang, Kelvin C. P. organization: Oklahoma |
| BookMark | eNp9kLFOwzAQhi1UJEph4QkisYFS7DhxkrGqClQqsMBsOfYF3CZxcFyibrwDb8iTkDRMCPUf7m747vTff4pGlakAoQuCp6TTTaklTAklmB6hMQlZ7CeMxaNuxin1U5bEJ-i0ada4UxjSMXqceYV-fXMt9NWDShoF9vvzS8F-8ipwrbEbLzfWE1tnSuG09GrxASVUzpNWyI2nwIF02lRn6DgXRQPnv32CXm4Xz_N7f_V0t5zPVr6kNKY-BJkKcgaMJCFVnfI4ApWlikY4oziNoyRMZYCzKM6DNAiUAsAki1ge0kBEOZ2g6-HutqrFrhVFwWurS2F3nGDeR8H7KPg-io6-HOjamvctNI6vzdZWnUFOMQsJCzHFHYUHSlrTNBZyLrUT_VfOCl38f_jqz8pBF2SAW13A7gDJH5bzxbDzA-onj2I |
| CitedBy_id | crossref_primary_10_1111_mice_13420 crossref_primary_10_1109_TITS_2024_3353257 crossref_primary_10_1109_TITS_2024_3403144 crossref_primary_10_1111_mice_13446 crossref_primary_10_3390_s24010003 crossref_primary_10_1109_TITS_2024_3475371 crossref_primary_10_1111_mice_13366 crossref_primary_10_1007_s11440_024_02493_8 crossref_primary_10_1007_s42452_024_06207_3 crossref_primary_10_1109_TITS_2024_3495697 crossref_primary_10_3390_constrmater4040036 crossref_primary_10_1016_j_eswa_2024_125891 crossref_primary_10_1038_s41598_025_91352_x crossref_primary_10_1061_JITSE4_ISENG_2499 crossref_primary_10_1109_TITS_2024_3398037 crossref_primary_10_1016_j_autcon_2024_105772 crossref_primary_10_1186_s40537_025_01065_1 crossref_primary_10_1016_j_conbuildmat_2025_140393 crossref_primary_10_1111_mice_13231 crossref_primary_10_1111_mice_13451 crossref_primary_10_1109_ACCESS_2024_3479245 crossref_primary_10_1109_TITS_2024_3492731 crossref_primary_10_1109_TITS_2024_3420763 crossref_primary_10_1111_mice_13437 crossref_primary_10_17482_uumfd_1469361 crossref_primary_10_1111_mice_13117 crossref_primary_10_1111_mice_13315 crossref_primary_10_1016_j_autcon_2024_105797 crossref_primary_10_1016_j_autcon_2025_106045 crossref_primary_10_1016_j_dsp_2025_105148 crossref_primary_10_1016_j_measurement_2024_115946 crossref_primary_10_1109_TITS_2024_3464528 crossref_primary_10_1111_mice_13314 crossref_primary_10_1109_TITS_2024_3405995 crossref_primary_10_1109_TITS_2024_3424525 crossref_primary_10_1038_s41598_024_80199_3 crossref_primary_10_1007_s12524_024_02075_x crossref_primary_10_1016_j_compeleceng_2024_110045 crossref_primary_10_1007_s00530_024_01509_3 crossref_primary_10_1016_j_conbuildmat_2025_140247 crossref_primary_10_1088_1361_6501_ada786 |
| Cites_doi | 10.1111/mice.12792 10.1111/mice.12500 10.1109/TPAMI.2019.2913372 10.1016/j.autcon.2021.103786 10.1007/s44267-023-00006-x 10.3390/coatings10020152 10.1109/TITS.2021.3138428 10.1111/mice.12263 10.1007/978-3-319-24574-4_28 10.1109/TIE.2017.2764844 10.1007/s00521-019-04146-4 10.1111/mice.12826 10.1177/14759217211053776 10.1002/stc.2381 10.1109/TITS.2022.3158670 10.1111/mice.12909 10.1007/978-3-030-01234-2_1 10.1109/CVPR.2015.7298965 10.1109/TIE.2019.2945265 10.1111/mice.12519 10.1111/mice.12918 10.1111/mice.12549 10.1016/j.autcon.2021.103833 10.1007/s00521-019-04359-7 10.1111/mice.12411 10.1111/mice.12563 10.1111/mice.12477 10.1111/mice.12844 10.1111/mice.12881 10.1111/mice.12943 10.1109/TITS.2016.2552248 10.1111/mice.12931 10.1109/CISP.2010.5646923 10.1109/TIP.2018.2878966 10.1109/TITS.2019.2910595 10.1016/j.knosys.2022.110216 10.1111/mice.12626 10.1177/14759217221139730 10.1111/mice.12622 10.1109/ICIP.2016.7533052 10.1109/TITS.2021.3106647 10.1109/CVPR.2007.383157 10.1109/TITS.2022.3147669 10.1109/CVPR42600.2020.01155 10.1109/TITS.2015.2477675 10.1109/TNNLS.2022.3190448 10.1109/TENCON.2018.8650059 10.1016/j.neucom.2019.01.036 10.1111/mice.12497 10.1016/j.conbuildmat.2020.120080 10.1109/CVPR.2018.00474 10.3390/ma13132960 10.1111/mice.12297 10.1109/CVPR.2019.00326 10.1111/mice.12550 10.3233/ICA-2010-0345 10.1111/mice.12849 10.1109/TITS.2019.2891167 10.1109/TNNLS.2017.2682102 10.1061/(ASCE)CP.1943-5487.0000775 10.1016/j.jii.2020.100144 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1111/mice.13103 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 1765 |
| ExternalDocumentID | 10.1111/mice.13103 10_1111_mice_13103 MICE13103 |
| Genre | article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021ZD0111501; 2021ZD0111502 – fundername: Science and Technology Special Funds Project of Guangdong Province of China funderid: STKJ2021216; STKJ2021019 – fundername: National Natural Science Foundation of China funderid: 62176147 – fundername: Science and Technology Planning Project of Guangdong Province of China funderid: 2019A050520001; 2021A0505030072 |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OC 24P 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBS EDO EMK EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 TUS UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 ZZTAW ~IA ~WT 1OB 31~ AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACUHS ACYXJ ADNMO AEFGJ AGQPQ AGXDD AHEFC AI. AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EJD FEDTE HF~ HVGLF LW6 PALCI RJQFR SAMSI VH1 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3373-e2bd2f6e61843ddddf75edb9d350b30975849c20b57f2922ddee01b56f432a5f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1093-9687 1467-8667 |
| IngestDate | Tue Aug 19 17:41:11 EDT 2025 Wed Aug 13 10:44:31 EDT 2025 Wed Oct 01 04:16:01 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Wed Jun 18 06:51:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3373-e2bd2f6e61843ddddf75edb9d350b30975849c20b57f2922ddee01b56f432a5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13103 |
| PQID | 3064164030 |
| PQPubID | 2045171 |
| PageCount | 23 |
| ParticipantIDs | unpaywall_primary_10_1111_mice_13103 proquest_journals_3064164030 crossref_citationtrail_10_1111_mice_13103 crossref_primary_10_1111_mice_13103 wiley_primary_10_1111_mice_13103_MICE13103 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 28 2021; 23 2020; 42 2017; 28 2010 2023; 261 2010; 17 2023; 38 2020; 263 2019; 32 2021; 128 2019; 34 2022; 23 1998 2007 2020; 35 2020; 13 2023; 1 2022; 21 2020; 32 2020; 10 2016; 17 2018; 65 2020; 18 2021; 36 2023; 22 2022 2021 2020 2017; 32 2019; 67 2019; 26 2019 2020; 27 2018 2022; 37 2017 2016 2015 2021; 130 2014 2020; 21 2019; 338 2018; 33 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 Ju H. Y. (e_1_2_6_23_1) 2020; 27 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 23 start-page: 16038 issue: 9 year: 2022 end-page: 16047 article-title: A method of hierarchical feature fusion and connected attention architecture for pavement crack detection publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 21 start-page: 1525 issue: 4 year: 2020 end-page: 1535 article-title: Feature pyramid and hierarchical boosting network for pavement crack detection publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 67 start-page: 8016 issue: 9 year: 2019 end-page: 8025 article-title: SDDNet: Real‐time crack segmentation publication-title: IEEE Transactions on Industrial Electronics – year: 2020 article-title: ECA‐Net: Efficient channel attention for deep convolutional neural networks – volume: 27 issue: 8 year: 2020 article-title: Cracku‐Net: A novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Structural Control & Health Monitoring – volume: 26 issue: 8 year: 2019 article-title: Image‐based concrete crack assessment using mask and region‐based convolutional neural network publication-title: Structural Control and Health Monitoring – volume: 42 start-page: 2011 issue: 8 year: 2020 end-page: 2023 article-title: Squeeze‐and‐excitation networks publication-title: IEEE transactions on pattern analysis and machine intelligence – year: 2022 article-title: Self‐supervised learning for electroencephalography publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 35 start-page: 1160 issue: 10 year: 2020 end-page: 1174 article-title: Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 17 start-page: 2718 issue: 10 year: 2016 end-page: 2729 article-title: Automatic crack detection on two‐dimensional pavement images: An algorithm based on minimal path selection publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2021 – volume: 35 start-page: 389 issue: 4 year: 2020 end-page: 409 article-title: Concrete bridge surface damage detection using a single‐stage detector publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 23 start-page: 15190 issue: 9 year: 2022 end-page: 15203 article-title: Automatic tunnel crack inspection using an efficient mobile imaging module and a lightweight CNN publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2016 article-title: Road crack detection using deep convolutional neural network – volume: 37 start-page: 1737 issue: 13 year: 2022 end-page: 1753 article-title: A night pavement crack detection method based on image‐to‐image translation publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 17 start-page: 197 issue: 3 year: 2010 end-page: 210 article-title: Enhanced probabilistic neural network with local decision circles: A robust classifier publication-title: Integrated Computer‐Aided Engineering – year: 2018 – year: 2014 – year: 2015 article-title: Fully convolutional networks for semantic segmentation – volume: 1 issue: 1 year: 2023 article-title: Modular design automation of the morphologies, controllers, and vision systems for intelligent robots: a survey publication-title: Visual Intelligence – volume: 130 year: 2021 article-title: Road surface damage detection based on hierarchical architecture using lightweight auto‐encoder network publication-title: Automation in Construction – volume: 38 start-page: 1041 issue: 8 year: 2023 end-page: 1058 article-title: Effective pavement skid resistance measurement using multi‐scale textures and deep fusion network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 21 start-page: 2190 issue: 5 year: 2022 end-page: 2205 article-title: Efficient attention‐based deep encoder and decoder for automatic crack segmentation publication-title: Structural Health Monitoring – volume: 263 year: 2020 article-title: A triple‐thresholds pavement crack detection method leveraging random structured forest publication-title: Construction and Building Materials – volume: 35 start-page: 373 issue: 4 year: 2020 end-page: 388 article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 28 start-page: 3074 issue: 12 year: 2017 end-page: 3083 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 37 start-page: 1914 issue: 14 year: 2022 end-page: 1931 article-title: Tiny‐Crack‐Net: A multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 261 year: 2023 article-title: Concrete crack detection using lightweight attention feature fusion single shot multibox detector publication-title: Knowledge‐Based Systems – volume: 37 start-page: 1654 issue: 13 year: 2022 end-page: 1673 article-title: Intelligent pixel‐level detection of multiple distresses and surface design features on asphalt pavements publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 23 start-page: 18392 issue: 10 year: 2022 end-page: 18403 article-title: DMA‐Net: Deeplab with multi‐scale attention for pavement crack segmentation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 36 start-page: 14 issue: 1 year: 2021 end-page: 29 article-title: Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 805 issue: 10 year: 2017 end-page: 819 article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 6393 issue: 10 year: 2020 end-page: 6404 article-title: FEMa: A finite element machine for fast learning publication-title: Neural Computing and Applications – volume: 38 start-page: 849 issue: 7 year: 2023 end-page: 872 article-title: Real‐time automatic crack detection method based on drone publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 issue: 5 year: 2019 article-title: Deep learning–based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet publication-title: Journal of Computing in Civil Engineering – volume: 128 year: 2021 article-title: Semi‐supervised semantic segmentation network for surface crack detection publication-title: Automation in Construction – year: 1998 article-title: A crack detection method in road surface images using morphology – volume: 23 start-page: 11710 issue: 8 year: 2021 end-page: 11719 article-title: A crack detection algorithm for concrete pavement based on attention mechanism and multi‐features fusion publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 10 start-page: 152 issue: 2 year: 2020 article-title: Ensemble of deep convolutional neural networks for automatic pavement crack detection and measurement publication-title: Coatings – year: 2010 article-title: Improvement of canny algorithm based on pavement edge detection – year: 2007 article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition – year: 2019 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – volume: 13 start-page: 2960 issue: 13 year: 2020 article-title: Automatic crack detection on road pavements using encoder‐decoder architecture publication-title: Materials – volume: 22 year: 2023 article-title: A lightweight deep learning network based on knowledge distillation for applications of efficient crack segmentation on embedded devices publication-title: Structural Health Monitoring – volume: 338 start-page: 139 year: 2019 end-page: 153 article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation publication-title: Neurocomputing – volume: 65 start-page: 4392 issue: 5 year: 2018 end-page: 4400 article-title: NB‐CNN: Deep learning‐based crack detection using convolutional neural network and naïve Bayes data fusion publication-title: IEEE Transactions on Industrial Electronics – volume: 37 start-page: 1721 issue: 13 year: 2022 end-page: 1736 article-title: A novel U‐shaped encoder–decoder network with attention mechanism for detection and evaluation of road cracks at pixel level publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 35 start-page: 495 issue: 5 year: 2020 end-page: 510 article-title: Postdisaster image‐based damage detection and repair cost estimation of reinforced concrete buildings using dual convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 37 start-page: 1468 issue: 11 year: 2022 end-page: 1487 article-title: Dual attention deep learning network for automatic steel surface defect segmentation publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 21 start-page: 273 issue: 1 year: 2020 end-page: 284 article-title: Pixel‐level cracking detection on 3D asphalt pavement images through deep‐learning‐based CrackNet‐V publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 35 start-page: 549 issue: 6 year: 2020 end-page: 564 article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2018 article-title: CBAM: Convolutional block attention module – year: 2019 article-title: Dual attention network for scene segmentation – volume: 17 start-page: 3434 issue: 12 year: 2016 end-page: 3445 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 36 start-page: 656 issue: 5 year: 2021 end-page: 674 article-title: Automated crack assessment and quantitative growth monitoring publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2018 article-title: Attention U‐Net: Learning where to look for the pancreas – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 34 start-page: 951 issue: 11 year: 2019 end-page: 971 article-title: Concrete crack detection using context‐aware deep semantic segmentation network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 18 year: 2020 article-title: Pavement crack detection and recognition using the architecture of segNet publication-title: Journal of Industrial Information Integration – year: 2018 article-title: MobileNetV2: Inverted residuals and linear bottlenecks – year: 2015 article-title: U‐net: Convolutional networks for biomedical image segmentation – year: 2018 article-title: Pixel‐level crack detection using U‐net – volume: 35 start-page: 1291 issue: 11 year: 2020 end-page: 1305 article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 37 start-page: 1875 issue: 14 year: 2022 end-page: 1890 article-title: A sigmoid‐optimized encoder‐decoder network for crack segmentation with copy‐edit‐paste transfer learning publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2017 – volume: 32 start-page: 8675 issue: 10 year: 2020 end-page: 8690 article-title: A dynamic ensemble learning algorithm for neural networks publication-title: Neural Computing with Applications – volume: 28 start-page: 1498 issue: 3 year: 2018 end-page: 1512 article-title: DeepCrack: Learning hierarchical convolutional features for crack detection publication-title: IEEE Transactions on Image Processing – volume: 38 start-page: 959 issue: 8 year: 2023 end-page: 974 article-title: Autoencoders for unsupervised real‐time bridge health assessment publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 1073 issue: 12 year: 2018 end-page: 1089 article-title: Damage classification for masonry historic structures using convolutional neural networks based on still images publication-title: Computer‐Aided Civil and Infrastructure Engineering – ident: e_1_2_6_41_1 doi: 10.1111/mice.12792 – ident: e_1_2_6_66_1 doi: 10.1111/mice.12500 – ident: e_1_2_6_21_1 doi: 10.1109/TPAMI.2019.2913372 – ident: e_1_2_6_58_1 doi: 10.1016/j.autcon.2021.103786 – ident: e_1_2_6_30_1 doi: 10.1007/s44267-023-00006-x – ident: e_1_2_6_16_1 doi: 10.3390/coatings10020152 – ident: e_1_2_6_31_1 doi: 10.1109/TITS.2021.3138428 – ident: e_1_2_6_6_1 doi: 10.1111/mice.12263 – ident: e_1_2_6_28_1 – ident: e_1_2_6_22_1 – ident: e_1_2_6_49_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_6_7_1 doi: 10.1109/TIE.2017.2764844 – ident: e_1_2_6_43_1 doi: 10.1007/s00521-019-04146-4 – ident: e_1_2_6_8_1 doi: 10.1111/mice.12826 – ident: e_1_2_6_26_1 doi: 10.1177/14759217211053776 – ident: e_1_2_6_27_1 doi: 10.1002/stc.2381 – ident: e_1_2_6_53_1 doi: 10.1109/TITS.2022.3158670 – ident: e_1_2_6_65_1 doi: 10.1111/mice.12909 – ident: e_1_2_6_59_1 doi: 10.1007/978-3-030-01234-2_1 – ident: e_1_2_6_55_1 – ident: e_1_2_6_37_1 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_6_12_1 doi: 10.1109/TIE.2019.2945265 – ident: e_1_2_6_25_1 doi: 10.1111/mice.12519 – ident: e_1_2_6_38_1 doi: 10.1111/mice.12918 – ident: e_1_2_6_40_1 doi: 10.1111/mice.12549 – ident: e_1_2_6_51_1 doi: 10.1016/j.autcon.2021.103833 – ident: e_1_2_6_3_1 doi: 10.1007/s00521-019-04359-7 – ident: e_1_2_6_56_1 doi: 10.1111/mice.12411 – ident: e_1_2_6_60_1 doi: 10.1111/mice.12563 – ident: e_1_2_6_68_1 doi: 10.1111/mice.12477 – ident: e_1_2_6_5_1 doi: 10.1111/mice.12844 – ident: e_1_2_6_13_1 doi: 10.1111/mice.12881 – ident: e_1_2_6_20_1 doi: 10.1111/mice.12943 – ident: e_1_2_6_52_1 doi: 10.1109/TITS.2016.2552248 – ident: e_1_2_6_61_1 doi: 10.1111/mice.12909 – ident: e_1_2_6_33_1 doi: 10.1111/mice.12931 – ident: e_1_2_6_69_1 doi: 10.1109/CISP.2010.5646923 – ident: e_1_2_6_18_1 – ident: e_1_2_6_71_1 doi: 10.1109/TIP.2018.2878966 – ident: e_1_2_6_62_1 doi: 10.1109/TITS.2019.2910595 – ident: e_1_2_6_70_1 doi: 10.1016/j.knosys.2022.110216 – ident: e_1_2_6_29_1 doi: 10.1111/mice.12626 – ident: e_1_2_6_9_1 doi: 10.1177/14759217221139730 – ident: e_1_2_6_34_1 doi: 10.1111/mice.12622 – ident: e_1_2_6_67_1 doi: 10.1109/ICIP.2016.7533052 – ident: e_1_2_6_39_1 – ident: e_1_2_6_44_1 doi: 10.1109/TITS.2021.3106647 – ident: e_1_2_6_48_1 doi: 10.1109/CVPR.2007.383157 – ident: e_1_2_6_45_1 doi: 10.1109/TITS.2022.3147669 – ident: e_1_2_6_57_1 doi: 10.1109/CVPR42600.2020.01155 – volume: 27 issue: 8 year: 2020 ident: e_1_2_6_23_1 article-title: Cracku‐Net: A novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Structural Control & Health Monitoring – ident: e_1_2_6_4_1 doi: 10.1109/TITS.2015.2477675 – ident: e_1_2_6_47_1 doi: 10.1109/TNNLS.2022.3190448 – ident: e_1_2_6_11_1 doi: 10.1109/TENCON.2018.8650059 – ident: e_1_2_6_36_1 doi: 10.1016/j.neucom.2019.01.036 – ident: e_1_2_6_14_1 doi: 10.1111/mice.12497 – ident: e_1_2_6_42_1 doi: 10.1016/j.conbuildmat.2020.120080 – ident: e_1_2_6_50_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_6_17_1 doi: 10.3390/ma13132960 – ident: e_1_2_6_64_1 doi: 10.1111/mice.12297 – ident: e_1_2_6_15_1 doi: 10.1109/CVPR.2019.00326 – ident: e_1_2_6_24_1 doi: 10.1111/mice.12550 – ident: e_1_2_6_32_1 – ident: e_1_2_6_2_1 doi: 10.3233/ICA-2010-0345 – ident: e_1_2_6_35_1 doi: 10.1111/mice.12849 – ident: e_1_2_6_19_1 doi: 10.1109/TITS.2019.2891167 – ident: e_1_2_6_46_1 doi: 10.1109/TNNLS.2017.2682102 – ident: e_1_2_6_54_1 – ident: e_1_2_6_63_1 doi: 10.1061/(ASCE)CP.1943-5487.0000775 – ident: e_1_2_6_10_1 doi: 10.1016/j.jii.2020.100144 |
| SSID | ssj0000443 |
| Score | 2.6113899 |
| Snippet | Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1743 |
| SubjectTerms | Ablation Coders Cracks Datasets Flaw detection Frames per second Image acquisition Pavements Pixels Robots |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MeVAPfkzF-UXAXRQqbdqkLXgZsjEEhwcHu5WkSS6Obmwdw5v_g_-hf4lJ2u4DZGBPIX3tIS_v5fceL78H0GJCUZcR7AgVBk7AiPaDaUQc4unjLfS81FMmof_ap71B8DIkwxo8VXdhCn6IZcLNWIb118bAGZ-tGbnp1v7omTZZO7DraSBj9jcO3lZ-OCjL62PfiWkUluSkpo5n9e3mcbTCmHvzbMI-F2w02kSt9tjpHsNhiRdRu1DwCdRk1oCjEjui0jJneqpqz1DNNeBgjWvwFPptNDKB-MLmQpHhrxRy-vP1LaQdoawoCEcaxSI2z8eWyxVNmCUUz1E6ZekHEjK3tVvZGQy6nffnnlM2U3BS3w99R2IusKLSNngR-lEhkYLHwicu991Yxw1BnGKXk1DhGGPt9qTrcUJV4GNGlH8O9WycyQtALouE4pIKGpqXKQ-1ul3u6mhXg2AaNeG-WtMkLZnGTcOLUVJFHGb9E7v-Tbhbyk4Kfo0_pa4r1SSljc0SEzvpYE97qSa0lura-pcHq8ktIone-x07uvyP8BXsYw12ihKya6jn07m80WAl57d2T_4CT1Hk7w priority: 102 providerName: Wiley-Blackwell |
| Title | A lightweight encoder–decoder network for automatic pavement crack detection |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13103 https://www.proquest.com/docview/3064164030 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13103 |
| UnpaywallVersion | publishedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0000443 issn: 1467-8667 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0000443 issn: 1467-8667 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1467-8667 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH-i5TB2GKyAKANkCS6blJI4sdMcq9EKIVGhaZXYKfLfC1WoSio0TnyHfcN9Ep6dpKMTQkjkEFmOYyX2e8-_57z8HsCJ0JaHgtFA2zQJEsHQDqo-C1iEy1saRSqybkP_cszPJ8nFNbt-9hd_xQ-x3HBzmuHttVPwmbaVnW9U_dRlbO9FLlVWC9Y5QzTehvXJ-Grwy3_kzOIg4z5HnrcHfc7TmqF09ebVNekf0PywKGbi972YTlehq197RpsgmqeuQk5ueotS9tTDf4SO73mtLfhUA1MyqCTpM6yZogObNUgltQm4w6omD0RT14GPz0gNt2E8IFPn8d_7TVfiiDK1mf99_KONL5GiijwnCJeJWJS3njSWzIRnLi-Jmgt1Q7QpfZBYsQOT0fDn9_OgztoQqDhO48BQqanlxmeS0XjYlBktMx2zUMZhhg5KkikaSpZamlGK9tWEkWTcJjEVzMa70C5uC7MHJBR9baXhmqfuopIpylUoQ3SrEW3zfhe-NvOWq5rS3GXWmOaNa-NGMvcj2YXjZdtZReTxYquDZvrzWpnvcuekoVeJ5rALJ0uReLWXb36KX2mSo5INfWn_bX1-gQ2KeKqKUjuAdjlfmEPEQ6U8ghZNrvB89oMe1eL_BL8dC3I |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQwBJdQApKnNhpxgpRlVfFAFK3yI7thSpUJVXFxn_gH_JLsB2nDwlVIpPlXDL4fOfvTufvAJpMKOozgj2h4siLGNF-MGsRjwT6eIuDIAuUSeg_9Wj3Nbrvk76rzTF3YUp-iGnCzViG9dfGwE1Ces7KTbv268D0yVqFtYgG1MReOHqeOeLI1dcnoZfQVuzYSU0hz-zbxfNoBjLXx_mQfU7YYLAIW-2509mBLQcYUbvU8C6syHwPth14RM40P_RU1Z-hmtuDzTmywX3otdHAROITmwxFhsBSyNHP17eQdoTysiIcaRiL2Lh4t2SuaMgso3iBshHL3pCQhS3eyg_gtXP7ctP1XDcFLwvDOPQk5gIrKm2HF6EfFRMpeCJC4vPQT3TgECUZ9jmJFU4w1n5P-gEnVEUhZkSFh1DL33N5BMhnLaG4pILG5mXGY61vn_s63NUomLbqcFmtaZo5qnHT8WKQViGHWf_Urn8dLqayw5Jg40-pRqWa1BnZR2qCJx3taTdVh-ZUXUv_cmU1uUQk1Zv_1o6O_yN8Duvdl6fH9PGu93ACG1gjn7KerAG1YjSWpxq5FPzM7s9fsIvoWw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gMvBXRzXgF4UOrRp0-Uo6uA6iCh4K1kvDnWY6SB68j_4D_0lJmk6jiKC9hTS10KT95Lvha_fA9ijQsU-JdgTKom8iBK9DvKUeCTQ21sSBDxQ5kD_qh2f3kXn9-TecXPMvzCVPsTwwM1Ehl2vTYDLrlAjUW7KtTcDUydrHCYjkqWG0Xd8M6IeFTl-fRZ6WZwmTp3UEHk-n_26H32CzOlB0aXPT7TT-Qpb7b7Tmq-Kq_atXKGhmzw0ByVr8pdvYo7__qQFmHOIFB1WLrQIY7JYgnmHTpGL_b7uqgtA1H1LMDuiZrgM7UPUMan-kz1tRUYhU8je--ubkLaFiopyjjRORnRQPlq1WNSlVrK8RLxH-QMSsrTssGIF7lont0ennivX4PEwTEJPYiawiqUtISP0pRIiBctESHwW-pnOTKKMY5-RROEMY72wSj9gJFZRiClR4SpMFI-FXAPk01QoJmMRJ-YmZ4l2KJ_5Op_WMDtOG7BfT1rOnZa5KanRyeucxoxkbkeyAbtD226l4PGj1WY997mL4n5usjOdTup1sAF7Q3_49S0Hdn5_Mcl1dJ3Y1vpfjHdg6vq4lV-etS82YAZrZFXx1TZhouwN5JZGRiXbtv7_AWbDCPo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_oPKgHp1Nx_iPgLgqdbdqk63GIIoLDgwM9lfy9OOqYHUNPfge_oZ_EJG3nJjIEewppGtLkvZffS19_D6DFpKY-I9iTOo68iBFjB0WHeCQw21scBCLQ9kD_tkev-9HNA3mY-Yu_4IeYHrhZzXD22ir4UOrCzleqfm4ztrcDmyprGVYoMWi8Biv93l330X3kTEIvoS5HnrMHHUrjkqF0_uH5PekbaK6OsyF7nbDBYB66ur3nqg6sGnURcvLUHue8Ld5-EDr-57U2YaMEpqhbSNIWLKmsAfUSpKLSBLyYqioPRFXXgPUZUsNt6HXRwHr8E3foiixRplSjz_cPqVwJZUXkOTJwGbFx_uxIY9GQOebyHIkRE09IqtwFiWU70L-6vL-49sqsDZ4Iwzj0FOYSa6pcJhlpLh0TJXkiQ-Lz0E-MgxIlAvucxBonGBv7qvyAE6qjEDOiw12oZc-Z2gPks47UXFFJY3tT8NjIlc9941YbtE07TTit1i0VJaW5zawxSCvXxs5k6mayCSfTtsOCyOPXVofV8qelMr-k1kkzXqUxh01oTUViYS9nbokXNEmNkl260v7f-jyANWzwVBGldgi1fDRWRwYP5fy4FPkvR4sJsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+encoder%E2%80%93decoder+network+for+automatic+pavement+crack+detection&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Zhu%2C+Guijie&rft.au=Liu%2C+Jiacheng&rft.au=Fan%2C+Zhun&rft.au=Duan+Yuan&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=12&rft.spage=1743&rft.epage=1765&rft_id=info:doi/10.1111%2Fmice.13103&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |