A lightweight encoder–decoder network for automatic pavement crack detection

Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 39; no. 12; pp. 1743 - 1765
Main Authors Zhu, Guijie, Liu, Jiacheng, Fan, Zhun, Yuan, Duan, Ma, Peili, Wang, Meihua, Sheng, Weihua, Wang, Kelvin C. P.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
1467-8667
DOI10.1111/mice.13103

Cover

Abstract Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this paper proposes an efficient lightweight encoder–decoder network for automatically detecting pavement cracks at the pixel level. Taking advantage of a novel encoder–decoder architecture integrating a new type of hybrid attention blocks and residual blocks (RBs), the proposed network can achieve an extremely lightweight model with more accurate detection of pavement crack pixels. An image dataset consisting of 789 images of pavement cracks acquired by a self‐designed mobile robot is built and utilized to train and evaluate the proposed network. Comprehensive experiments demonstrate that the proposed network performs better than the state‐of‐the‐art methods on the self‐built dataset as well as three other public datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation studies validate the effectiveness of integrating the RBs and the proposed hybrid attention mechanisms. By introducing depth‐wise separable convolutions, an even more lightweight version of the proposed network is created, which has a comparable performance and achieves the fastest inference speed with a model parameter size of only 0.57 M. The developed mobile robot system can effectively detect pavement cracks in real scenarios at a speed of 25 frames per second.
AbstractList Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this paper proposes an efficient lightweight encoder–decoder network for automatically detecting pavement cracks at the pixel level. Taking advantage of a novel encoder–decoder architecture integrating a new type of hybrid attention blocks and residual blocks (RBs), the proposed network can achieve an extremely lightweight model with more accurate detection of pavement crack pixels. An image dataset consisting of 789 images of pavement cracks acquired by a self‐designed mobile robot is built and utilized to train and evaluate the proposed network. Comprehensive experiments demonstrate that the proposed network performs better than the state‐of‐the‐art methods on the self‐built dataset as well as three other public datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation studies validate the effectiveness of integrating the RBs and the proposed hybrid attention mechanisms. By introducing depth‐wise separable convolutions, an even more lightweight version of the proposed network is created, which has a comparable performance and achieves the fastest inference speed with a model parameter size of only 0.57 M. The developed mobile robot system can effectively detect pavement cracks in real scenarios at a speed of 25 frames per second.
Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified due to background interference. Accurate and fast automatic road crack detection play a vital role in assessing pavement conditions. Thus, this paper proposes an efficient lightweight encoder–decoder network for automatically detecting pavement cracks at the pixel level. Taking advantage of a novel encoder–decoder architecture integrating a new type of hybrid attention blocks and residual blocks (RBs), the proposed network can achieve an extremely lightweight model with more accurate detection of pavement crack pixels. An image dataset consisting of 789 images of pavement cracks acquired by a self‐designed mobile robot is built and utilized to train and evaluate the proposed network. Comprehensive experiments demonstrate that the proposed network performs better than the state‐of‐the‐art methods on the self‐built dataset as well as three other public datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation studies validate the effectiveness of integrating the RBs and the proposed hybrid attention mechanisms. By introducing depth‐wise separable convolutions, an even more lightweight version of the proposed network is created, which has a comparable performance and achieves the fastest inference speed with a model parameter size of only 0.57 M. The developed mobile robot system can effectively detect pavement cracks in real scenarios at a speed of 25 frames per second.
Author Ma, Peili
Wang, Meihua
Liu, Jiacheng
Fan, Zhun
Wang, Kelvin C. P.
Yuan, Duan
Zhu, Guijie
Sheng, Weihua
Author_xml – sequence: 1
  givenname: Guijie
  surname: Zhu
  fullname: Zhu, Guijie
  organization: Shantou University
– sequence: 2
  givenname: Jiacheng
  surname: Liu
  fullname: Liu, Jiacheng
  organization: Shantou University
– sequence: 3
  givenname: Zhun
  surname: Fan
  fullname: Fan, Zhun
  email: zfan@stu.edu.cn
  organization: Shantou University
– sequence: 4
  givenname: Duan
  surname: Yuan
  fullname: Yuan, Duan
  organization: Shantou University
– sequence: 5
  givenname: Peili
  surname: Ma
  fullname: Ma, Peili
  organization: Shantou University
– sequence: 6
  givenname: Meihua
  surname: Wang
  fullname: Wang, Meihua
  email: wangmeihua@scau.edu.cn
  organization: South China Agricultural University
– sequence: 7
  givenname: Weihua
  surname: Sheng
  fullname: Sheng, Weihua
  organization: Oklahoma
– sequence: 8
  givenname: Kelvin C. P.
  surname: Wang
  fullname: Wang, Kelvin C. P.
  organization: Oklahoma
BookMark eNp9kLFOwzAQhi1UJEph4QkisYFS7DhxkrGqClQqsMBsOfYF3CZxcFyibrwDb8iTkDRMCPUf7m747vTff4pGlakAoQuCp6TTTaklTAklmB6hMQlZ7CeMxaNuxin1U5bEJ-i0ada4UxjSMXqceYV-fXMt9NWDShoF9vvzS8F-8ipwrbEbLzfWE1tnSuG09GrxASVUzpNWyI2nwIF02lRn6DgXRQPnv32CXm4Xz_N7f_V0t5zPVr6kNKY-BJkKcgaMJCFVnfI4ApWlikY4oziNoyRMZYCzKM6DNAiUAsAki1ge0kBEOZ2g6-HutqrFrhVFwWurS2F3nGDeR8H7KPg-io6-HOjamvctNI6vzdZWnUFOMQsJCzHFHYUHSlrTNBZyLrUT_VfOCl38f_jqz8pBF2SAW13A7gDJH5bzxbDzA-onj2I
CitedBy_id crossref_primary_10_1111_mice_13420
crossref_primary_10_1109_TITS_2024_3353257
crossref_primary_10_1109_TITS_2024_3403144
crossref_primary_10_1111_mice_13446
crossref_primary_10_3390_s24010003
crossref_primary_10_1109_TITS_2024_3475371
crossref_primary_10_1111_mice_13366
crossref_primary_10_1007_s11440_024_02493_8
crossref_primary_10_1007_s42452_024_06207_3
crossref_primary_10_1109_TITS_2024_3495697
crossref_primary_10_3390_constrmater4040036
crossref_primary_10_1016_j_eswa_2024_125891
crossref_primary_10_1038_s41598_025_91352_x
crossref_primary_10_1061_JITSE4_ISENG_2499
crossref_primary_10_1109_TITS_2024_3398037
crossref_primary_10_1016_j_autcon_2024_105772
crossref_primary_10_1186_s40537_025_01065_1
crossref_primary_10_1016_j_conbuildmat_2025_140393
crossref_primary_10_1111_mice_13231
crossref_primary_10_1111_mice_13451
crossref_primary_10_1109_ACCESS_2024_3479245
crossref_primary_10_1109_TITS_2024_3492731
crossref_primary_10_1109_TITS_2024_3420763
crossref_primary_10_1111_mice_13437
crossref_primary_10_17482_uumfd_1469361
crossref_primary_10_1111_mice_13117
crossref_primary_10_1111_mice_13315
crossref_primary_10_1016_j_autcon_2024_105797
crossref_primary_10_1016_j_autcon_2025_106045
crossref_primary_10_1016_j_dsp_2025_105148
crossref_primary_10_1016_j_measurement_2024_115946
crossref_primary_10_1109_TITS_2024_3464528
crossref_primary_10_1111_mice_13314
crossref_primary_10_1109_TITS_2024_3405995
crossref_primary_10_1109_TITS_2024_3424525
crossref_primary_10_1038_s41598_024_80199_3
crossref_primary_10_1007_s12524_024_02075_x
crossref_primary_10_1016_j_compeleceng_2024_110045
crossref_primary_10_1007_s00530_024_01509_3
crossref_primary_10_1016_j_conbuildmat_2025_140247
crossref_primary_10_1088_1361_6501_ada786
Cites_doi 10.1111/mice.12792
10.1111/mice.12500
10.1109/TPAMI.2019.2913372
10.1016/j.autcon.2021.103786
10.1007/s44267-023-00006-x
10.3390/coatings10020152
10.1109/TITS.2021.3138428
10.1111/mice.12263
10.1007/978-3-319-24574-4_28
10.1109/TIE.2017.2764844
10.1007/s00521-019-04146-4
10.1111/mice.12826
10.1177/14759217211053776
10.1002/stc.2381
10.1109/TITS.2022.3158670
10.1111/mice.12909
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2015.7298965
10.1109/TIE.2019.2945265
10.1111/mice.12519
10.1111/mice.12918
10.1111/mice.12549
10.1016/j.autcon.2021.103833
10.1007/s00521-019-04359-7
10.1111/mice.12411
10.1111/mice.12563
10.1111/mice.12477
10.1111/mice.12844
10.1111/mice.12881
10.1111/mice.12943
10.1109/TITS.2016.2552248
10.1111/mice.12931
10.1109/CISP.2010.5646923
10.1109/TIP.2018.2878966
10.1109/TITS.2019.2910595
10.1016/j.knosys.2022.110216
10.1111/mice.12626
10.1177/14759217221139730
10.1111/mice.12622
10.1109/ICIP.2016.7533052
10.1109/TITS.2021.3106647
10.1109/CVPR.2007.383157
10.1109/TITS.2022.3147669
10.1109/CVPR42600.2020.01155
10.1109/TITS.2015.2477675
10.1109/TNNLS.2022.3190448
10.1109/TENCON.2018.8650059
10.1016/j.neucom.2019.01.036
10.1111/mice.12497
10.1016/j.conbuildmat.2020.120080
10.1109/CVPR.2018.00474
10.3390/ma13132960
10.1111/mice.12297
10.1109/CVPR.2019.00326
10.1111/mice.12550
10.3233/ICA-2010-0345
10.1111/mice.12849
10.1109/TITS.2019.2891167
10.1109/TNNLS.2017.2682102
10.1061/(ASCE)CP.1943-5487.0000775
10.1016/j.jii.2020.100144
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1111/mice.13103
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 1765
ExternalDocumentID 10.1111/mice.13103
10_1111_mice_13103
MICE13103
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021ZD0111501; 2021ZD0111502
– fundername: Science and Technology Special Funds Project of Guangdong Province of China
  funderid: STKJ2021216; STKJ2021019
– fundername: National Natural Science Foundation of China
  funderid: 62176147
– fundername: Science and Technology Planning Project of Guangdong Province of China
  funderid: 2019A050520001; 2021A0505030072
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
24P
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBS
EDO
EMK
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
1OB
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACUHS
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EJD
FEDTE
HF~
HVGLF
LW6
PALCI
RJQFR
SAMSI
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c3373-e2bd2f6e61843ddddf75edb9d350b30975849c20b57f2922ddee01b56f432a5f3
IEDL.DBID UNPAY
ISSN 1093-9687
1467-8667
IngestDate Tue Aug 19 17:41:11 EDT 2025
Wed Aug 13 10:44:31 EDT 2025
Wed Oct 01 04:16:01 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Wed Jun 18 06:51:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3373-e2bd2f6e61843ddddf75edb9d350b30975849c20b57f2922ddee01b56f432a5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13103
PQID 3064164030
PQPubID 2045171
PageCount 23
ParticipantIDs unpaywall_primary_10_1111_mice_13103
proquest_journals_3064164030
crossref_citationtrail_10_1111_mice_13103
crossref_primary_10_1111_mice_13103
wiley_primary_10_1111_mice_13103_MICE13103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2021; 23
2020; 42
2017; 28
2010
2023; 261
2010; 17
2023; 38
2020; 263
2019; 32
2021; 128
2019; 34
2022; 23
1998
2007
2020; 35
2020; 13
2023; 1
2022; 21
2020; 32
2020; 10
2016; 17
2018; 65
2020; 18
2021; 36
2023; 22
2022
2021
2020
2017; 32
2019; 67
2019; 26
2019
2020; 27
2018
2022; 37
2017
2016
2015
2021; 130
2014
2020; 21
2019; 338
2018; 33
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
Ju H. Y. (e_1_2_6_23_1) 2020; 27
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 23
  start-page: 16038
  issue: 9
  year: 2022
  end-page: 16047
  article-title: A method of hierarchical feature fusion and connected attention architecture for pavement crack detection
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 21
  start-page: 1525
  issue: 4
  year: 2020
  end-page: 1535
  article-title: Feature pyramid and hierarchical boosting network for pavement crack detection
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 67
  start-page: 8016
  issue: 9
  year: 2019
  end-page: 8025
  article-title: SDDNet: Real‐time crack segmentation
  publication-title: IEEE Transactions on Industrial Electronics
– year: 2020
  article-title: ECA‐Net: Efficient channel attention for deep convolutional neural networks
– volume: 27
  issue: 8
  year: 2020
  article-title: Cracku‐Net: A novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Structural Control & Health Monitoring
– volume: 26
  issue: 8
  year: 2019
  article-title: Image‐based concrete crack assessment using mask and region‐based convolutional neural network
  publication-title: Structural Control and Health Monitoring
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  end-page: 2023
  article-title: Squeeze‐and‐excitation networks
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– year: 2022
  article-title: Self‐supervised learning for electroencephalography
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 35
  start-page: 1160
  issue: 10
  year: 2020
  end-page: 1174
  article-title: Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 17
  start-page: 2718
  issue: 10
  year: 2016
  end-page: 2729
  article-title: Automatic crack detection on two‐dimensional pavement images: An algorithm based on minimal path selection
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2021
– volume: 35
  start-page: 389
  issue: 4
  year: 2020
  end-page: 409
  article-title: Concrete bridge surface damage detection using a single‐stage detector
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 23
  start-page: 15190
  issue: 9
  year: 2022
  end-page: 15203
  article-title: Automatic tunnel crack inspection using an efficient mobile imaging module and a lightweight CNN
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2016
  article-title: Road crack detection using deep convolutional neural network
– volume: 37
  start-page: 1737
  issue: 13
  year: 2022
  end-page: 1753
  article-title: A night pavement crack detection method based on image‐to‐image translation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  end-page: 210
  article-title: Enhanced probabilistic neural network with local decision circles: A robust classifier
  publication-title: Integrated Computer‐Aided Engineering
– year: 2018
– year: 2014
– year: 2015
  article-title: Fully convolutional networks for semantic segmentation
– volume: 1
  issue: 1
  year: 2023
  article-title: Modular design automation of the morphologies, controllers, and vision systems for intelligent robots: a survey
  publication-title: Visual Intelligence
– volume: 130
  year: 2021
  article-title: Road surface damage detection based on hierarchical architecture using lightweight auto‐encoder network
  publication-title: Automation in Construction
– volume: 38
  start-page: 1041
  issue: 8
  year: 2023
  end-page: 1058
  article-title: Effective pavement skid resistance measurement using multi‐scale textures and deep fusion network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 21
  start-page: 2190
  issue: 5
  year: 2022
  end-page: 2205
  article-title: Efficient attention‐based deep encoder and decoder for automatic crack segmentation
  publication-title: Structural Health Monitoring
– volume: 263
  year: 2020
  article-title: A triple‐thresholds pavement crack detection method leveraging random structured forest
  publication-title: Construction and Building Materials
– volume: 35
  start-page: 373
  issue: 4
  year: 2020
  end-page: 388
  article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 37
  start-page: 1914
  issue: 14
  year: 2022
  end-page: 1931
  article-title: Tiny‐Crack‐Net: A multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 261
  year: 2023
  article-title: Concrete crack detection using lightweight attention feature fusion single shot multibox detector
  publication-title: Knowledge‐Based Systems
– volume: 37
  start-page: 1654
  issue: 13
  year: 2022
  end-page: 1673
  article-title: Intelligent pixel‐level detection of multiple distresses and surface design features on asphalt pavements
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 23
  start-page: 18392
  issue: 10
  year: 2022
  end-page: 18403
  article-title: DMA‐Net: Deeplab with multi‐scale attention for pavement crack segmentation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 36
  start-page: 14
  issue: 1
  year: 2021
  end-page: 29
  article-title: Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  end-page: 819
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  end-page: 6404
  article-title: FEMa: A finite element machine for fast learning
  publication-title: Neural Computing and Applications
– volume: 38
  start-page: 849
  issue: 7
  year: 2023
  end-page: 872
  article-title: Real‐time automatic crack detection method based on drone
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  issue: 5
  year: 2019
  article-title: Deep learning–based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet
  publication-title: Journal of Computing in Civil Engineering
– volume: 128
  year: 2021
  article-title: Semi‐supervised semantic segmentation network for surface crack detection
  publication-title: Automation in Construction
– year: 1998
  article-title: A crack detection method in road surface images using morphology
– volume: 23
  start-page: 11710
  issue: 8
  year: 2021
  end-page: 11719
  article-title: A crack detection algorithm for concrete pavement based on attention mechanism and multi‐features fusion
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 10
  start-page: 152
  issue: 2
  year: 2020
  article-title: Ensemble of deep convolutional neural networks for automatic pavement crack detection and measurement
  publication-title: Coatings
– year: 2010
  article-title: Improvement of canny algorithm based on pavement edge detection
– year: 2007
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
– year: 2019
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– volume: 13
  start-page: 2960
  issue: 13
  year: 2020
  article-title: Automatic crack detection on road pavements using encoder‐decoder architecture
  publication-title: Materials
– volume: 22
  year: 2023
  article-title: A lightweight deep learning network based on knowledge distillation for applications of efficient crack segmentation on embedded devices
  publication-title: Structural Health Monitoring
– volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  article-title: DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
– volume: 65
  start-page: 4392
  issue: 5
  year: 2018
  end-page: 4400
  article-title: NB‐CNN: Deep learning‐based crack detection using convolutional neural network and naïve Bayes data fusion
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 37
  start-page: 1721
  issue: 13
  year: 2022
  end-page: 1736
  article-title: A novel U‐shaped encoder–decoder network with attention mechanism for detection and evaluation of road cracks at pixel level
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  start-page: 495
  issue: 5
  year: 2020
  end-page: 510
  article-title: Postdisaster image‐based damage detection and repair cost estimation of reinforced concrete buildings using dual convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 37
  start-page: 1468
  issue: 11
  year: 2022
  end-page: 1487
  article-title: Dual attention deep learning network for automatic steel surface defect segmentation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 21
  start-page: 273
  issue: 1
  year: 2020
  end-page: 284
  article-title: Pixel‐level cracking detection on 3D asphalt pavement images through deep‐learning‐based CrackNet‐V
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 35
  start-page: 549
  issue: 6
  year: 2020
  end-page: 564
  article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2018
  article-title: CBAM: Convolutional block attention module
– year: 2019
  article-title: Dual attention network for scene segmentation
– volume: 17
  start-page: 3434
  issue: 12
  year: 2016
  end-page: 3445
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 36
  start-page: 656
  issue: 5
  year: 2021
  end-page: 674
  article-title: Automated crack assessment and quantitative growth monitoring
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2018
  article-title: Attention U‐Net: Learning where to look for the pancreas
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 951
  issue: 11
  year: 2019
  end-page: 971
  article-title: Concrete crack detection using context‐aware deep semantic segmentation network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 18
  year: 2020
  article-title: Pavement crack detection and recognition using the architecture of segNet
  publication-title: Journal of Industrial Information Integration
– year: 2018
  article-title: MobileNetV2: Inverted residuals and linear bottlenecks
– year: 2015
  article-title: U‐net: Convolutional networks for biomedical image segmentation
– year: 2018
  article-title: Pixel‐level crack detection using U‐net
– volume: 35
  start-page: 1291
  issue: 11
  year: 2020
  end-page: 1305
  article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 37
  start-page: 1875
  issue: 14
  year: 2022
  end-page: 1890
  article-title: A sigmoid‐optimized encoder‐decoder network for crack segmentation with copy‐edit‐paste transfer learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2017
– volume: 32
  start-page: 8675
  issue: 10
  year: 2020
  end-page: 8690
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural Computing with Applications
– volume: 28
  start-page: 1498
  issue: 3
  year: 2018
  end-page: 1512
  article-title: DeepCrack: Learning hierarchical convolutional features for crack detection
  publication-title: IEEE Transactions on Image Processing
– volume: 38
  start-page: 959
  issue: 8
  year: 2023
  end-page: 974
  article-title: Autoencoders for unsupervised real‐time bridge health assessment
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 1073
  issue: 12
  year: 2018
  end-page: 1089
  article-title: Damage classification for masonry historic structures using convolutional neural networks based on still images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– ident: e_1_2_6_41_1
  doi: 10.1111/mice.12792
– ident: e_1_2_6_66_1
  doi: 10.1111/mice.12500
– ident: e_1_2_6_21_1
  doi: 10.1109/TPAMI.2019.2913372
– ident: e_1_2_6_58_1
  doi: 10.1016/j.autcon.2021.103786
– ident: e_1_2_6_30_1
  doi: 10.1007/s44267-023-00006-x
– ident: e_1_2_6_16_1
  doi: 10.3390/coatings10020152
– ident: e_1_2_6_31_1
  doi: 10.1109/TITS.2021.3138428
– ident: e_1_2_6_6_1
  doi: 10.1111/mice.12263
– ident: e_1_2_6_28_1
– ident: e_1_2_6_22_1
– ident: e_1_2_6_49_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_6_7_1
  doi: 10.1109/TIE.2017.2764844
– ident: e_1_2_6_43_1
  doi: 10.1007/s00521-019-04146-4
– ident: e_1_2_6_8_1
  doi: 10.1111/mice.12826
– ident: e_1_2_6_26_1
  doi: 10.1177/14759217211053776
– ident: e_1_2_6_27_1
  doi: 10.1002/stc.2381
– ident: e_1_2_6_53_1
  doi: 10.1109/TITS.2022.3158670
– ident: e_1_2_6_65_1
  doi: 10.1111/mice.12909
– ident: e_1_2_6_59_1
  doi: 10.1007/978-3-030-01234-2_1
– ident: e_1_2_6_55_1
– ident: e_1_2_6_37_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_6_12_1
  doi: 10.1109/TIE.2019.2945265
– ident: e_1_2_6_25_1
  doi: 10.1111/mice.12519
– ident: e_1_2_6_38_1
  doi: 10.1111/mice.12918
– ident: e_1_2_6_40_1
  doi: 10.1111/mice.12549
– ident: e_1_2_6_51_1
  doi: 10.1016/j.autcon.2021.103833
– ident: e_1_2_6_3_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_6_56_1
  doi: 10.1111/mice.12411
– ident: e_1_2_6_60_1
  doi: 10.1111/mice.12563
– ident: e_1_2_6_68_1
  doi: 10.1111/mice.12477
– ident: e_1_2_6_5_1
  doi: 10.1111/mice.12844
– ident: e_1_2_6_13_1
  doi: 10.1111/mice.12881
– ident: e_1_2_6_20_1
  doi: 10.1111/mice.12943
– ident: e_1_2_6_52_1
  doi: 10.1109/TITS.2016.2552248
– ident: e_1_2_6_61_1
  doi: 10.1111/mice.12909
– ident: e_1_2_6_33_1
  doi: 10.1111/mice.12931
– ident: e_1_2_6_69_1
  doi: 10.1109/CISP.2010.5646923
– ident: e_1_2_6_18_1
– ident: e_1_2_6_71_1
  doi: 10.1109/TIP.2018.2878966
– ident: e_1_2_6_62_1
  doi: 10.1109/TITS.2019.2910595
– ident: e_1_2_6_70_1
  doi: 10.1016/j.knosys.2022.110216
– ident: e_1_2_6_29_1
  doi: 10.1111/mice.12626
– ident: e_1_2_6_9_1
  doi: 10.1177/14759217221139730
– ident: e_1_2_6_34_1
  doi: 10.1111/mice.12622
– ident: e_1_2_6_67_1
  doi: 10.1109/ICIP.2016.7533052
– ident: e_1_2_6_39_1
– ident: e_1_2_6_44_1
  doi: 10.1109/TITS.2021.3106647
– ident: e_1_2_6_48_1
  doi: 10.1109/CVPR.2007.383157
– ident: e_1_2_6_45_1
  doi: 10.1109/TITS.2022.3147669
– ident: e_1_2_6_57_1
  doi: 10.1109/CVPR42600.2020.01155
– volume: 27
  issue: 8
  year: 2020
  ident: e_1_2_6_23_1
  article-title: Cracku‐Net: A novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Structural Control & Health Monitoring
– ident: e_1_2_6_4_1
  doi: 10.1109/TITS.2015.2477675
– ident: e_1_2_6_47_1
  doi: 10.1109/TNNLS.2022.3190448
– ident: e_1_2_6_11_1
  doi: 10.1109/TENCON.2018.8650059
– ident: e_1_2_6_36_1
  doi: 10.1016/j.neucom.2019.01.036
– ident: e_1_2_6_14_1
  doi: 10.1111/mice.12497
– ident: e_1_2_6_42_1
  doi: 10.1016/j.conbuildmat.2020.120080
– ident: e_1_2_6_50_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_6_17_1
  doi: 10.3390/ma13132960
– ident: e_1_2_6_64_1
  doi: 10.1111/mice.12297
– ident: e_1_2_6_15_1
  doi: 10.1109/CVPR.2019.00326
– ident: e_1_2_6_24_1
  doi: 10.1111/mice.12550
– ident: e_1_2_6_32_1
– ident: e_1_2_6_2_1
  doi: 10.3233/ICA-2010-0345
– ident: e_1_2_6_35_1
  doi: 10.1111/mice.12849
– ident: e_1_2_6_19_1
  doi: 10.1109/TITS.2019.2891167
– ident: e_1_2_6_46_1
  doi: 10.1109/TNNLS.2017.2682102
– ident: e_1_2_6_54_1
– ident: e_1_2_6_63_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000775
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jii.2020.100144
SSID ssj0000443
Score 2.6113899
Snippet Cracks are the most common damage type on the pavement surface. Usually, pavement cracks, especially small cracks, are difficult to be accurately identified...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1743
SubjectTerms Ablation
Coders
Cracks
Datasets
Flaw detection
Frames per second
Image acquisition
Pavements
Pixels
Robots
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MeVAPfkzF-UXAXRQqbdqkLXgZsjEEhwcHu5WkSS6Obmwdw5v_g_-hf4lJ2u4DZGBPIX3tIS_v5fceL78H0GJCUZcR7AgVBk7AiPaDaUQc4unjLfS81FMmof_ap71B8DIkwxo8VXdhCn6IZcLNWIb118bAGZ-tGbnp1v7omTZZO7DraSBj9jcO3lZ-OCjL62PfiWkUluSkpo5n9e3mcbTCmHvzbMI-F2w02kSt9tjpHsNhiRdRu1DwCdRk1oCjEjui0jJneqpqz1DNNeBgjWvwFPptNDKB-MLmQpHhrxRy-vP1LaQdoawoCEcaxSI2z8eWyxVNmCUUz1E6ZekHEjK3tVvZGQy6nffnnlM2U3BS3w99R2IusKLSNngR-lEhkYLHwicu991Yxw1BnGKXk1DhGGPt9qTrcUJV4GNGlH8O9WycyQtALouE4pIKGpqXKQ-1ul3u6mhXg2AaNeG-WtMkLZnGTcOLUVJFHGb9E7v-Tbhbyk4Kfo0_pa4r1SSljc0SEzvpYE97qSa0lura-pcHq8ktIone-x07uvyP8BXsYw12ihKya6jn07m80WAl57d2T_4CT1Hk7w
  priority: 102
  providerName: Wiley-Blackwell
Title A lightweight encoder–decoder network for automatic pavement crack detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13103
https://www.proquest.com/docview/3064164030
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13103
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8667
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0000443
  issn: 1467-8667
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1467-8667
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-8667
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH-i5TB2GKyAKANkCS6blJI4sdMcq9EKIVGhaZXYKfLfC1WoSio0TnyHfcN9Ep6dpKMTQkjkEFmOYyX2e8-_57z8HsCJ0JaHgtFA2zQJEsHQDqo-C1iEy1saRSqybkP_cszPJ8nFNbt-9hd_xQ-x3HBzmuHttVPwmbaVnW9U_dRlbO9FLlVWC9Y5QzTehvXJ-Grwy3_kzOIg4z5HnrcHfc7TmqF09ebVNekf0PywKGbi972YTlehq197RpsgmqeuQk5ueotS9tTDf4SO73mtLfhUA1MyqCTpM6yZogObNUgltQm4w6omD0RT14GPz0gNt2E8IFPn8d_7TVfiiDK1mf99_KONL5GiijwnCJeJWJS3njSWzIRnLi-Jmgt1Q7QpfZBYsQOT0fDn9_OgztoQqDhO48BQqanlxmeS0XjYlBktMx2zUMZhhg5KkikaSpZamlGK9tWEkWTcJjEVzMa70C5uC7MHJBR9baXhmqfuopIpylUoQ3SrEW3zfhe-NvOWq5rS3GXWmOaNa-NGMvcj2YXjZdtZReTxYquDZvrzWpnvcuekoVeJ5rALJ0uReLWXb36KX2mSo5INfWn_bX1-gQ2KeKqKUjuAdjlfmEPEQ6U8ghZNrvB89oMe1eL_BL8dC3I
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6JQwBJdQApKnNhpxgpRlVfFAFK3yI7thSpUJVXFxn_gH_JLsB2nDwlVIpPlXDL4fOfvTufvAJpMKOozgj2h4siLGNF-MGsRjwT6eIuDIAuUSeg_9Wj3Nbrvk76rzTF3YUp-iGnCzViG9dfGwE1Ces7KTbv268D0yVqFtYgG1MReOHqeOeLI1dcnoZfQVuzYSU0hz-zbxfNoBjLXx_mQfU7YYLAIW-2509mBLQcYUbvU8C6syHwPth14RM40P_RU1Z-hmtuDzTmywX3otdHAROITmwxFhsBSyNHP17eQdoTysiIcaRiL2Lh4t2SuaMgso3iBshHL3pCQhS3eyg_gtXP7ctP1XDcFLwvDOPQk5gIrKm2HF6EfFRMpeCJC4vPQT3TgECUZ9jmJFU4w1n5P-gEnVEUhZkSFh1DL33N5BMhnLaG4pILG5mXGY61vn_s63NUomLbqcFmtaZo5qnHT8WKQViGHWf_Urn8dLqayw5Jg40-pRqWa1BnZR2qCJx3taTdVh-ZUXUv_cmU1uUQk1Zv_1o6O_yN8Duvdl6fH9PGu93ACG1gjn7KerAG1YjSWpxq5FPzM7s9fsIvoWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gMvBXRzXgF4UOrRp0-Uo6uA6iCh4K1kvDnWY6SB68j_4D_0lJmk6jiKC9hTS10KT95Lvha_fA9ijQsU-JdgTKom8iBK9DvKUeCTQ21sSBDxQ5kD_qh2f3kXn9-TecXPMvzCVPsTwwM1Ehl2vTYDLrlAjUW7KtTcDUydrHCYjkqWG0Xd8M6IeFTl-fRZ6WZwmTp3UEHk-n_26H32CzOlB0aXPT7TT-Qpb7b7Tmq-Kq_atXKGhmzw0ByVr8pdvYo7__qQFmHOIFB1WLrQIY7JYgnmHTpGL_b7uqgtA1H1LMDuiZrgM7UPUMan-kz1tRUYhU8je--ubkLaFiopyjjRORnRQPlq1WNSlVrK8RLxH-QMSsrTssGIF7lont0ennivX4PEwTEJPYiawiqUtISP0pRIiBctESHwW-pnOTKKMY5-RROEMY72wSj9gJFZRiClR4SpMFI-FXAPk01QoJmMRJ-YmZ4l2KJ_5Op_WMDtOG7BfT1rOnZa5KanRyeucxoxkbkeyAbtD226l4PGj1WY997mL4n5usjOdTup1sAF7Q3_49S0Hdn5_Mcl1dJ3Y1vpfjHdg6vq4lV-etS82YAZrZFXx1TZhouwN5JZGRiXbtv7_AWbDCPo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_oPKgHp1Nx_iPgLgqdbdqk63GIIoLDgwM9lfy9OOqYHUNPfge_oZ_EJG3nJjIEewppGtLkvZffS19_D6DFpKY-I9iTOo68iBFjB0WHeCQw21scBCLQ9kD_tkev-9HNA3mY-Yu_4IeYHrhZzXD22ir4UOrCzleqfm4ztrcDmyprGVYoMWi8Biv93l330X3kTEIvoS5HnrMHHUrjkqF0_uH5PekbaK6OsyF7nbDBYB66ur3nqg6sGnURcvLUHue8Ld5-EDr-57U2YaMEpqhbSNIWLKmsAfUSpKLSBLyYqioPRFXXgPUZUsNt6HXRwHr8E3foiixRplSjz_cPqVwJZUXkOTJwGbFx_uxIY9GQOebyHIkRE09IqtwFiWU70L-6vL-49sqsDZ4Iwzj0FOYSa6pcJhlpLh0TJXkiQ-Lz0E-MgxIlAvucxBonGBv7qvyAE6qjEDOiw12oZc-Z2gPks47UXFFJY3tT8NjIlc9941YbtE07TTit1i0VJaW5zawxSCvXxs5k6mayCSfTtsOCyOPXVofV8qelMr-k1kkzXqUxh01oTUViYS9nbokXNEmNkl260v7f-jyANWzwVBGldgi1fDRWRwYP5fy4FPkvR4sJsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+encoder%E2%80%93decoder+network+for+automatic+pavement+crack+detection&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Zhu%2C+Guijie&rft.au=Liu%2C+Jiacheng&rft.au=Fan%2C+Zhun&rft.au=Duan+Yuan&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=12&rft.spage=1743&rft.epage=1765&rft_id=info:doi/10.1111%2Fmice.13103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon