Coevolutionary Particle Swarm Optimization With Bottleneck Objective Learning Strategy for Many-Objective Optimization

The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 23; no. 4; pp. 587 - 602
Main Authors Liu, Xiao-Fang, Zhan, Zhi-Hui, Gao, Ying, Zhang, Jie, Kwong, Sam, Zhang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
1941-0026
DOI10.1109/TEVC.2018.2875430

Cover

Abstract The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in a large objective space. The algorithm tends to concentrate only on limited areas. On the other hand, as the number of objectives increases, solutions easily have poor values on some objectives, which can be regarded as poor bottleneck objectives that restrict solutions' convergence to the PF. Thus, we propose a coevolutionary particle swarm optimization with a bottleneck objective learning (BOL) strategy for many-objective optimization. In the proposed algorithm, multiple swarms coevolve in distributed fashion to maintain diversity for approximating different parts of the whole PF, and a novel BOL strategy is developed to improve convergence on all objectives. In addition, we develop a solution reproduction procedure with both an elitist learning strategy (ELS) and a juncture learning strategy (JLS) to improve the quality of archived solutions. The ELS helps the algorithm to jump out of local PFs, and the JLS helps to reach out to the missing areas of the PF that are easily missed by the swarms. The performance of the proposed algorithm is evaluated using two widely used test suites with different numbers of objectives. Experimental results show that the proposed algorithm compares favorably with six other state-of-the-art algorithms on many-objective optimization.
AbstractList The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in a large objective space. The algorithm tends to concentrate only on limited areas. On the other hand, as the number of objectives increases, solutions easily have poor values on some objectives, which can be regarded as poor bottleneck objectives that restrict solutions’ convergence to the PF. Thus, we propose a coevolutionary particle swarm optimization with a bottleneck objective learning (BOL) strategy for many-objective optimization. In the proposed algorithm, multiple swarms coevolve in distributed fashion to maintain diversity for approximating different parts of the whole PF, and a novel BOL strategy is developed to improve convergence on all objectives. In addition, we develop a solution reproduction procedure with both an elitist learning strategy (ELS) and a juncture learning strategy (JLS) to improve the quality of archived solutions. The ELS helps the algorithm to jump out of local PFs, and the JLS helps to reach out to the missing areas of the PF that are easily missed by the swarms. The performance of the proposed algorithm is evaluated using two widely used test suites with different numbers of objectives. Experimental results show that the proposed algorithm compares favorably with six other state-of-the-art algorithms on many-objective optimization.
Author Liu, Xiao-Fang
Gao, Ying
Zhan, Zhi-Hui
Zhang, Jie
Kwong, Sam
Zhang, Jun
Author_xml – sequence: 1
  givenname: Xiao-Fang
  orcidid: 0000-0002-8137-4201
  surname: Liu
  fullname: Liu, Xiao-Fang
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Ying
  orcidid: 0000-0002-8925-8192
  surname: Gao
  fullname: Gao, Ying
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 5
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang@ieee.org
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kVtPwjAYhhuDiYj-AONNE6-HPezQXSrxlGAwAQ93S-m-YXG02BUI_no3IWow8apN-j5v-z09RC1jDSB0QkmXUpKej66eel1GqOgykUQhJ3uoTdOQBoSwuFXviUiDJBEvB-iwqqaE0DCiaRstexaWtlx4bY10a_wgndeqBDxcSTfDg7nXM_0hm2P8rP0rvrTel2BAveHBeArK6yXgPkhntJngoXfSw2SNC-vwvTTr4Cf0u-sI7ReyrOB4u3bQ4_XVqHcb9Ac3d72LfqA4j30AULBQ5AAyjlWUcpWMFaO0UPUkYwKx5DSn4ZjFKlchhFTmTKU04opEkIPKeQexTe_CzOV6Jcsymzs9qyfNKMkac5mHpcoac9nWXA2dbaC5s-8LqHw2tQtn6ndmjMWiiXBWp-gmpZytKgfFn-bmT3abkx1Gaf8lpPamy3_J0w2pAeD7JhGKNOWCfwKLPZ3T
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s12065_021_00644_4
crossref_primary_10_1016_j_neucom_2021_08_003
crossref_primary_10_1109_ACCESS_2020_2983473
crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_3390_math9040420
crossref_primary_10_1109_TEVC_2021_3065659
crossref_primary_10_1155_2023_5275262
crossref_primary_10_1109_ACCESS_2019_2957637
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_3390_electronics11071080
crossref_primary_10_1109_TNNLS_2019_2920887
crossref_primary_10_1109_TCYB_2022_3193888
crossref_primary_10_1109_TEVC_2021_3135691
crossref_primary_10_1111_exsy_13410
crossref_primary_10_1016_j_neucom_2021_12_069
crossref_primary_10_1109_TSG_2024_3449897
crossref_primary_10_1109_TITS_2021_3127352
crossref_primary_10_1016_j_eswa_2024_123296
crossref_primary_10_1016_j_renene_2023_02_058
crossref_primary_10_1016_j_isci_2023_107896
crossref_primary_10_1002_cpe_7973
crossref_primary_10_1016_j_asoc_2022_108902
crossref_primary_10_1109_ACCESS_2020_3034441
crossref_primary_10_1016_j_bspc_2023_104783
crossref_primary_10_1016_j_knosys_2021_108068
crossref_primary_10_1098_rsos_211419
crossref_primary_10_1016_j_asoc_2023_110320
crossref_primary_10_1109_TEVC_2023_3326327
crossref_primary_10_1016_j_neucom_2022_06_075
crossref_primary_10_1109_TCYB_2019_2943928
crossref_primary_10_3390_biomimetics9020117
crossref_primary_10_1109_TCYB_2023_3234969
crossref_primary_10_1016_j_swevo_2024_101627
crossref_primary_10_1016_j_swevo_2022_101222
crossref_primary_10_1109_ACCESS_2021_3132617
crossref_primary_10_1109_TSMC_2022_3212045
crossref_primary_10_3390_sym14020331
crossref_primary_10_1109_TITS_2022_3180760
crossref_primary_10_1007_s42235_022_00304_y
crossref_primary_10_1007_s42235_022_00228_7
crossref_primary_10_1109_TEVC_2019_2910721
crossref_primary_10_1155_2020_6238206
crossref_primary_10_1155_2021_6648650
crossref_primary_10_1109_TEVC_2022_3212058
crossref_primary_10_1007_s40747_022_00814_6
crossref_primary_10_1016_j_ins_2019_08_065
crossref_primary_10_1109_TEVC_2020_2979740
crossref_primary_10_1016_j_knosys_2020_105518
crossref_primary_10_1109_TCYB_2019_2927780
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1155_2022_7535450
crossref_primary_10_1109_TSMC_2023_3239953
crossref_primary_10_1016_j_asoc_2023_110218
crossref_primary_10_1016_j_chaos_2021_111658
crossref_primary_10_1109_ACCESS_2020_3031003
crossref_primary_10_1515_ijnsns_2020_0178
crossref_primary_10_1109_TITS_2020_2994779
crossref_primary_10_1109_TSMC_2024_3446624
crossref_primary_10_1109_TCYB_2022_3158391
crossref_primary_10_1109_TCYB_2020_3028070
crossref_primary_10_1016_j_ejor_2021_10_033
crossref_primary_10_1007_s00521_020_05285_9
crossref_primary_10_1109_TEVC_2022_3210783
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1109_TCYB_2021_3098186
crossref_primary_10_1109_TCYB_2021_3101880
crossref_primary_10_1016_j_neucom_2023_126892
crossref_primary_10_1016_j_ins_2022_09_023
crossref_primary_10_1109_TNNLS_2021_3106399
crossref_primary_10_1109_TIE_2022_3177802
crossref_primary_10_1007_s10462_024_10913_0
crossref_primary_10_1109_TG_2023_3236490
crossref_primary_10_1109_TCYB_2022_3180214
crossref_primary_10_1109_TSMC_2022_3196853
crossref_primary_10_1016_j_renene_2023_119423
crossref_primary_10_1007_s40747_022_00670_4
crossref_primary_10_1177_1077546319889787
crossref_primary_10_1016_j_neucom_2020_12_022
crossref_primary_10_1109_OJCOMS_2020_3031449
crossref_primary_10_3390_en11123526
crossref_primary_10_1016_j_energy_2023_127000
crossref_primary_10_1016_j_bspc_2022_104511
crossref_primary_10_1016_j_molliq_2022_120169
crossref_primary_10_1109_TEVC_2021_3051608
crossref_primary_10_1109_TCYB_2023_3273625
crossref_primary_10_1109_ACCESS_2019_2906121
crossref_primary_10_1002_ese3_1329
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_1109_TCYB_2019_2937565
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_comcom_2022_05_008
crossref_primary_10_1049_rpg2_12451
crossref_primary_10_1093_jcde_qwac038
crossref_primary_10_1109_TEVC_2021_3097339
crossref_primary_10_1109_ACCESS_2022_3186696
crossref_primary_10_1007_s11071_021_06862_w
crossref_primary_10_1093_jcde_qwad073
crossref_primary_10_1109_TII_2023_3268760
crossref_primary_10_1016_j_neucom_2021_03_077
crossref_primary_10_1109_TCYB_2021_3051078
crossref_primary_10_1016_j_compbiomed_2022_105618
crossref_primary_10_1155_2018_1716352
crossref_primary_10_1002_cpe_8221
crossref_primary_10_1155_2021_7667173
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1109_TCYB_2019_2933499
crossref_primary_10_1109_TCYB_2020_2977956
crossref_primary_10_1016_j_swevo_2021_100910
crossref_primary_10_1109_TCYB_2020_3029748
crossref_primary_10_3233_JIFS_179978
crossref_primary_10_1109_TETCI_2023_3234575
crossref_primary_10_1016_j_ins_2022_09_003
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_asoc_2024_111954
crossref_primary_10_1007_s00521_024_10578_4
crossref_primary_10_1007_s12293_023_00389_w
crossref_primary_10_3390_en15051884
crossref_primary_10_1109_TEVC_2019_2944180
crossref_primary_10_1007_s11633_022_1367_7
crossref_primary_10_1109_TCSS_2019_2907059
crossref_primary_10_1109_TEVC_2022_3175226
crossref_primary_10_1007_s11036_019_01403_7
crossref_primary_10_1016_j_measurement_2022_110884
crossref_primary_10_1007_s12293_021_00341_w
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1109_TBDATA_2021_3090905
crossref_primary_10_1016_j_jnca_2021_103234
crossref_primary_10_1109_TCYB_2022_3153964
crossref_primary_10_1080_01969722_2020_1827797
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1109_TCYB_2024_3372070
crossref_primary_10_1109_TEVC_2021_3131236
crossref_primary_10_1016_j_ins_2022_12_021
crossref_primary_10_1007_s00500_021_06169_3
crossref_primary_10_1007_s40747_022_00714_9
crossref_primary_10_1016_j_compbiomed_2023_107020
crossref_primary_10_1109_TCYB_2021_3102642
crossref_primary_10_3390_app12094776
crossref_primary_10_1109_TETCI_2022_3186673
crossref_primary_10_1109_TETCI_2022_3221940
crossref_primary_10_1109_TKDE_2020_3033519
crossref_primary_10_1007_s10489_020_01874_2
crossref_primary_10_1093_jcde_qwac081
crossref_primary_10_1016_j_knosys_2022_108902
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1109_TEVC_2023_3278132
crossref_primary_10_1016_j_ins_2019_05_002
crossref_primary_10_1016_j_compbiomed_2022_105910
crossref_primary_10_1109_TNSM_2021_3120259
crossref_primary_10_1109_TETCI_2020_3047410
crossref_primary_10_1016_j_compbiomed_2022_105356
crossref_primary_10_1016_j_compbiomed_2022_105510
crossref_primary_10_1016_j_swevo_2024_101648
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1007_s13042_019_01030_4
crossref_primary_10_1016_j_eswa_2021_116118
crossref_primary_10_1007_s10462_024_10919_8
crossref_primary_10_1109_TITS_2022_3203629
crossref_primary_10_1016_j_swevo_2018_12_009
crossref_primary_10_1016_j_asoc_2019_105988
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_3390_sym14061142
crossref_primary_10_3390_e23121599
Cites_doi 10.1109/TCYB.2016.2548239
10.1109/TSMCB.2012.2209115
10.1016/j.ipl.2006.10.005
10.1109/TCYB.2018.2832640
10.1007/3-540-36970-8_37
10.1109/ICEC.1998.699146
10.1007/1-84628-137-7_6
10.1109/TEVC.2016.2611642
10.1109/CEC.2017.7969530
10.1109/TEVC.2013.2262178
10.1109/TEVC.2008.2011744
10.1109/TEVC.2012.2204264
10.1109/TEVC.2016.2519378
10.1109/CEC.2008.4631121
10.1109/TEVC.2015.2504383
10.1109/TEVC.2016.2631279
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2015.2433266
10.1109/CEC.2003.1299427
10.1109/TEVC.2015.2420112
10.1109/TEVC.2007.910138
10.1109/TEVC.2013.2281535
10.1109/TEVC.2008.2009031
10.1016/j.tcs.2011.03.012
10.1109/TEVC.2015.2424921
10.1109/TEVC.2005.861417
10.1007/s11721-017-0141-x
10.1162/106365605774666895
10.1109/TEVC.2016.2639360
10.1007/978-3-540-30217-9_84
10.1145/1830483.1830577
10.1109/TEVC.2007.892759
10.1016/j.ejor.2014.05.019
10.1145/1276958.1276977
10.1007/978-3-642-01020-0_35
10.1109/TEVC.2016.2521175
10.1109/TEVC.2014.2378512
10.1109/TEVC.2017.2776226
10.1109/CEC.2013.6557740
10.1109/TEVC.2016.2549267
10.1109/TEVC.2014.2350987
10.1109/TEVC.2012.2227145
10.1109/TSMCB.2009.2015956
10.1007/BFb0056872
10.1109/TEVC.2014.2373386
10.1109/ICNN.1995.488968
10.1162/EVCO_a_00009
10.1007/s11721-015-0109-7
10.1109/TEVC.2005.860762
10.1109/ISIC.2012.6398264
10.1109/TEVC.2003.810758
10.1109/4235.996017
10.1007/978-3-540-70928-2_56
10.1145/2463372.2463447
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TEVC.2018.2875430
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 602
ExternalDocumentID 10.1109/tevc.2018.2875430
10_1109_TEVC_2018_2875430
8489938
Genre orig-research
GrantInformation_xml – fundername: Project for Pearl River New Star in Science and Technology
  grantid: 201506010047
– fundername: GDUPS in 2016
– fundername: Outstanding Youth Science Foundation
  grantid: 61822602
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2014A030306038
  funderid: 10.13039/501100003453
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  grantid: 61772207; 61332002
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c336t-eef248deea66c593c7bc211fc778b0e6a31d14b26cdc4e41ad2c9153c05edecd3
IEDL.DBID UNPAY
ISSN 1089-778X
1941-0026
IngestDate Tue Aug 19 21:00:26 EDT 2025
Sun Jun 29 14:04:42 EDT 2025
Wed Oct 01 02:39:36 EDT 2025
Thu Apr 24 23:02:02 EDT 2025
Wed Aug 27 02:54:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-eef248deea66c593c7bc211fc778b0e6a31d14b26cdc4e41ad2c9153c05edecd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8137-4201
0000-0003-0862-0514
0000-0001-7484-7261
0000-0001-7835-9871
0000-0002-8925-8192
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4235/8781948/08489938.pdf
PQID 2268430332
PQPubID 85418
PageCount 16
ParticipantIDs proquest_journals_2268430332
unpaywall_primary_10_1109_tevc_2018_2875430
crossref_primary_10_1109_TEVC_2018_2875430
crossref_citationtrail_10_1109_TEVC_2018_2875430
ieee_primary_8489938
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
antonio (ref4) 0
ref16
ref19
ref18
ref51
eberhart (ref48) 2002
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref36
  doi: 10.1109/TCYB.2016.2548239
– ident: ref12
  doi: 10.1109/TSMCB.2012.2209115
– ident: ref49
  doi: 10.1016/j.ipl.2006.10.005
– ident: ref16
  doi: 10.1109/TCYB.2018.2832640
– ident: ref27
  doi: 10.1007/3-540-36970-8_37
– ident: ref14
  doi: 10.1109/ICEC.1998.699146
– ident: ref44
  doi: 10.1007/1-84628-137-7_6
– ident: ref34
  doi: 10.1109/TEVC.2016.2611642
– ident: ref40
  doi: 10.1109/CEC.2017.7969530
– ident: ref20
  doi: 10.1109/TEVC.2013.2262178
– ident: ref51
  doi: 10.1109/TEVC.2008.2011744
– ident: ref29
  doi: 10.1109/TEVC.2012.2204264
– ident: ref30
  doi: 10.1109/TEVC.2016.2519378
– ident: ref1
  doi: 10.1109/CEC.2008.4631121
– ident: ref42
  doi: 10.1109/TEVC.2015.2504383
– ident: ref37
  doi: 10.1109/TEVC.2016.2631279
– ident: ref25
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref8
  doi: 10.1109/TEVC.2015.2433266
– ident: ref31
  doi: 10.1109/CEC.2003.1299427
– ident: ref18
  doi: 10.1109/TEVC.2015.2420112
– ident: ref9
  doi: 10.1109/TEVC.2007.910138
– start-page: 84
  year: 2002
  ident: ref48
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref2
  doi: 10.1109/TEVC.2013.2281535
– ident: ref41
  doi: 10.1109/TEVC.2008.2009031
– ident: ref26
  doi: 10.1016/j.tcs.2011.03.012
– ident: ref22
  doi: 10.1109/TEVC.2015.2424921
– ident: ref45
  doi: 10.1109/TEVC.2005.861417
– ident: ref54
  doi: 10.1007/s11721-017-0141-x
– ident: ref17
  doi: 10.1162/106365605774666895
– ident: ref3
  doi: 10.1109/TEVC.2016.2639360
– ident: ref24
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref33
  doi: 10.1145/1830483.1830577
– ident: ref10
  doi: 10.1109/TEVC.2007.892759
– ident: ref56
  doi: 10.1016/j.ejor.2014.05.019
– ident: ref50
  doi: 10.1145/1276958.1276977
– ident: ref32
  doi: 10.1007/978-3-642-01020-0_35
– ident: ref35
  doi: 10.1109/TEVC.2016.2521175
– ident: ref21
  doi: 10.1109/TEVC.2014.2378512
– ident: ref55
  doi: 10.1109/TEVC.2017.2776226
– ident: ref39
  doi: 10.1109/CEC.2013.6557740
– ident: ref23
  doi: 10.1109/TEVC.2016.2549267
– ident: ref5
  doi: 10.1109/TEVC.2014.2350987
– ident: ref19
  doi: 10.1109/TEVC.2012.2227145
– ident: ref15
  doi: 10.1109/TSMCB.2009.2015956
– ident: ref47
  doi: 10.1007/BFb0056872
– ident: ref43
  doi: 10.1109/TEVC.2014.2373386
– ident: ref13
  doi: 10.1109/ICNN.1995.488968
– ident: ref28
  doi: 10.1162/EVCO_a_00009
– ident: ref53
  doi: 10.1007/s11721-015-0109-7
– ident: ref11
  doi: 10.1109/TEVC.2005.860762
– ident: ref52
  doi: 10.1109/ISIC.2012.6398264
– ident: ref46
  doi: 10.1109/TEVC.2003.810758
– year: 0
  ident: ref4
  article-title: Coevolutionary multi-objective evolutionary algorithms: A survey of the state-of-the-art
  publication-title: IEEE Trans Evol Comput
– ident: ref6
  doi: 10.1109/4235.996017
– ident: ref7
  doi: 10.1007/978-3-540-70928-2_56
– ident: ref38
  doi: 10.1145/2463372.2463447
SSID ssj0014519
Score 2.6579125
Snippet The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence....
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 587
SubjectTerms Algorithms
Approximation algorithms
Bottleneck objective learning (BOL)
coevolution
Convergence
Evolutionary algorithms
Machine learning
many-objective optimization problems (MaOPs)
Multiple objective analysis
Objectives
Pareto optimization
Particle swarm optimization
particle swarm optimization (PSO)
Sociology
Strategy
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED5tewEeGGygFTbkB56AdEnsuPEjqzZNSGVIbNC3yLHPMNalU0k7lV_POXFDBwjxloeLnej7Yt_Fd98BvEydTAy5HUReLiLhRBIpLXk0yFyu0QklnC9OHr2Xpxfi3Tgbb8CbrhYGEZvkM-z7y-Ys307N3P8qO8wFRQc834TNQS7bWq3uxMDLpLTJ9Io8xnwcTjCTWB2eH38a-iSuvE_hQSZ8wvPaHtQ0VbnjX96bVzd6easnk7Wt5mQbRquHbDNMrvrzuuybH7_pN_7vWzyCh8HnZG9bkjyGDax2YHvVz4GFz3sHHqyJE-7CYjjFRSCmni3Zh0Ay9vFWz67ZGa0116GIk32-rL-yo6nXQ67QXLGz8lu7kLKg3_qFBRncJSMvmY1oCYp-Ga2P9QQuTo7Ph6dR6NIQGc5lHSG6VOQWUUtpMsXNoDQUVTpDKJQxSs0Tm4gylcYagSLRNiVyZNzEGVo0lj-FrWpa4R4w5YQ2dhDLlIbUlshC3hC3NnVaaZWIHsQr3AoTJMx9J41J0YQysSo81IWHughQ9-BVd8tNq9_xL-NdD1dnGJDqwf6KHEX4wr8XqZfJof2fpz143RHmjzlqXJg7czz7-xzP4T5ZqTa1cB-26tkcD8jdqcsXDc9_Ar17_nI
  priority: 102
  providerName: IEEE
Title Coevolutionary Particle Swarm Optimization With Bottleneck Objective Learning Strategy for Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/8489938
https://www.proquest.com/docview/2268430332
https://ieeexplore.ieee.org/ielx7/4235/8781948/08489938.pdf
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7gF4YLAxURiTH3gCJU1ix4nF06g2TUj7IbFCkZAixz9grEurknaUv55z4pYOJCR4SyQnTnSf7z7Ld98BvEgsjxXSDgQvZQGzLA6E5DTIUptLY5lg1hUnn5zy4wF7O0yHG_B6VQtjjGmSz0zoLpuz_Esz-p71MO6nvTzDCMbynlOBx8iahxNt78AmT5GId2BzcHp-8LFNqRfIG_Nhc6aM87uthj_TjCPRq83cyRfGeYgbhpS5FOi1qNS0WbnFOO_Oqolc3MjRaC34HG3Bp-VntzknV-GsLkP14zdFx__8r4fwwJNSctCi6BFsmGobtpYNH4hf_9twf029cAfm_bGZe-TK6YKcexSSdzdyek3O0Bld-ypP8uGy_kLejJ1gcmXUFTkrv7aelniB18_E6-QuCNJocoI-Kvg1aP1dj2FwdHjRPw58G4dAUcrrwBibsFwbIzlXqaAqKxVuO61CA5WR4ZLGOmZlwpVWzLBY6gTRk1IVpUYbpekudKpxZZ4AEZZJpbOIJ_hKqRFNSJeo1omVQoqYdSFamrFQXuPctdoYFc1eJxLFxeH7fuEsX3jLd-Hl6pFJK_Dxt8E7znqrgd5aXdhbYqXwLuBbkTgdHSQINOnCqxV-_pjDQfHWHE__afQzuIe3ok1J3INOPZ2Z50iT6nK_qWXc94viJ-pPDfg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwEN0p7aFwoKWlQ6CADpwoTm1LVqwjZNpJoWmZaUpz88jSio-mTic46YRfj2QrbgodhpsP-rBnn6S31u5bgDex4ZGytMOCl7KAGRYFQnIadBKTSjRMMOOSk_snvHfOPg6T4Qq8a3JhELEKPsO2e6zu8vVYTd2vsv2UWe-Apg9gLWGMJXW2VnNn4IRS6nB6YTljOvR3mFEo9gcHX7oujCttWwchYS7keekUqsqq3GGY69PiWs5v5Gi0dNgcbkB_8Zp1jMlle1rmbfXrDwXH__2OTXjsWSd5X8PkCaxgsQUbi4oOxC_wLXi0JE-4DbPuGGcemnIyJ589zMjZjZxckVO721z5NE5y8b38Rj6MnSJygeqSnOY_6q2UeAXXr8QL4c6J5cmkbzeh4LbR8lhP4fzwYNDtBb5OQ6Ao5WWAaGKWakTJuUoEVZ1cWb_SKGuFPEQuaaQjlsdcacWQRVLHFh4JVWGCGpWmO7BajAt8BkQYJpXuhDy2Q0pt4WL5ENU6NlJIEbEWhAu7ZcqLmLtaGqOscmZCkTlTZ87UmTd1C942Xa5rBY9_Nd525moaeku1YHcBjsyv8Z9Z7IRyLAOgcQv2GsD8NUeJM3Vnjuf3z_Ea1nuD_nF2fHTy6QU8tD1EHWi4C6vlZIovLfkp81cV5n8DLDYBzg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG9wB7YLCBVhjIDzyBkiax48TiaVSbJqT9kFihSEiRY59hrEurknaUv55z4pYOJCR4SyQnTnSf776Tz98R8iKxItZIOxC8jAfc8jiQSrAgS22uwHLJrTucfHIqjgf87TAdbpDXq7MwANAUn0HoLpu9_EsYfc96GPfTXp5hBON5z6nAY2TNw4mxd8imSJGId8jm4PT84GNbUi-RN-bDZk8Z53epht_TjCPZq2Hu5AvjPMSEIeWuBHotKjVtVm4xzruzaqIWN2o0Wgs-R9vk0_Kz25qTq3BWl6H-8Zui43_-1wNy35NSetCi6CHZgGqHbC8bPlC__nfI1pp64S6Z98cw98hV0wU99yik727U9JqeoTO69qc86YfL-gt9M3aCyRXoK3pWfm09LfUCr5-p18ldUKTR9AR9VPBr0Pq7HpHB0eFF_zjwbRwCzZioAwCb8NwAKCF0KpnOSo1pp9VooDICoVhsYl4mQhvNgcfKJIielOkoBQPasMekU40r2CNUWq60ySKR4CuVQTQhXWLGJFZJJWPeJdHSjIX2Gueu1caoaHKdSBYXh-_7hbN84S3fJS9Xj0xagY-_Dd511lsN9Nbqkv0lVgrvAr4VidPRQYLAki55tcLPH3M4KN6a48k_jX5K7uGtbEsS90mnns7gGdKkunzul8NPnBAM9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coevolutionary+Particle+Swarm+Optimization+With+Bottleneck+Objective+Learning+Strategy+for+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Liu%2C+Xiao-Fang&rft.au=Zhan%2C+Zhi-Hui&rft.au=Gao%2C+Ying&rft.au=Zhang%2C+Jie&rft.date=2019-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=4&rft.spage=587&rft.epage=602&rft_id=info:doi/10.1109%2FTEVC.2018.2875430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2018_2875430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon