How well do collaboration quality estimation models generalize across authentic school contexts?

Multimodal learning analytics (MMLA) research has made significant progress in modelling collaboration quality for the purpose of understanding collaboration behaviour and building automated collaboration estimation models. Deploying these automated models in authentic classroom scenarios, however,...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of educational technology Vol. 55; no. 4; pp. 1602 - 1624
Main Authors Chejara, Pankaj, Kasepalu, Reet, Prieto, Luis P., Rodríguez‐Triana, María Jesús, Ruiz Calleja, Adolfo, Schneider, Bertrand
Format Journal Article
LanguageEnglish
Published Coventry Blackwell Publishing Ltd 01.07.2024
Subjects
Online AccessGet full text
ISSN0007-1013
1467-8535
1467-8535
DOI10.1111/bjet.13402

Cover

Abstract Multimodal learning analytics (MMLA) research has made significant progress in modelling collaboration quality for the purpose of understanding collaboration behaviour and building automated collaboration estimation models. Deploying these automated models in authentic classroom scenarios, however, remains a challenge. This paper presents findings from an evaluation of collaboration quality estimation models. We collected audio, video and log data from two different Estonian schools. These data were used in different combinations to build collaboration estimation models and then assessed across different subjects, different types of activities (collaborative‐writing, group‐discussion) and different schools. Our results suggest that the automated collaboration model can generalize to the context of different schools but with a 25% degradation in balanced accuracy (from 82% to 57%). Moreover, the results also indicate that multimodality brings more performance improvement in the case of group‐discussion‐based activities than collaborative‐writing‐based activities. Further, our results suggest that the video data could be an alternative for understanding collaboration in authentic settings where higher‐quality audio data cannot be collected due to contextual factors. The findings have implications for building automated collaboration estimation systems to assist teachers with monitoring their collaborative classrooms. Practitioners notes What is already known about this topic Multimodal learning analytics researchers have established several features as potential indicators for collaboration quality, e.g., speaking time or joint visual attention. The current state of the art has shown the feasibility of building automated collaboration quality models. Recent research has provided preliminary evidence of the generalizability of developed automated models across contexts different in terms of given task and subject. What does this paper add This paper offers collaboration indicators for different types of collaborative learning activities in authentic classroom settings. The paper includes a systematic investigation into collaboration quality automated model's generalizability across different tasks, types of tasks and schools. This paper also offers a comparison between different modalities' potential to estimate collaboration quality in authentic settings. Implications for practice The findings inform the development of automated collaboration monitoring systems for authentic classroom settings. This paper provides evidence on across‐school generalizability capabilities of collaboration quality estimation models.
AbstractList Multimodal learning analytics (MMLA) research has made significant progress in modelling collaboration quality for the purpose of understanding collaboration behaviour and building automated collaboration estimation models. Deploying these automated models in authentic classroom scenarios, however, remains a challenge. This paper presents findings from an evaluation of collaboration quality estimation models. We collected audio, video and log data from two different Estonian schools. These data were used in different combinations to build collaboration estimation models and then assessed across different subjects, different types of activities (collaborative‐writing, group‐discussion) and different schools. Our results suggest that the automated collaboration model can generalize to the context of different schools but with a 25% degradation in balanced accuracy (from 82% to 57%). Moreover, the results also indicate that multimodality brings more performance improvement in the case of group‐discussion‐based activities than collaborative‐writing‐based activities. Further, our results suggest that the video data could be an alternative for understanding collaboration in authentic settings where higher‐quality audio data cannot be collected due to contextual factors. The findings have implications for building automated collaboration estimation systems to assist teachers with monitoring their collaborative classrooms. Practitioners notes What is already known about this topic Multimodal learning analytics researchers have established several features as potential indicators for collaboration quality, e.g., speaking time or joint visual attention. The current state of the art has shown the feasibility of building automated collaboration quality models. Recent research has provided preliminary evidence of the generalizability of developed automated models across contexts different in terms of given task and subject. What does this paper add This paper offers collaboration indicators for different types of collaborative learning activities in authentic classroom settings. The paper includes a systematic investigation into collaboration quality automated model's generalizability across different tasks, types of tasks and schools. This paper also offers a comparison between different modalities' potential to estimate collaboration quality in authentic settings. Implications for practice The findings inform the development of automated collaboration monitoring systems for authentic classroom settings. This paper provides evidence on across‐school generalizability capabilities of collaboration quality estimation models.
Multimodal learning analytics (MMLA) research has made significant progress in modelling collaboration quality for the purpose of understanding collaboration behaviour and building automated collaboration estimation models. Deploying these automated models in authentic classroom scenarios, however, remains a challenge. This paper presents findings from an evaluation of collaboration quality estimation models. We collected audio, video and log data from two different Estonian schools. These data were used in different combinations to build collaboration estimation models and then assessed across different subjects, different types of activities (collaborative‐writing, group‐discussion) and different schools. Our results suggest that the automated collaboration model can generalize to the context of different schools but with a 25% degradation in balanced accuracy (from 82% to 57%). Moreover, the results also indicate that multimodality brings more performance improvement in the case of group‐discussion‐based activities than collaborative‐writing‐based activities. Further, our results suggest that the video data could be an alternative for understanding collaboration in authentic settings where higher‐quality audio data cannot be collected due to contextual factors. The findings have implications for building automated collaboration estimation systems to assist teachers with monitoring their collaborative classrooms.Practitioners notesWhat is already known about this topicMultimodal learning analytics researchers have established several features as potential indicators for collaboration quality, e.g., speaking time or joint visual attention.The current state of the art has shown the feasibility of building automated collaboration quality models.Recent research has provided preliminary evidence of the generalizability of developed automated models across contexts different in terms of given task and subject.What does this paper addThis paper offers collaboration indicators for different types of collaborative learning activities in authentic classroom settings.The paper includes a systematic investigation into collaboration quality automated model's generalizability across different tasks, types of tasks and schools.This paper also offers a comparison between different modalities' potential to estimate collaboration quality in authentic settings.Implications for practiceThe findings inform the development of automated collaboration monitoring systems for authentic classroom settings.This paper provides evidence on across‐school generalizability capabilities of collaboration quality estimation models.
Multimodal learning analytics (MMLA) research has made significant progress in modelling collaboration quality for the purpose of understanding collaboration behaviour and building automated collaboration estimation models. Deploying these automated models in authentic classroom scenarios, however, remains a challenge. This paper presents findings from an evaluation of collaboration quality estimation models. We collected audio, video and log data from two different Estonian schools. These data were used in different combinations to build collaboration estimation models and then assessed across different subjects, different types of activities (collaborative‐writing, group‐discussion) and different schools. Our results suggest that the automated collaboration model can generalize to the context of different schools but with a 25% degradation in balanced accuracy (from 82% to 57%). Moreover, the results also indicate that multimodality brings more performance improvement in the case of group‐discussion‐based activities than collaborative‐writing‐based activities. Further, our results suggest that the video data could be an alternative for understanding collaboration in authentic settings where higher‐quality audio data cannot be collected due to contextual factors. The findings have implications for building automated collaboration estimation systems to assist teachers with monitoring their collaborative classrooms. Practitioners notes What is already known about this topic Multimodal learning analytics researchers have established several features as potential indicators for collaboration quality, e.g., speaking time or joint visual attention. The current state of the art has shown the feasibility of building automated collaboration quality models. Recent research has provided preliminary evidence of the generalizability of developed automated models across contexts different in terms of given task and subject. What does this paper add This paper offers collaboration indicators for different types of collaborative learning activities in authentic classroom settings. The paper includes a systematic investigation into collaboration quality automated model's generalizability across different tasks, types of tasks and schools. This paper also offers a comparison between different modalities' potential to estimate collaboration quality in authentic settings. Implications for practice The findings inform the development of automated collaboration monitoring systems for authentic classroom settings. This paper provides evidence on across‐school generalizability capabilities of collaboration quality estimation models.
Author Schneider, Bertrand
Prieto, Luis P.
Rodríguez‐Triana, María Jesús
Ruiz Calleja, Adolfo
Chejara, Pankaj
Kasepalu, Reet
Author_xml – sequence: 1
  givenname: Pankaj
  surname: Chejara
  fullname: Chejara, Pankaj
  email: pankajch@tlu.ee
  organization: Tallinn University
– sequence: 2
  givenname: Reet
  surname: Kasepalu
  fullname: Kasepalu, Reet
  organization: Tallinn University
– sequence: 3
  givenname: Luis P.
  surname: Prieto
  fullname: Prieto, Luis P.
  organization: Tallinn University
– sequence: 4
  givenname: María Jesús
  orcidid: 0000-0001-8639-1257
  surname: Rodríguez‐Triana
  fullname: Rodríguez‐Triana, María Jesús
  organization: Tallinn University
– sequence: 5
  givenname: Adolfo
  surname: Ruiz Calleja
  fullname: Ruiz Calleja, Adolfo
  organization: Tallinn University
– sequence: 6
  givenname: Bertrand
  surname: Schneider
  fullname: Schneider, Bertrand
  organization: Tallinn University
BookMark eNp9kE9LxDAQxYMouK5e_AQBb0p10vTvSXRRV1nwsp5jmp1ql9isSUqtn9649STiXMJMfvN48w7IbmtaJOSYwTkLdVGt0Z8znkC8QyYsyfKoSHm6SyYAkEcMGN8nB86tQws8TSbkeW562qPWdGWoMlrLyljpG9PS907qxg8UnW_extGbWaF29AVbtOHzE6lU1jhHZedfsfWNok69GqODVOvxw7vLQ7JXS-3w6Oedkqfbm-VsHi0e7-5nV4tIcZ7HkUyR5zWUdVnHGCeYAS8Z8loVdQFlMF5xVqVxrtIKIasYAiKUqlCYI6wA-ZScjbpdu5FDL7UWGxt820EwEN_hiO9wxDacQJ-M9Maa9y5cKNams20wKDhkSZYVcVoECkZqe6TFWqjGb5PwVjb6b-HTXyv_umAj3Dcah39Icf1wsxx3vgALZ5XE
CitedBy_id crossref_primary_10_1007_s11412_024_09430_7
crossref_primary_10_1186_s41239_024_00486_x
Cites_doi 10.1145/3506860.3506894
10.3389/fpsyg.2021.674369
10.1016/j.chb.2018.07.016
10.1017/CBO9780511659911.006
10.1007/978-0-387-70892-8_4
10.1007/s11257‐004‐5269‐x
10.1145/3303772.3303811
10.1109/TLT.2017.2704099
10.1207/S15327809JLS1203_1
10.1016/0883-0355(89)90018-9
10.3390/s21082863
10.1145/3139513.3139514
10.1016/j.ijer.2017.07.014
10.1145/2522848.2532594
10.7551/mitpress/3372.001.0001
10.1111/jcal.12263
10.1111/j.2044‐8279.2011.02030.x
10.1007/s40593‐013‐0010‐8
10.1145/506443.506634
10.1080/02699930701516759
10.1186/s13640‐017‐0211‐4
10.1177/016146811111300204
10.1007/978-3-642-33284-5_13
10.1007/978-3-642-22362-4_18
10.1007/978-3-031-42682-7_5
10.1080/07370024.2017.1338956
10.1348/000709908X380772
10.1145/3576050.3576143
10.18608/hla17.011
10.1145/3311927.3323145
10.1177/136216880100500103
10.1016/j.evolhumbehav.2014.05.008
10.1007/978-1-4419-7710-6_17
10.1109/TLT.2021.3097766
10.3390/s21248185
10.1037/h0033031
10.1007/978-3-030-22244-4_12
10.1109/TLT.2014.2365027
10.1207/s15327809jls1402_2
10.1016/j.compedu.2005.04.003
10.1016/j.ssaho.2023.100447
10.1080/00313831.2019.1623310
10.1111/bjet.12982
10.1109/TCSVT.2008.2009262
10.1007/s11412‐013‐9184‐1
10.1145/3576050.3576144
10.1111/jcal.12288
ContentType Journal Article
Copyright 2023 British Educational Research Association.
2024 British Educational Research Association
Copyright_xml – notice: 2023 British Educational Research Association.
– notice: 2024 British Educational Research Association
DBID AAYXX
CITATION
7SC
8FD
AHOVV
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1111/bjet.13402
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Education Research Index
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 1467-8535
EndPage 1624
ExternalDocumentID 10.1111/bjet.13402
10_1111_bjet_13402
BJET13402
Genre article
GrantInformation_xml – fundername: European Union's "NextGenerationEU/PRTR"
– fundername: Spanish Ministry for Science and Innovation
  funderid: RYC2021‐032273‐I
– fundername: Spanish Ministry for Science and Innovation
  funderid: PID2020‐112584RB‐C32
– fundername: Estonian Research Council's Personal Research Grant
  funderid: PRG1634
GroupedDBID -W8
-~X
.3N
.GA
.GO
.Y3
05W
07C
0R~
10A
1OB
1OC
23N
31~
33P
3EH
4.4
41~
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A04
AABNI
AAESR
AAHQN
AAHSB
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIVO
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACHQT
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMBU
DRSSH
DU5
EAD
EAP
EAS
EBS
EDJ
EJD
EMK
EST
ESX
F00
F01
F5P
FEDTE
FZ0
G-S
G.N
G50
GODZA
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM7
QN7
R.K
RIWAO
RJQFR
ROL
RPD
RX1
SAMSI
SUPJJ
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WGMDG
WH7
WIH
WII
WOHZO
WQZ
WSUWO
WXSBR
XG1
XOL
ZCA
ZZTAW
~IA
~WP
AAYXX
CITATION
7SC
8FD
AHOVV
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c3372-a5e37f09f9f2e24e60391e3fc8f809101b31b527c5be06b1e0ee09c8ce7e0d0e3
IEDL.DBID UNPAY
ISSN 0007-1013
1467-8535
IngestDate Tue Aug 19 21:00:41 EDT 2025
Fri Jul 25 09:08:05 EDT 2025
Wed Oct 01 04:33:42 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Sun Sep 21 06:14:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3372-a5e37f09f9f2e24e60391e3fc8f809101b31b527c5be06b1e0ee09c8ce7e0d0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8639-1257
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bjet.13402
PQID 3064668258
PQPubID 47505
PageCount 23
ParticipantIDs unpaywall_primary_10_1111_bjet_13402
proquest_journals_3064668258
crossref_citationtrail_10_1111_bjet_13402
crossref_primary_10_1111_bjet_13402
wiley_primary_10_1111_bjet_13402_BJET13402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Coventry
PublicationPlace_xml – name: Coventry
PublicationTitle British journal of educational technology
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2012; 82
2011; 113
2021; 21
2012
2017; 2017
2019; 97
2020; 64
2011
2023; 7
2019; 34
1997
2008
2006
2014; 24
1992
2022; 21
2002
2018; 89
2013; 8
1972; 23
2015; 8
2003; 12
2021; 14
2009; 79
2021; 12
2023
2022
2006; 46
2020; 51
2001; 5
2020
2019
2006; 2006
2017
2014; 35
2008; 22
2014
2013
2018; 34
2005; 15
2009; 19
2018; 11
1989; 13
2005; 14
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
Reilly J. M. (e_1_2_12_39_1) 2019
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
Webb N. M. (e_1_2_12_53_1) 2008
e_1_2_12_28_1
e_1_2_12_49_1
Huang K. (e_1_2_12_24_1) 2019
Johnson D. W. (e_1_2_12_27_1) 1992
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
Cocea M. (e_1_2_12_12_1) 2006; 2006
e_1_2_12_14_1
Cai Y. (e_1_2_12_4_1) 2020
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_36_1
Chejara P. (e_1_2_12_6_1) 2023
e_1_2_12_15_1
e_1_2_12_13_1
Fiedler K. (e_1_2_12_16_1) 2014
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – year: 2011
– volume: 82
  start-page: 375
  issue: 3
  year: 2012
  end-page: 397
  article-title: Small‐group, computer‐mediated argumentation in middle‐school classrooms: The effects of gender and different types of online teacher guidance
  publication-title: British Journal of Educational Psychology
– volume: 15
  start-page: 85
  issue: 1
  year: 2005
  end-page: 134
  article-title: Using dialogue features to predict trouble during collaborative learning
  publication-title: User Modelling and User‐Adapted Interaction
– start-page: 89
  year: 2019
  end-page: 98
– volume: 7
  issue: 1
  year: 2023
  article-title: Social emotional interaction in collaborative learning: Why it matters and how can we measure it?
  publication-title: Social Sciences and Humanities Open
– start-page: 174
  year: 1992
  end-page: 199
– volume: 19
  start-page: 133
  issue: 1
  year: 2009
  end-page: 137
  article-title: Visual lip activity detection and speaker detection using mouth region intensities
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 14
  start-page: 201
  issue: 2
  year: 2005
  end-page: 241
  article-title: Learning to collaborate: An instructional approach to promoting collaborative problem solving in computer‐mediated settings
  publication-title: Journal of the Learning Sciences
– volume: 35
  start-page: 425
  issue: 5
  year: 2014
  end-page: 429
  article-title: The human anger face evolved to enhance cues of strength
  publication-title: Evolution and Human Behavior
– volume: 64
  start-page: 831
  issue: 6
  year: 2020
  end-page: 851
  article-title: Cognitive and socio‐emotional interaction in collaborative learning: Exploring fluctuations in Students' participation
  publication-title: Scandinavian Journal of Educational Research
– start-page: 33
  year: 2017
  end-page: 40
– start-page: 36
  year: 2014
  end-page: 55
– volume: 8
  start-page: 455
  issue: 4
  year: 2013
  end-page: 485
  article-title: Capturing and analyzing verbal and physical collaborative learning interactions at an enriched interactive tabletop
  publication-title: International Journal of Computer‐Supported Collaborative Learning
– volume: 79
  start-page: 1
  issue: 1
  year: 2009
  end-page: 28
  article-title: The teacher's role in promoting collaborative dialogue in the classroom
  publication-title: British Journal of Educational Psychology
– volume: 11
  start-page: 230
  issue: 2
  year: 2018
  end-page: 242
  article-title: Using the tablet gestures and speech of pairs of students to classify their collaboration
  publication-title: IEEE Transactions on Learning Technologies
– volume: 113
  start-page: 240
  issue: 2
  year: 2011
  end-page: 264
  article-title: Self‐regulation, coregulation, and socially shared regulation: Exploring perspectives of social in self‐regulated learning theory
  publication-title: Teachers College Record
– start-page: 858
  year: 2002
– start-page: 201
  year: 2008
  end-page: 221
– volume: 34
  start-page: 366
  issue: 4
  year: 2018
  end-page: 377
  article-title: Supervised machine learning in multimodal learning analytics for estimating success in project‐based learning
  publication-title: Journal of Computer Assisted Learning
– start-page: 60
  year: 2023
  end-page: 74
– volume: 22
  start-page: 777
  issue: 5
  year: 2008
  end-page: 788
  article-title: Emote aloud during learning with AutoTutor: Applying the facial action coding system to cognitive—Affective states during learning
  publication-title: Cognition and Emotion
– start-page: 36
  year: 2023
  end-page: 42
– start-page: 111
  year: 2023
  end-page: 121
– volume: 89
  start-page: 373
  issue: March
  year: 2018
  end-page: 384
  article-title: Predicting teamwork group assessment using log data‐based learning analytics
  publication-title: Computers in Human Behavior
– volume: 5
  start-page: 29
  issue: 1
  year: 2001
  end-page: 53
  article-title: How collaborative is pair work? ESL tertiary students composing in pairs
  publication-title: Language Teaching Research
– volume: 8
  start-page: 187
  issue: 2
  year: 2015
  end-page: 200
  article-title: MTFeedback: Providing notifications to enhance teacher awareness of small group work in the classroom
  publication-title: IEEE Transactions on Learning Technologies
– volume: 34
  start-page: 338
  issue: 4
  year: 2018
  end-page: 349
  article-title: From signals to knowledge: A conceptual model for multimodal learning analytics
  publication-title: Journal of Computer Assisted Learning
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  end-page: 19
  article-title: Predicting the sixteen personality factors (16PF) of an individual by analyzing facial features
  publication-title: EURASIP Journal on Image and Video Processing
– volume: 51
  start-page: 1527
  issue: 5
  year: 2020
  end-page: 1547
  article-title: Temporal analysis of multimodal data to predict collaborative learning outcomes
  publication-title: British Journal of Educational Technology
– volume: 12
  start-page: 307
  issue: 3
  year: 2003
  end-page: 359
  article-title: When smart groups fail
  publication-title: The Journal of the Learning Sciences
– start-page: 207
  year: 2011
  end-page: 218
– start-page: 103
  year: 1997
  end-page: 132
– start-page: 318
  year: 2019
  end-page: 323
– volume: 21
  issue: 24
  year: 2022
  article-title: How can high‐frequency sensors capture collaboration? A review of the empirical links between multimodal metrics and collaborative constructs
  publication-title: Sensors
– volume: 12
  issue: 674369
  year: 2021
  article-title: Collaborative learning quality classification through physiological synchrony recorded by wearable biosensors
  publication-title: Frontiers in Psychology
– volume: 21
  start-page: 1
  issue: 8
  year: 2021
  end-page: 27
  article-title: EFAR‐MMLA: An evaluation framework to assess and report generalizability of machine learning models in MMLA
  publication-title: Sensors
– start-page: 495
  year: 2013
  end-page: 501
– start-page: 133
  year: 2019
  end-page: 145
– volume: 13
  start-page: 89
  issue: 1
  year: 1989
  end-page: 99
  article-title: When teams do not function the way they ought to
  publication-title: International Journal of Educational Research
– start-page: 145
  year: 2012
  end-page: 152
– volume: 2006
  start-page: 32
  year: 2006
  end-page: 35
  article-title: Can log files analysis estimate learners' level of motivation?
  publication-title: Lernen, Wissensentdeckung Und Adaptivitat, LWA
– start-page: 129
  year: 2017
  end-page: 141
– start-page: 73
  year: 2008
  end-page: 91
– start-page: 559
  year: 2023
  end-page: 565
– volume: 23
  start-page: 283
  issue: 2
  year: 1972
  end-page: 292
  article-title: Some signals and rules for taking speaking turns in conversations
  publication-title: Journal of Personality and Social Psychology
– start-page: 208
  year: 2022
  end-page: 218
– start-page: 11
  year: 2019
  end-page: 20
– volume: 34
  start-page: 1
  issue: 1
  year: 2019
  end-page: 50
  article-title: Collocated collaboration analytics: Principles and dilemmas for mining multimodal interaction data
  publication-title: Human‐Computer Interaction
– year: 2006
– volume: 14
  start-page: 367
  issue: 3
  year: 2021
  end-page: 385
  article-title: Co‐located collaboration modelling using multimodal learning analytics—Can we go the whole nine yards ?
  publication-title: IEEE Transactions on Learning Technologies
– volume: 24
  start-page: 8
  issue: 1
  year: 2014
  end-page: 32
  article-title: Can online discussion participation predict group project performance? Investigating the roles of linguistic features and participation patterns
  publication-title: International Journal of Artificial Intelligence in Education
– start-page: 119
  year: 2020
  end-page: 126
– volume: 97
  start-page: 200
  issue: July 2017
  year: 2019
  end-page: 209
  article-title: Promoting academically productive student dialogue during collaborative learning
  publication-title: International Journal of Educational Research
– volume: 46
  start-page: 71
  issue: 1
  year: 2006
  end-page: 95
  article-title: A framework to analyze argumentative knowledge construction in computer‐supported collaborative learning
  publication-title: Computers & Education
– start-page: 149
  year: 2019
  end-page: 157
– ident: e_1_2_12_38_1
  doi: 10.1145/3506860.3506894
– ident: e_1_2_12_29_1
  doi: 10.3389/fpsyg.2021.674369
– ident: e_1_2_12_23_1
  doi: 10.1016/j.chb.2018.07.016
– ident: e_1_2_12_17_1
  doi: 10.1017/CBO9780511659911.006
– ident: e_1_2_12_28_1
  doi: 10.1007/978-0-387-70892-8_4
– start-page: 36
  volume-title: International handbook of emotions in education
  year: 2014
  ident: e_1_2_12_16_1
– ident: e_1_2_12_20_1
  doi: 10.1007/s11257‐004‐5269‐x
– ident: e_1_2_12_11_1
  doi: 10.1145/3303772.3303811
– start-page: 318
  volume-title: EDM 2019 ‐ Proceedings of the 12th International Conference on Educational Data Mining
  year: 2019
  ident: e_1_2_12_24_1
– ident: e_1_2_12_52_1
  doi: 10.1109/TLT.2017.2704099
– ident: e_1_2_12_3_1
  doi: 10.1207/S15327809JLS1203_1
– ident: e_1_2_12_42_1
  doi: 10.1016/0883-0355(89)90018-9
– ident: e_1_2_12_5_1
  doi: 10.3390/s21082863
– ident: e_1_2_12_51_1
  doi: 10.1145/3139513.3139514
– ident: e_1_2_12_19_1
  doi: 10.1016/j.ijer.2017.07.014
– ident: e_1_2_12_36_1
  doi: 10.1145/2522848.2532594
– ident: e_1_2_12_48_1
  doi: 10.7551/mitpress/3372.001.0001
– ident: e_1_2_12_47_1
  doi: 10.1111/jcal.12263
– ident: e_1_2_12_2_1
  doi: 10.1111/j.2044‐8279.2011.02030.x
– ident: e_1_2_12_56_1
  doi: 10.1007/s40593‐013‐0010‐8
– ident: e_1_2_12_49_1
  doi: 10.1145/506443.506634
– ident: e_1_2_12_13_1
  doi: 10.1080/02699930701516759
– ident: e_1_2_12_18_1
  doi: 10.1186/s13640‐017‐0211‐4
– ident: e_1_2_12_21_1
  doi: 10.1177/016146811111300204
– ident: e_1_2_12_10_1
  doi: 10.1007/978-3-642-33284-5_13
– ident: e_1_2_12_30_1
  doi: 10.1007/978-3-642-22362-4_18
– ident: e_1_2_12_8_1
  doi: 10.1007/978-3-031-42682-7_5
– ident: e_1_2_12_33_1
  doi: 10.1080/07370024.2017.1338956
– ident: e_1_2_12_54_1
  doi: 10.1348/000709908X380772
– ident: e_1_2_12_9_1
  doi: 10.1145/3576050.3576143
– ident: e_1_2_12_34_1
  doi: 10.18608/hla17.011
– ident: e_1_2_12_45_1
  doi: 10.1145/3311927.3323145
– ident: e_1_2_12_50_1
  doi: 10.1177/136216880100500103
– ident: e_1_2_12_44_1
  doi: 10.1016/j.evolhumbehav.2014.05.008
– ident: e_1_2_12_40_1
  doi: 10.1007/978-1-4419-7710-6_17
– ident: e_1_2_12_37_1
  doi: 10.1109/TLT.2021.3097766
– ident: e_1_2_12_43_1
  doi: 10.3390/s21248185
– ident: e_1_2_12_15_1
  doi: 10.1037/h0033031
– ident: e_1_2_12_22_1
  doi: 10.1007/978-3-030-22244-4_12
– ident: e_1_2_12_31_1
  doi: 10.1109/TLT.2014.2365027
– ident: e_1_2_12_41_1
  doi: 10.1207/s15327809jls1402_2
– start-page: 36
  volume-title: Proceedings of the 6th Workshop on Leveraging Multimodal Data for Generating Meaningful Feedback (CROSSMMLA 2023) at the 13th International Learning Analytics & Knowledge
  year: 2023
  ident: e_1_2_12_6_1
– ident: e_1_2_12_55_1
  doi: 10.1016/j.compedu.2005.04.003
– ident: e_1_2_12_25_1
  doi: 10.1016/j.ssaho.2023.100447
– start-page: 201
  volume-title: The teacher's role in implementing cooperative learning in the classroom
  year: 2008
  ident: e_1_2_12_53_1
– ident: e_1_2_12_26_1
  doi: 10.1080/00313831.2019.1623310
– ident: e_1_2_12_35_1
  doi: 10.1111/bjet.12982
– ident: e_1_2_12_46_1
  doi: 10.1109/TCSVT.2008.2009262
– ident: e_1_2_12_32_1
  doi: 10.1007/s11412‐013‐9184‐1
– start-page: 149
  volume-title: EDM’2019: Proceedings of the 12th International Conference on Educational Data Mining
  year: 2019
  ident: e_1_2_12_39_1
– volume: 2006
  start-page: 32
  year: 2006
  ident: e_1_2_12_12_1
  article-title: Can log files analysis estimate learners' level of motivation?
  publication-title: Lernen, Wissensentdeckung Und Adaptivitat, LWA
– start-page: 174
  volume-title: Interaction in cooperative groups. The theoretical anatomy of group learning
  year: 1992
  ident: e_1_2_12_27_1
– ident: e_1_2_12_7_1
  doi: 10.1145/3576050.3576144
– start-page: 119
  volume-title: ICCE 2020 ‐ 28th International Conference on Computers in Education, Proceedings, 1
  year: 2020
  ident: e_1_2_12_4_1
– ident: e_1_2_12_14_1
  doi: 10.1111/jcal.12288
SSID ssj0000354
Score 2.429918
Snippet Multimodal learning analytics (MMLA) research has made significant progress in modelling collaboration quality for the purpose of understanding collaboration...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1602
SubjectTerms Attention
Audio data
Automation
Classroom Environment
Classrooms
Collaboration
collaboration quality
computer‐supported collaborative learning
Cooperation
Cooperative Learning
generalizability
Indicators
Learning Activities
Learning analytics
machine learning
Monitoring
multimodal learning analytics
Schools
Teaching Methods
Video data
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jL_ritzidEnAvCh1t06YrCKKyMQb6IBvsRWrSXkQd3bAbY_vrzUe7D5GBvvXhmja5u9zvwuV3CNVAgnDhidByAuJZHhW-JeO4ZwW-YHEClAS6nc_jE233vE7f75fQTXEXxvBDLA7clGfo_Vo5OOPZipPzDxjXHeJpJkmHUJ1PPa9wRxHfUDArFkQJdHJuUlXGs3x1PRotIebWJB2x2ZQNBuugVUed1i56Kf7XFJt81idjXo_nP6gc_zuhPbSTw1F8Z-xnH5UgPVCdnPOqj0P02h5OsTrgw8kQrxkNNvcxZ1jxdJgLkFj31cnwm-Gyfp8DZnrimKlC-lR-BGea9hOrEnkZF7LbI9RrNbsPbSvvymDFhASuxXwggbBDEQoXXA-o4pgHIuKGaCjw4XDicN8NYp-DTbkDNoAdxo0YArATG8gxKqfDFE4Qdp1EJDSwqYQRcu9ImDQMRdjHJAyyE84r6KrQThTnlOWqc8YgKlIXtWaRXrMKulzIjgxRx69S1ULJUe6sWaSSMEplqtyooNpC8RtHudaK3CAS3XeaXf10-hfhM7TtStRk6oGrqDz-msC5RD1jfqGt-xuxKf3V
  priority: 102
  providerName: Wiley-Blackwell
Title How well do collaboration quality estimation models generalize across authentic school contexts?
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjet.13402
https://www.proquest.com/docview/3064668258
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bjet.13402
UnpaywallVersion publishedVersion
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8535
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0000354
  issn: 1467-8535
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-8535
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000354
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yH_TFuzgvI-BeFDrbpk3WJ1FRxkAR2WA-1aQ9EXV0w23I9uvNpZ1WZAi-9SFNm3P9Ek6-g1AdFAiXgYwcj5HACagMHZXHA4eFkicpUMJMO5_bO9rqBu1e2Pt2i9_yQ8wP3LRnmHitHXyYShvnC1c_E68wbngk0GySyzRUaLyClrt39xePFvUyFWVMh2QTD1RmCnOG0vLL5Zz0BTRXJtmQTz94v1-Grib33KwjXvy1LTl5a0zGopHMfhA6_mdZG2gtB6b4wlrSJlqCbEv3dM7rP7bRU2vwgfVRH04HuGQ-2N7MnGLN2GGvQmLTYWeEny2r9csMMDeLx1yX1GfqI3hkCECxLpZXGWJ0voO6N9edq5aT92dwEkKY7_AQCJNuJCPpgx8A1WzzQGTSlE0NQzxBPBH6LAkFuFR44AK4UdJMgIGbukB2USUbZLCHsO8pIVDmUgUoVBRJuTIRTd3HFSByUyGq6KTQUJzk5OW6h0Y_LjYxWmaxkVkVHc_HDi1lx6-jDgtFx7nbjmK9HaNUbZqbVVSfK3_hLKdGmQuGxJft64552v_bnAdo1VfIydYEH6LK-H0CRwr5jEVNYf4Hv5ab-Cc3xwMa
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4YPODFtxGfm8hFk5K2227hZNRIEJWDgYRb7bazRiWFWAjBX-_ObkEwhkRvPUzb7M7MzjebmW8IKYMC4dKTNcsJmGd5XPqWiuOeFfgyihPgLNDjfB5bvNHxml2_m9fmYC-M4YeYXbihZ-jzGh0cL6TnvFy8wbDiMA-pJFc9rhIVxERPc-xRzDckzMiDqKBOzk6KhTzf7y7Go2-QWRylg2gyjnq9Rdiq4059wwxXzTRdIZabvFdGQ1GJP3-QOf57SZtkPUek9MqY0BZZgXQbhznnhR875LnRH1O846NJny7YDTUtmROKVB2mB5Lq0ToZfTF01q-fQCO9chphLX2qfkIzzfxJsUpehYbscpd06rftm4aVD2awYsYC14p8YIG0a7ImXXA94EgzD0zGVVlF_OEI5gjfDWJfgM2FAzaAXYurMQRgJzawPVJI-ynsE-o6iUx4YHOFJNTxkUTKNpCzL1JIyE6EKJHzqXrCOGctx-EZvXCaveCehXrPSuRsJjswXB2_Sh1NtRzm_pqFmIdxrrLlaomUZ5pf-pULrcklIuF187atnw7-InxKio3240P4cNe6PyRrrgJRpjz4iBSGHyM4ViBoKE60qX8Bk3oCBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6ioL74W5xODeiLQkfbtGn7JOoc8yciE3yrTXsRdXTDbgz9680l3XQiA33rw7Ulubvcl_DlO0L2QYFw6cnIcgLmWR6XvqXquGcFvkzSDDgLdDuf6xvevPcuHvyHkpuDd2GMPsTowA0zQ6_XmODQzeS3LBcv0Ks5zEMpyRnPj0Jk9NXvvqlHMd-IMKMOooI6pTopEnm-3h2vR18gc66fd5P3QdJuj8NWXXcai6a5aqHlCpFu8lrr90Qt_fgh5vjvIS2RhRKR0mMTQstkCvIVbOZcEj9WyWOzM6B4xkezDh2LG2quZL5TlOowdyCpbq1T0CcjZ_38ATTRI6cJculz9RNaaOVPiix5VRqKozVy3zhrnTatsjGDlTIWuFbiAwukHclIuuB6wFFmHphMQxki_nAEc4TvBqkvwObCARvAjtIwhQDszAa2TqbzTg4bhLpOJjMe2FwhCbV8ZImKDdTsSxQSsjMhKuRg6J44LVXLsXlGOx7uXnDOYj1nFbI3su0arY5frapDL8dlvhYx7sM4V7vlsEL2R56f-JVD7ckJJvHJxVlLP23-xXiXzN7WG_HV-c3lFpl3FYYy7OAqme699WFbYaCe2NGR_gk5nwGJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MHPTitxFF00Qumgy3dWvhZNBgCInEAyR4mu32alQyiEAI_PX2Y0Mxhph426Hr1vf5a_P6ewhVQIFwGci64zESOAGVoaPyeOCwUPI4AUqYaefz0KGtXtDuh_1vt_gtP8TywE17honX2sFHibRxPnf1a_EGk6pHAs0mWaShQuMFVOx1HhtPFvUyFWVMh2QTD1RmCjOG0tWXV3PSF9DcnKYjPp_xwWAVuprcc7-DeP7XtuTkvTqdiGq8-EHo-J9l7aLtDJjihrWkPbQB6b7u6ZzVfxyg59ZwhvVRH06GeMV8sL2ZOceascNehcSmw84Yv1hW69cFYG4Wj7kuqU_VR_DYEIBiXSyvMsT45hD17pvdu5aT9WdwYkKY7_AQCJNuXdalD34AVLPNA5FxTdY0DPEE8UToszgU4FLhgQvg1uNaDAzcxAVyhArpMIVjhH1PCYEylypAoaJIwpWJaOo-rgCRmwhRQpe5hqI4Iy_XPTQGUb6J0TKLjMxK6GI5dmQpO34dVc4VHWVuO470doxStWmulVBlqfy1s1wZZa4ZEt22m13zdPK3OU_Rlq-Qk60JLqPC5GMKZwr5TMR5ZtyfKxcCMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+well+do+collaboration+quality+estimation+models+generalize+across+authentic+school+contexts%3F&rft.jtitle=British+journal+of+educational+technology&rft.au=Chejara%2C+Pankaj&rft.au=Kasepalu%2C+Reet&rft.au=Prieto%2C+Luis+P&rft.au=Mar%C3%ADa+Jes%C3%BAs+Rodr%C3%ADguez%E2%80%90Triana&rft.date=2024-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1013&rft.eissn=1467-8535&rft.volume=55&rft.issue=4&rft.spage=1602&rft.epage=1624&rft_id=info:doi/10.1111%2Fbjet.13402&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1013&client=summon