Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem

This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1866 - 1880
Main Authors Stodola, Petr, Nohel, Jan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
1941-0026
DOI10.1109/TEVC.2022.3230042

Cover

Abstract This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the multidepot vehicle routing problem (MDVRP), are as follows: 1) node clustering where transition vertices are organized into a set of candidate lists called clusters and 2) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems.
AbstractList This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the multidepot vehicle routing problem (MDVRP), are as follows: 1) node clustering where transition vertices are organized into a set of candidate lists called clusters and 2) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems.
Author Stodola, Petr
Nohel, Jan
Author_xml – sequence: 1
  givenname: Petr
  orcidid: 0000-0002-2251-8711
  surname: Stodola
  fullname: Stodola, Petr
  email: petr.stodola@unob.cz
  organization: Department of Intelligence Support, University of Defence, Brno, Czech Republic
– sequence: 2
  givenname: Jan
  surname: Nohel
  fullname: Nohel, Jan
  email: jan.nohel@unob.cz
  organization: Department of Intelligence Support, University of Defence, Brno, Czech Republic
BookMark eNptkU9v2zAMxYWhBdY_-wDDLgJ2diZRsi0dA6NrC2RtUbTdbppiM4sKxfJkOUX26ec0RQ5BTySI93skHk_JURtaJOQzZxPOmf72cPFUTYABTAQIxiR8ICdcS54xBsXR2DOls7JUvz6S075_ZozLnOsT8nva2C65NdJpm2gVfGg39HacrNw_m1xo6U-XlvQmNEgrP_QJo2v_0EWINC2R_hh8cg12IdEnXLraI70PQ9pK7mKYe1ydk-OF9T1-eqtn5PH7xUN1lc1uL6-r6SyrhShShiUqrgGFZg1qAXqeS7soRYmyKOYAtZQ1AKDGXCiRK5lDbeWcYcGB5U0uzgjsfIe2s5sX673polvZuDGcmW1GJuG6NtuMzFtGI_R1B3Ux_B2wT-Y5DLEd7zSgdK7GNaUeVeVOVcfQ9xEXpnbpNZwUrfN7_-0PDv35AXl403vMlx3jEHGv11pzJZX4DxQqkiE
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s11227_023_05706_1
crossref_primary_10_1109_TSMC_2024_3389751
crossref_primary_10_1016_j_joitmc_2024_100239
crossref_primary_10_1016_j_eswa_2023_119870
crossref_primary_10_1016_j_eswa_2023_122483
crossref_primary_10_1109_ACCESS_2024_3406222
Cites_doi 10.4018/ijisscm.2019100101
10.1109/cec.2019.8790025
10.2139/ssrn.3943419
10.3390/ijgi10030106
10.1007/s10489-020-01799-w
10.1287/opre.4.1.61
10.1016/j.asoc.2020.106720
10.1016/j.disopt.2014.03.001
10.1016/j.cor.2020.104996
10.1109/snpd.2019.8935817
10.1145/3321707.3321832
10.1007/s12652-021-03120-0
10.1007/978-3-319-47605-6_32
10.1007/978-3-319-76072-8_24
10.1109/access.2019.2900029
10.1007/s10732-018-9366-0
10.1007/978-3-030-38629-0_17
10.1016/j.cor.2021.105269
10.1016/j.jclepro.2019.03.185
10.1007/s10462-015-9441-y
10.1063/1.5039120
10.1287/mnsc.6.1.80
10.1007/s11047-020-09783-6
10.1145/3205651.3208274
10.1007/3-540-45724-0_22
10.1109/aicai.2019.8701269
10.1007/978-3-319-03859-9_18
10.3390/ijgi9080489
10.1016/j.jclepro.2019.05.344
10.1504/ijstm.2020.106693
10.3390/su12083500
10.30560/sdr.v3n1p36
10.1007/978-3-030-43890-6_19
10.1109/hora49412.2020.9152916
10.1007/s10479-017-2531-2
10.3390/s20102926
10.1016/j.swevo.2017.07.004
10.1016/j.swevo.2022.101056
10.1109/access.2020.2967076
10.1007/s11465-020-0613-3
10.1007/978-3-030-98260-7_6
10.1016/j.jterra.2020.06.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TEVC.2022.3230042
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1880
ExternalDocumentID 10.1109/tevc.2022.3230042
10_1109_TEVC_2022_3230042
9991848
Genre orig-research
GrantInformation_xml – fundername: Ministry of the Interior of the Czech Republic through the Project An Artificial Intelligence-Controlled Robotic System for Intelligence and Reconnaissance Operations
  grantid: VJ02010036
  funderid: 10.13039/100009532
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c336t-e7e8192e390de9329b54af737e466b22c44c222e9e538358452ca4b0e61205d53
IEDL.DBID UNPAY
ISSN 1089-778X
1941-0026
IngestDate Tue Aug 19 17:22:49 EDT 2025
Mon Jun 30 07:06:18 EDT 2025
Wed Oct 01 02:39:38 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Wed Aug 27 02:07:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-e7e8192e390de9329b54af737e466b22c44c222e9e538358452ca4b0e61205d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2251-8711
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4235/4358751/09991848.pdf
PQID 2895884579
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_9991848
unpaywall_primary_10_1109_tevc_2022_3230042
proquest_journals_2895884579
crossref_citationtrail_10_1109_TEVC_2022_3230042
crossref_primary_10_1109_TEVC_2022_3230042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref15
ref37
ref14
ref36
ref31
Sedighpour (ref35) 2014; 41
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Madarász (ref13)
ref17
ref39
ref16
ref38
ref19
Prabu (ref18) 2019; 6
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
(ref44) 2022
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.4018/ijisscm.2019100101
– ident: ref31
  doi: 10.1109/cec.2019.8790025
– volume-title: Multiple depot VRP instances
  year: 2022
  ident: ref44
– ident: ref29
  doi: 10.2139/ssrn.3943419
– ident: ref9
  doi: 10.3390/ijgi10030106
– ident: ref38
  doi: 10.1007/s10489-020-01799-w
– ident: ref1
  doi: 10.1287/opre.4.1.61
– ident: ref40
  doi: 10.1016/j.asoc.2020.106720
– ident: ref45
  doi: 10.1016/j.disopt.2014.03.001
– ident: ref46
  doi: 10.1016/j.cor.2020.104996
– ident: ref30
  doi: 10.1109/snpd.2019.8935817
– ident: ref37
  doi: 10.1145/3321707.3321832
– ident: ref41
  doi: 10.1007/s12652-021-03120-0
– ident: ref7
  doi: 10.1007/978-3-319-47605-6_32
– ident: ref15
  doi: 10.1007/978-3-319-76072-8_24
– ident: ref43
  doi: 10.1109/access.2019.2900029
– ident: ref19
  doi: 10.1007/s10732-018-9366-0
– ident: ref22
  doi: 10.1007/978-3-030-38629-0_17
– ident: ref20
  doi: 10.1016/j.cor.2021.105269
– ident: ref25
  doi: 10.1016/j.jclepro.2019.03.185
– volume: 41
  start-page: 139
  issue: 3
  year: 2014
  ident: ref35
  article-title: Solving the open vehicle routing problem by a hybrid ant colony optimization
  publication-title: Kuwait J. Sci.
– ident: ref5
  doi: 10.1007/s10462-015-9441-y
– ident: ref42
  doi: 10.1063/1.5039120
– ident: ref16
  doi: 10.1287/mnsc.6.1.80
– ident: ref3
  doi: 10.1007/s11047-020-09783-6
– start-page: 113
  volume-title: Proc. IEEE Int. Symp. Logist. Ind. Informat.
  ident: ref13
  article-title: Concept of situational control in road tunnels
– ident: ref36
  doi: 10.1145/3205651.3208274
– ident: ref34
  doi: 10.1007/3-540-45724-0_22
– ident: ref23
  doi: 10.1109/aicai.2019.8701269
– ident: ref33
  doi: 10.1007/978-3-319-03859-9_18
– ident: ref12
  doi: 10.3390/ijgi9080489
– ident: ref24
  doi: 10.1016/j.jclepro.2019.05.344
– ident: ref26
  doi: 10.1504/ijstm.2020.106693
– volume: 6
  start-page: e8
  issue: 21
  year: 2019
  ident: ref18
  article-title: EODVGA: An enhanced ODV based genetic algorithm for multi-depot vehicle routing problem
  publication-title: EAI Endorsed Trans. Scalable Inf. Syst.
– ident: ref28
  doi: 10.3390/su12083500
– ident: ref2
  doi: 10.30560/sdr.v3n1p36
– ident: ref11
  doi: 10.1007/978-3-030-43890-6_19
– ident: ref21
  doi: 10.1109/hora49412.2020.9152916
– ident: ref27
  doi: 10.1007/s10479-017-2531-2
– ident: ref14
  doi: 10.3390/s20102926
– ident: ref32
  doi: 10.1016/j.swevo.2017.07.004
– ident: ref4
  doi: 10.1016/j.swevo.2022.101056
– ident: ref39
  doi: 10.1109/access.2020.2967076
– ident: ref6
  doi: 10.1007/s11465-020-0613-3
– ident: ref10
  doi: 10.1007/978-3-030-98260-7_6
– ident: ref8
  doi: 10.1016/j.jterra.2020.06.004
SSID ssj0014519
Score 2.5150273
Snippet This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1866
SubjectTerms Adaptive pheromone evaporation
Algorithms
Ant colony optimization
ant colony optimization (ACO)
Apexes
Behavioral sciences
Clustering
Clustering algorithms
Convergence
entropy
Entropy (Information theory)
Heuristic methods
Metaheuristics
multidepot vehicle routing problem
node clustering
Optimization
Reconnaissance
Sociology
Statistics
Vehicle routing
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BF-ihwNKKbaHyoafSLFnHceLjagVClYAe-NhbGjuDQGyzqzYpgl_fmcQbsW1VcYsiJ3Y045nnzMwbgI9DMngGUxXg0LlAEaIP0iLSwQ1KM3QRuUTLEd3TM31yqb5M4skKfO5qYRCxST7DAV82sfxi5mr-VXbIYCZV6SqsJqlua7W6iAHTpLTJ9IYQYzrxEcxhaA4vjq7GdBKUchBJJpiSSz6oaaqyhC_X63KePz7k0-kzV3O8CaeLRbYZJveDurID9_QHf-NLv2ILXnvMKUatkmzDCpY92Fz0cxB-e_fg1TNywh5sMA5taZx34NuoyOdsGcWorMSYLGb5KM7pzndfxymu76pbcTYrUIynNbMv0EsEIWJBCFM0Zb4FYf1KXOEtr0JwKhIP-dp2tHkDl8dHF-OTwDdnCEiCugowQeZSw8iEBRIINDZW-U0SJai0tlI6pRxhDzRIJjUimBNLlysbIkGqMC7i6C2slbMSd0GoSCUMs6yzToW5JgcpbWq1LhKXyBT7EC7ElTnPXM4NNKZZc4IJTcYSzljCmZdwHz51j8xb2o7_Dd5hKXUDvYD6sLfQicxv7J8ZnU-5tDdOTB8OOj35a44Kf7mlOd79e473sMH969v8mD1Yq37UuE8op7IfGvX-DWGr9hc
  priority: 102
  providerName: IEEE
Title Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem
URI https://ieeexplore.ieee.org/document/9991848
https://www.proquest.com/docview/2895884579
https://ieeexplore.ieee.org/ielx7/4235/4358751/09991848.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB70fKg-aOsPetbKPvSpJblks9lk6dNxKFLo1QfPniCk2c0cimk8bK5q__rOJnuH10LBvoUwyybM7Mw37Mw3AO9CcngKU-FhaIwnCNF7aRFJb4JchSaikKjtje7noTwZiU_jeLwCHxe9MIjYFJ-hbx-bu_xrLB-SHsX9uEfBnQB22GtwTSpSf1pMVmFNxgTEO7A2Gp72L9qSekW4MR03d8qCEmZKNdydZhioXo0_LX0h537ELeUUX4pKzZiVJcT5YlZN88f7vCyfBJ_jLbicf3Zbc3Ljz2rtm19_MDr-53-9hE0HSlm_taJXsILVNmzNBz4wd_63YeMJe-EOfOsX-dR6S9avajYgL1o9si_05rvr7WRfr-srNrwtkA3KmWVkoHWMUDIj1Mma1t-C8H_NzvHKbsxseZIVOW2n3OzC6PjobHDiuYENHmlV1h4maPnVMFJBgQQMlY5FPkmiBIWUmnMjhCE8ggrJzdIfi5ibXOgACWYFcRFHe9Cpbit8DUxEIrHQSxttRJBLCppcp1rKIjEJT7ELwVxhmXFs5naoRpk1WU2gsrOj80FmdZw5HXfh_WLJtKXy-JfwjtXTQtDppQsHc6vI3GH_kVHOatt940R14cPCUv7awxrd0h77z5J-A-t21H1bSnMAnfpuhm8JENX6sOlaPHTm_xsQrQEq
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2Vcmg5tJBSEVpgD5wAp856_bHHKGoVoAkc0pKb8a6nKiJ1omK3Kr-eGXtjNYAQN8tae9ea2Zm3npk3AK_7ZPA0JsrDvrWeIkTvJXkQeRcodd8G5BINR3THk2h0pj7MwtkGvGtrYRCxTj7DHl_Wsfx8YSv-VXbEYCZRyQN4GCqlwqZaq40ZMFFKk06vCTMmMxfD7Pv6aHp8PqSzoJS9QDLFlFzzQnVblTWEuVUVy-zuNpvP7zmbk10Yr5bZ5Jh871Wl6dmfvzE4_u93PIYdhzrFoFGTJ7CBRQd2Vx0dhNvgHXh0j56wA9uMRBsi5z34OsizJdtGMShKMSSbWdyJT3TnylVyii_fyksxWeQohvOK-RfoJYIwsSCMKepC35zQfinO8ZJXITgZiYd8bnraPIWzk-PpcOS59gweyTAqPYyR2dQw0H6OBAO1CVV2EQcxqigyUlqlLKEP1EhGNSCgE0qbKeMjgSo_zMNgHzaLRYHPQKhAxQy0jDVW-VlELlKaxERRHttYJtgFfyWu1Drucm6hMU_rM4yvU5ZwyhJOnYS78KZ9ZNkQd_xr8B5LqR3oBNSFw5VOpG5r_0jphMrFvWGsu_C21ZM_5ijxxq7N8fzvc7yCrdF0fJqevp98PIBt7mbfZMscwmZ5XeELwjyleVmr-i9oyPlk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB7s-dD6oK1WPKtlH_rUklyy2Wyy9Ok4FCn06oNnr1BIs5s5lKbx0Jy__npnk73DUyi0byHMsgkzO_MNO_MNwIeQHJ7CVHgYGuMJQvReWkTSmyBXoYkoJGp7o_t1KI9G4ss4Hq_A50UvDCI2xWfo28fmLv8cy9ukR3E_7lFwJ4Ad9hpck4rUnxaTF7AqYwLiHVgdDY_7P9qSekW4MR03d8qCEmZKNdydZhioXo3Xlr6Qcz_ilnKKL0WlZszKEuJ8Oaum-d1NXpaPgs_hBvycf3Zbc_Lbn9XaN_dPGB3_879ew7oDpazfWtEbWMFqEzbmAx-YO_-bsPaIvXALfvWLfGq9JetXNRuQF63u2Dd688f1drLv5_UZG14UyAblzDIy0DpGKJkR6mRN629B-L9mp3hmN2a2PMmKHLdTbt7C6PDgZHDkuYENHmlV1h4maPnVMFJBgQQMlY5FPkmiBIWUmnMjhCE8ggrJzdIfi5ibXOgACWYFcRFH29CpLircASYikVjopY02IsglBU2uUy1lkZiEp9iFYK6wzDg2cztUo8yarCZQ2cnB6SCzOs6cjrvwcbFk2lJ5_E14y-ppIej00oW9uVVk7rBfZZSz2nbfOFFd-LSwlGd7WKNb2mP3n6TfwSs76r4tpdmDTn05w30CRLV-7wz_AQ9CACk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Ant+Colony+Optimization+With+Node+Clustering+for+the+Multidepot+Vehicle+Routing+Problem&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Stodola%2C+Petr&rft.au=Nohel%2C+Jan&rft.date=2023-12-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1866&rft.epage=1880&rft_id=info:doi/10.1109%2FTEVC.2022.3230042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3230042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon