Coevolutionary Particle Swarm Optimization With Bottleneck Objective Learning Strategy for Many-Objective Optimization
The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in...
        Saved in:
      
    
          | Published in | IEEE transactions on evolutionary computation Vol. 23; no. 4; pp. 587 - 602 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.08.2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1089-778X 1941-0026 1941-0026  | 
| DOI | 10.1109/TEVC.2018.2875430 | 
Cover
| Abstract | The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in a large objective space. The algorithm tends to concentrate only on limited areas. On the other hand, as the number of objectives increases, solutions easily have poor values on some objectives, which can be regarded as poor bottleneck objectives that restrict solutions' convergence to the PF. Thus, we propose a coevolutionary particle swarm optimization with a bottleneck objective learning (BOL) strategy for many-objective optimization. In the proposed algorithm, multiple swarms coevolve in distributed fashion to maintain diversity for approximating different parts of the whole PF, and a novel BOL strategy is developed to improve convergence on all objectives. In addition, we develop a solution reproduction procedure with both an elitist learning strategy (ELS) and a juncture learning strategy (JLS) to improve the quality of archived solutions. The ELS helps the algorithm to jump out of local PFs, and the JLS helps to reach out to the missing areas of the PF that are easily missed by the swarms. The performance of the proposed algorithm is evaluated using two widely used test suites with different numbers of objectives. Experimental results show that the proposed algorithm compares favorably with six other state-of-the-art algorithms on many-objective optimization. | 
    
|---|---|
| AbstractList | The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in a large objective space. The algorithm tends to concentrate only on limited areas. On the other hand, as the number of objectives increases, solutions easily have poor values on some objectives, which can be regarded as poor bottleneck objectives that restrict solutions’ convergence to the PF. Thus, we propose a coevolutionary particle swarm optimization with a bottleneck objective learning (BOL) strategy for many-objective optimization. In the proposed algorithm, multiple swarms coevolve in distributed fashion to maintain diversity for approximating different parts of the whole PF, and a novel BOL strategy is developed to improve convergence on all objectives. In addition, we develop a solution reproduction procedure with both an elitist learning strategy (ELS) and a juncture learning strategy (JLS) to improve the quality of archived solutions. The ELS helps the algorithm to jump out of local PFs, and the JLS helps to reach out to the missing areas of the PF that are easily missed by the swarms. The performance of the proposed algorithm is evaluated using two widely used test suites with different numbers of objectives. Experimental results show that the proposed algorithm compares favorably with six other state-of-the-art algorithms on many-objective optimization. | 
    
| Author | Liu, Xiao-Fang Gao, Ying Zhan, Zhi-Hui Zhang, Jie Kwong, Sam Zhang, Jun  | 
    
| Author_xml | – sequence: 1 givenname: Xiao-Fang orcidid: 0000-0002-8137-4201 surname: Liu fullname: Liu, Xiao-Fang organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Ying orcidid: 0000-0002-8925-8192 surname: Gao fullname: Gao, Ying organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 5 givenname: Sam orcidid: 0000-0001-7484-7261 surname: Kwong fullname: Kwong, Sam organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 6 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun email: junzhang@ieee.org organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China  | 
    
| BookMark | eNp9kVtPwjAYhhuDiYj-AONNE6-HPezQXSrxlGAwAQ93S-m-YXG02BUI_no3IWow8apN-j5v-z09RC1jDSB0QkmXUpKej66eel1GqOgykUQhJ3uoTdOQBoSwuFXviUiDJBEvB-iwqqaE0DCiaRstexaWtlx4bY10a_wgndeqBDxcSTfDg7nXM_0hm2P8rP0rvrTel2BAveHBeArK6yXgPkhntJngoXfSw2SNC-vwvTTr4Cf0u-sI7ReyrOB4u3bQ4_XVqHcb9Ac3d72LfqA4j30AULBQ5AAyjlWUcpWMFaO0UPUkYwKx5DSn4ZjFKlchhFTmTKU04opEkIPKeQexTe_CzOV6Jcsymzs9qyfNKMkac5mHpcoac9nWXA2dbaC5s-8LqHw2tQtn6ndmjMWiiXBWp-gmpZytKgfFn-bmT3abkx1Gaf8lpPamy3_J0w2pAeD7JhGKNOWCfwKLPZ3T | 
    
| CODEN | ITEVF5 | 
    
| CitedBy_id | crossref_primary_10_1007_s12065_021_00644_4 crossref_primary_10_1016_j_neucom_2021_08_003 crossref_primary_10_1109_ACCESS_2020_2983473 crossref_primary_10_1109_TCYB_2021_3082200 crossref_primary_10_3390_math9040420 crossref_primary_10_1109_TEVC_2021_3065659 crossref_primary_10_1155_2023_5275262 crossref_primary_10_1109_ACCESS_2019_2957637 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_3390_electronics11071080 crossref_primary_10_1109_TNNLS_2019_2920887 crossref_primary_10_1109_TCYB_2022_3193888 crossref_primary_10_1109_TEVC_2021_3135691 crossref_primary_10_1111_exsy_13410 crossref_primary_10_1016_j_neucom_2021_12_069 crossref_primary_10_1109_TSG_2024_3449897 crossref_primary_10_1109_TITS_2021_3127352 crossref_primary_10_1016_j_eswa_2024_123296 crossref_primary_10_1016_j_renene_2023_02_058 crossref_primary_10_1016_j_isci_2023_107896 crossref_primary_10_1002_cpe_7973 crossref_primary_10_1016_j_asoc_2022_108902 crossref_primary_10_1109_ACCESS_2020_3034441 crossref_primary_10_1016_j_bspc_2023_104783 crossref_primary_10_1016_j_knosys_2021_108068 crossref_primary_10_1098_rsos_211419 crossref_primary_10_1016_j_asoc_2023_110320 crossref_primary_10_1109_TEVC_2023_3326327 crossref_primary_10_1016_j_neucom_2022_06_075 crossref_primary_10_1109_TCYB_2019_2943928 crossref_primary_10_3390_biomimetics9020117 crossref_primary_10_1109_TCYB_2023_3234969 crossref_primary_10_1016_j_swevo_2024_101627 crossref_primary_10_1016_j_swevo_2022_101222 crossref_primary_10_1109_ACCESS_2021_3132617 crossref_primary_10_1109_TSMC_2022_3212045 crossref_primary_10_3390_sym14020331 crossref_primary_10_1109_TITS_2022_3180760 crossref_primary_10_1007_s42235_022_00304_y crossref_primary_10_1007_s42235_022_00228_7 crossref_primary_10_1109_TEVC_2019_2910721 crossref_primary_10_1155_2020_6238206 crossref_primary_10_1155_2021_6648650 crossref_primary_10_1109_TEVC_2022_3212058 crossref_primary_10_1007_s40747_022_00814_6 crossref_primary_10_1016_j_ins_2019_08_065 crossref_primary_10_1109_TEVC_2020_2979740 crossref_primary_10_1016_j_knosys_2020_105518 crossref_primary_10_1109_TCYB_2019_2927780 crossref_primary_10_1016_j_compbiomed_2022_105563 crossref_primary_10_1155_2022_7535450 crossref_primary_10_1109_TSMC_2023_3239953 crossref_primary_10_1016_j_asoc_2023_110218 crossref_primary_10_1016_j_chaos_2021_111658 crossref_primary_10_1109_ACCESS_2020_3031003 crossref_primary_10_1515_ijnsns_2020_0178 crossref_primary_10_1109_TITS_2020_2994779 crossref_primary_10_1109_TSMC_2024_3446624 crossref_primary_10_1109_TCYB_2022_3158391 crossref_primary_10_1109_TCYB_2020_3028070 crossref_primary_10_1016_j_ejor_2021_10_033 crossref_primary_10_1007_s00521_020_05285_9 crossref_primary_10_1109_TEVC_2022_3210783 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1109_TCYB_2021_3098186 crossref_primary_10_1109_TCYB_2021_3101880 crossref_primary_10_1016_j_neucom_2023_126892 crossref_primary_10_1016_j_ins_2022_09_023 crossref_primary_10_1109_TNNLS_2021_3106399 crossref_primary_10_1109_TIE_2022_3177802 crossref_primary_10_1007_s10462_024_10913_0 crossref_primary_10_1109_TG_2023_3236490 crossref_primary_10_1109_TCYB_2022_3180214 crossref_primary_10_1109_TSMC_2022_3196853 crossref_primary_10_1016_j_renene_2023_119423 crossref_primary_10_1007_s40747_022_00670_4 crossref_primary_10_1177_1077546319889787 crossref_primary_10_1016_j_neucom_2020_12_022 crossref_primary_10_1109_OJCOMS_2020_3031449 crossref_primary_10_3390_en11123526 crossref_primary_10_1016_j_energy_2023_127000 crossref_primary_10_1016_j_bspc_2022_104511 crossref_primary_10_1016_j_molliq_2022_120169 crossref_primary_10_1109_TEVC_2021_3051608 crossref_primary_10_1109_TCYB_2023_3273625 crossref_primary_10_1109_ACCESS_2019_2906121 crossref_primary_10_1002_ese3_1329 crossref_primary_10_1109_TEVC_2023_3294307 crossref_primary_10_1109_TCYB_2019_2937565 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_comcom_2022_05_008 crossref_primary_10_1049_rpg2_12451 crossref_primary_10_1093_jcde_qwac038 crossref_primary_10_1109_TEVC_2021_3097339 crossref_primary_10_1109_ACCESS_2022_3186696 crossref_primary_10_1007_s11071_021_06862_w crossref_primary_10_1093_jcde_qwad073 crossref_primary_10_1109_TII_2023_3268760 crossref_primary_10_1016_j_neucom_2021_03_077 crossref_primary_10_1109_TCYB_2021_3051078 crossref_primary_10_1016_j_compbiomed_2022_105618 crossref_primary_10_1155_2018_1716352 crossref_primary_10_1002_cpe_8221 crossref_primary_10_1155_2021_7667173 crossref_primary_10_1109_TSMC_2023_3298804 crossref_primary_10_1109_TCYB_2019_2933499 crossref_primary_10_1109_TCYB_2020_2977956 crossref_primary_10_1016_j_swevo_2021_100910 crossref_primary_10_1109_TCYB_2020_3029748 crossref_primary_10_3233_JIFS_179978 crossref_primary_10_1109_TETCI_2023_3234575 crossref_primary_10_1016_j_ins_2022_09_003 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_asoc_2024_111954 crossref_primary_10_1007_s00521_024_10578_4 crossref_primary_10_1007_s12293_023_00389_w crossref_primary_10_3390_en15051884 crossref_primary_10_1109_TEVC_2019_2944180 crossref_primary_10_1007_s11633_022_1367_7 crossref_primary_10_1109_TCSS_2019_2907059 crossref_primary_10_1109_TEVC_2022_3175226 crossref_primary_10_1007_s11036_019_01403_7 crossref_primary_10_1016_j_measurement_2022_110884 crossref_primary_10_1007_s12293_021_00341_w crossref_primary_10_1007_s40747_022_00650_8 crossref_primary_10_1109_TBDATA_2021_3090905 crossref_primary_10_1016_j_jnca_2021_103234 crossref_primary_10_1109_TCYB_2022_3153964 crossref_primary_10_1080_01969722_2020_1827797 crossref_primary_10_1016_j_neucom_2023_126467 crossref_primary_10_1109_TCYB_2024_3372070 crossref_primary_10_1109_TEVC_2021_3131236 crossref_primary_10_1016_j_ins_2022_12_021 crossref_primary_10_1007_s00500_021_06169_3 crossref_primary_10_1007_s40747_022_00714_9 crossref_primary_10_1016_j_compbiomed_2023_107020 crossref_primary_10_1109_TCYB_2021_3102642 crossref_primary_10_3390_app12094776 crossref_primary_10_1109_TETCI_2022_3186673 crossref_primary_10_1109_TETCI_2022_3221940 crossref_primary_10_1109_TKDE_2020_3033519 crossref_primary_10_1007_s10489_020_01874_2 crossref_primary_10_1093_jcde_qwac081 crossref_primary_10_1016_j_knosys_2022_108902 crossref_primary_10_1007_s00521_023_08505_0 crossref_primary_10_1109_TEVC_2023_3278132 crossref_primary_10_1016_j_ins_2019_05_002 crossref_primary_10_1016_j_compbiomed_2022_105910 crossref_primary_10_1109_TNSM_2021_3120259 crossref_primary_10_1109_TETCI_2020_3047410 crossref_primary_10_1016_j_compbiomed_2022_105356 crossref_primary_10_1016_j_compbiomed_2022_105510 crossref_primary_10_1016_j_swevo_2024_101648 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1007_s13042_019_01030_4 crossref_primary_10_1016_j_eswa_2021_116118 crossref_primary_10_1007_s10462_024_10919_8 crossref_primary_10_1109_TITS_2022_3203629 crossref_primary_10_1016_j_swevo_2018_12_009 crossref_primary_10_1016_j_asoc_2019_105988 crossref_primary_10_1109_TCYB_2020_3008280 crossref_primary_10_1109_TEVC_2023_3340678 crossref_primary_10_3390_sym14061142 crossref_primary_10_3390_e23121599  | 
    
| Cites_doi | 10.1109/TCYB.2016.2548239 10.1109/TSMCB.2012.2209115 10.1016/j.ipl.2006.10.005 10.1109/TCYB.2018.2832640 10.1007/3-540-36970-8_37 10.1109/ICEC.1998.699146 10.1007/1-84628-137-7_6 10.1109/TEVC.2016.2611642 10.1109/CEC.2017.7969530 10.1109/TEVC.2013.2262178 10.1109/TEVC.2008.2011744 10.1109/TEVC.2012.2204264 10.1109/TEVC.2016.2519378 10.1109/CEC.2008.4631121 10.1109/TEVC.2015.2504383 10.1109/TEVC.2016.2631279 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2015.2433266 10.1109/CEC.2003.1299427 10.1109/TEVC.2015.2420112 10.1109/TEVC.2007.910138 10.1109/TEVC.2013.2281535 10.1109/TEVC.2008.2009031 10.1016/j.tcs.2011.03.012 10.1109/TEVC.2015.2424921 10.1109/TEVC.2005.861417 10.1007/s11721-017-0141-x 10.1162/106365605774666895 10.1109/TEVC.2016.2639360 10.1007/978-3-540-30217-9_84 10.1145/1830483.1830577 10.1109/TEVC.2007.892759 10.1016/j.ejor.2014.05.019 10.1145/1276958.1276977 10.1007/978-3-642-01020-0_35 10.1109/TEVC.2016.2521175 10.1109/TEVC.2014.2378512 10.1109/TEVC.2017.2776226 10.1109/CEC.2013.6557740 10.1109/TEVC.2016.2549267 10.1109/TEVC.2014.2350987 10.1109/TEVC.2012.2227145 10.1109/TSMCB.2009.2015956 10.1007/BFb0056872 10.1109/TEVC.2014.2373386 10.1109/ICNN.1995.488968 10.1162/EVCO_a_00009 10.1007/s11721-015-0109-7 10.1109/TEVC.2005.860762 10.1109/ISIC.2012.6398264 10.1109/TEVC.2003.810758 10.1109/4235.996017 10.1007/978-3-540-70928-2_56 10.1145/2463372.2463447  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1109/TEVC.2018.2875430 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1941-0026 | 
    
| EndPage | 602 | 
    
| ExternalDocumentID | 10.1109/tevc.2018.2875430 10_1109_TEVC_2018_2875430 8489938  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Project for Pearl River New Star in Science and Technology grantid: 201506010047 – fundername: GDUPS in 2016 – fundername: Outstanding Youth Science Foundation grantid: 61822602 – fundername: Natural Science Foundation of Guangdong Province grantid: 2014A030306038 funderid: 10.13039/501100003453 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China grantid: 61772207; 61332002 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c336t-eef248deea66c593c7bc211fc778b0e6a31d14b26cdc4e41ad2c9153c05edecd3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1089-778X 1941-0026  | 
    
| IngestDate | Tue Aug 19 21:00:26 EDT 2025 Sun Jun 29 14:04:42 EDT 2025 Wed Oct 01 02:39:36 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Wed Aug 27 02:54:35 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c336t-eef248deea66c593c7bc211fc778b0e6a31d14b26cdc4e41ad2c9153c05edecd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8137-4201 0000-0003-0862-0514 0000-0001-7484-7261 0000-0001-7835-9871 0000-0002-8925-8192  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4235/8781948/08489938.pdf | 
    
| PQID | 2268430332 | 
    
| PQPubID | 85418 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2268430332 unpaywall_primary_10_1109_tevc_2018_2875430 crossref_primary_10_1109_TEVC_2018_2875430 crossref_citationtrail_10_1109_TEVC_2018_2875430 ieee_primary_8489938  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-08-01 | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on evolutionary computation | 
    
| PublicationTitleAbbrev | TEVC | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 antonio (ref4) 0 ref16 ref19 ref18 ref51 eberhart (ref48) 2002 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29  | 
    
| References_xml | – ident: ref36 doi: 10.1109/TCYB.2016.2548239 – ident: ref12 doi: 10.1109/TSMCB.2012.2209115 – ident: ref49 doi: 10.1016/j.ipl.2006.10.005 – ident: ref16 doi: 10.1109/TCYB.2018.2832640 – ident: ref27 doi: 10.1007/3-540-36970-8_37 – ident: ref14 doi: 10.1109/ICEC.1998.699146 – ident: ref44 doi: 10.1007/1-84628-137-7_6 – ident: ref34 doi: 10.1109/TEVC.2016.2611642 – ident: ref40 doi: 10.1109/CEC.2017.7969530 – ident: ref20 doi: 10.1109/TEVC.2013.2262178 – ident: ref51 doi: 10.1109/TEVC.2008.2011744 – ident: ref29 doi: 10.1109/TEVC.2012.2204264 – ident: ref30 doi: 10.1109/TEVC.2016.2519378 – ident: ref1 doi: 10.1109/CEC.2008.4631121 – ident: ref42 doi: 10.1109/TEVC.2015.2504383 – ident: ref37 doi: 10.1109/TEVC.2016.2631279 – ident: ref25 doi: 10.1016/j.ejor.2006.08.008 – ident: ref8 doi: 10.1109/TEVC.2015.2433266 – ident: ref31 doi: 10.1109/CEC.2003.1299427 – ident: ref18 doi: 10.1109/TEVC.2015.2420112 – ident: ref9 doi: 10.1109/TEVC.2007.910138 – start-page: 84 year: 2002 ident: ref48 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: Proc IEEE Congr Evol Comput – ident: ref2 doi: 10.1109/TEVC.2013.2281535 – ident: ref41 doi: 10.1109/TEVC.2008.2009031 – ident: ref26 doi: 10.1016/j.tcs.2011.03.012 – ident: ref22 doi: 10.1109/TEVC.2015.2424921 – ident: ref45 doi: 10.1109/TEVC.2005.861417 – ident: ref54 doi: 10.1007/s11721-017-0141-x – ident: ref17 doi: 10.1162/106365605774666895 – ident: ref3 doi: 10.1109/TEVC.2016.2639360 – ident: ref24 doi: 10.1007/978-3-540-30217-9_84 – ident: ref33 doi: 10.1145/1830483.1830577 – ident: ref10 doi: 10.1109/TEVC.2007.892759 – ident: ref56 doi: 10.1016/j.ejor.2014.05.019 – ident: ref50 doi: 10.1145/1276958.1276977 – ident: ref32 doi: 10.1007/978-3-642-01020-0_35 – ident: ref35 doi: 10.1109/TEVC.2016.2521175 – ident: ref21 doi: 10.1109/TEVC.2014.2378512 – ident: ref55 doi: 10.1109/TEVC.2017.2776226 – ident: ref39 doi: 10.1109/CEC.2013.6557740 – ident: ref23 doi: 10.1109/TEVC.2016.2549267 – ident: ref5 doi: 10.1109/TEVC.2014.2350987 – ident: ref19 doi: 10.1109/TEVC.2012.2227145 – ident: ref15 doi: 10.1109/TSMCB.2009.2015956 – ident: ref47 doi: 10.1007/BFb0056872 – ident: ref43 doi: 10.1109/TEVC.2014.2373386 – ident: ref13 doi: 10.1109/ICNN.1995.488968 – ident: ref28 doi: 10.1162/EVCO_a_00009 – ident: ref53 doi: 10.1007/s11721-015-0109-7 – ident: ref11 doi: 10.1109/TEVC.2005.860762 – ident: ref52 doi: 10.1109/ISIC.2012.6398264 – ident: ref46 doi: 10.1109/TEVC.2003.810758 – year: 0 ident: ref4 article-title: Coevolutionary multi-objective evolutionary algorithms: A survey of the state-of-the-art publication-title: IEEE Trans Evol Comput – ident: ref6 doi: 10.1109/4235.996017 – ident: ref7 doi: 10.1007/978-3-540-70928-2_56 – ident: ref38 doi: 10.1145/2463372.2463447  | 
    
| SSID | ssj0014519 | 
    
| Score | 2.6579125 | 
    
| Snippet | The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence.... | 
    
| SourceID | unpaywall proquest crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 587 | 
    
| SubjectTerms | Algorithms Approximation algorithms Bottleneck objective learning (BOL) coevolution Convergence Evolutionary algorithms Machine learning many-objective optimization problems (MaOPs) Multiple objective analysis Objectives Pareto optimization Particle swarm optimization particle swarm optimization (PSO) Sociology Strategy  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED5tewEeGGygFTbkB56AdEnsuPEjqzZNSGVIbNC3yLHPMNalU0k7lV_POXFDBwjxloeLnej7Yt_Fd98BvEydTAy5HUReLiLhRBIpLXk0yFyu0QklnC9OHr2Xpxfi3Tgbb8CbrhYGEZvkM-z7y-Ys307N3P8qO8wFRQc834TNQS7bWq3uxMDLpLTJ9Io8xnwcTjCTWB2eH38a-iSuvE_hQSZ8wvPaHtQ0VbnjX96bVzd6easnk7Wt5mQbRquHbDNMrvrzuuybH7_pN_7vWzyCh8HnZG9bkjyGDax2YHvVz4GFz3sHHqyJE-7CYjjFRSCmni3Zh0Ay9vFWz67ZGa0116GIk32-rL-yo6nXQ67QXLGz8lu7kLKg3_qFBRncJSMvmY1oCYp-Ga2P9QQuTo7Ph6dR6NIQGc5lHSG6VOQWUUtpMsXNoDQUVTpDKJQxSs0Tm4gylcYagSLRNiVyZNzEGVo0lj-FrWpa4R4w5YQ2dhDLlIbUlshC3hC3NnVaaZWIHsQr3AoTJMx9J41J0YQysSo81IWHughQ9-BVd8tNq9_xL-NdD1dnGJDqwf6KHEX4wr8XqZfJof2fpz143RHmjzlqXJg7czz7-xzP4T5ZqTa1cB-26tkcD8jdqcsXDc9_Ar17_nI priority: 102 providerName: IEEE  | 
    
| Title | Coevolutionary Particle Swarm Optimization With Bottleneck Objective Learning Strategy for Many-Objective Optimization | 
    
| URI | https://ieeexplore.ieee.org/document/8489938 https://www.proquest.com/docview/2268430332 https://ieeexplore.ieee.org/ielx7/4235/8781948/08489938.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7gF4YLAxURiTH3gCJU1ix4nF06g2TUj7IbFCkZAixz9grEurknaUv55z4pYOJCR4SyQnTnSf7z7Ld98BvEgsjxXSDgQvZQGzLA6E5DTIUptLY5lg1hUnn5zy4wF7O0yHG_B6VQtjjGmSz0zoLpuz_Esz-p71MO6nvTzDCMbynlOBx8iahxNt78AmT5GId2BzcHp-8LFNqRfIG_Nhc6aM87uthj_TjCPRq83cyRfGeYgbhpS5FOi1qNS0WbnFOO_Oqolc3MjRaC34HG3Bp-VntzknV-GsLkP14zdFx__8r4fwwJNSctCi6BFsmGobtpYNH4hf_9twf029cAfm_bGZe-TK6YKcexSSdzdyek3O0Bld-ypP8uGy_kLejJ1gcmXUFTkrv7aelniB18_E6-QuCNJocoI-Kvg1aP1dj2FwdHjRPw58G4dAUcrrwBibsFwbIzlXqaAqKxVuO61CA5WR4ZLGOmZlwpVWzLBY6gTRk1IVpUYbpekudKpxZZ4AEZZJpbOIJ_hKqRFNSJeo1omVQoqYdSFamrFQXuPctdoYFc1eJxLFxeH7fuEsX3jLd-Hl6pFJK_Dxt8E7znqrgd5aXdhbYqXwLuBbkTgdHSQINOnCqxV-_pjDQfHWHE__afQzuIe3ok1J3INOPZ2Z50iT6nK_qWXc94viJ-pPDfg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwEN0p7aFwoKWlQ6CADpwoTm1LVqwjZNpJoWmZaUpz88jSio-mTic46YRfj2QrbgodhpsP-rBnn6S31u5bgDex4ZGytMOCl7KAGRYFQnIadBKTSjRMMOOSk_snvHfOPg6T4Qq8a3JhELEKPsO2e6zu8vVYTd2vsv2UWe-Apg9gLWGMJXW2VnNn4IRS6nB6YTljOvR3mFEo9gcHX7oujCttWwchYS7keekUqsqq3GGY69PiWs5v5Gi0dNgcbkB_8Zp1jMlle1rmbfXrDwXH__2OTXjsWSd5X8PkCaxgsQUbi4oOxC_wLXi0JE-4DbPuGGcemnIyJ589zMjZjZxckVO721z5NE5y8b38Rj6MnSJygeqSnOY_6q2UeAXXr8QL4c6J5cmkbzeh4LbR8lhP4fzwYNDtBb5OQ6Ao5WWAaGKWakTJuUoEVZ1cWb_SKGuFPEQuaaQjlsdcacWQRVLHFh4JVWGCGpWmO7BajAt8BkQYJpXuhDy2Q0pt4WL5ENU6NlJIEbEWhAu7ZcqLmLtaGqOscmZCkTlTZ87UmTd1C942Xa5rBY9_Nd525moaeku1YHcBjsyv8Z9Z7IRyLAOgcQv2GsD8NUeJM3Vnjuf3z_Ea1nuD_nF2fHTy6QU8tD1EHWi4C6vlZIovLfkp81cV5n8DLDYBzg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG9wB7YLCBVhjIDzyBkiax48TiaVSbJqT9kFihSEiRY59hrEurknaUv55z4pYOJCR4SyQnTnSf776Tz98R8iKxItZIOxC8jAfc8jiQSrAgS22uwHLJrTucfHIqjgf87TAdbpDXq7MwANAUn0HoLpu9_EsYfc96GPfTXp5hBON5z6nAY2TNw4mxd8imSJGId8jm4PT84GNbUi-RN-bDZk8Z53epht_TjCPZq2Hu5AvjPMSEIeWuBHotKjVtVm4xzruzaqIWN2o0Wgs-R9vk0_Kz25qTq3BWl6H-8Zui43_-1wNy35NSetCi6CHZgGqHbC8bPlC__nfI1pp64S6Z98cw98hV0wU99yik727U9JqeoTO69qc86YfL-gt9M3aCyRXoK3pWfm09LfUCr5-p18ldUKTR9AR9VPBr0Pq7HpHB0eFF_zjwbRwCzZioAwCb8NwAKCF0KpnOSo1pp9VooDICoVhsYl4mQhvNgcfKJIielOkoBQPasMekU40r2CNUWq60ySKR4CuVQTQhXWLGJFZJJWPeJdHSjIX2Gueu1caoaHKdSBYXh-_7hbN84S3fJS9Xj0xagY-_Dd511lsN9Nbqkv0lVgrvAr4VidPRQYLAki55tcLPH3M4KN6a48k_jX5K7uGtbEsS90mnns7gGdKkunzul8NPnBAM9w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coevolutionary+Particle+Swarm+Optimization+With+Bottleneck+Objective+Learning+Strategy+for+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Liu%2C+Xiao-Fang&rft.au=Zhan%2C+Zhi-Hui&rft.au=Gao%2C+Ying&rft.au=Zhang%2C+Jie&rft.date=2019-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=4&rft.spage=587&rft.epage=602&rft_id=info:doi/10.1109%2FTEVC.2018.2875430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2018_2875430 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |