Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem
This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algor...
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1866 - 1880 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 1941-0026 |
| DOI | 10.1109/TEVC.2022.3230042 |
Cover
| Abstract | This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the multidepot vehicle routing problem (MDVRP), are as follows: 1) node clustering where transition vertices are organized into a set of candidate lists called clusters and 2) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems. |
|---|---|
| AbstractList | This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that improve its overall performance, lower the optimization time, and reduce the negative behavior which is typically connected with ACO-based algorithms (such as prematurely falling into local optima, or the impact of setting of control parameters on the convergence for different problem configurations). The most significant novel techniques, implemented for the first time to solve the multidepot vehicle routing problem (MDVRP), are as follows: 1) node clustering where transition vertices are organized into a set of candidate lists called clusters and 2) adaptive pheromone evaporation which is adapted during optimization according to the diversity of the population of ant solutions (measured by information entropy). Moreover, a new termination condition, based also on the population diversity, is formulated. The effectiveness of the proposed algorithm for the MDVRP is evaluated via a set of experiments on 23 well-known benchmark instances. Performance is compared with several state-of-the-art metaheuristic methods; the results show that the proposed algorithm outperforms these methods in most cases. Furthermore, the novel mechanisms are analyzed and discussed from points of view of performance, optimization time, and convergence. The findings achieved in this article bring new contributions to the very popular ACO-based algorithms; they can be applied to solve not only the MDVRP, but also, if adapted, to related complex NP-hard problems. |
| Author | Stodola, Petr Nohel, Jan |
| Author_xml | – sequence: 1 givenname: Petr orcidid: 0000-0002-2251-8711 surname: Stodola fullname: Stodola, Petr email: petr.stodola@unob.cz organization: Department of Intelligence Support, University of Defence, Brno, Czech Republic – sequence: 2 givenname: Jan surname: Nohel fullname: Nohel, Jan email: jan.nohel@unob.cz organization: Department of Intelligence Support, University of Defence, Brno, Czech Republic |
| BookMark | eNptkU9v2zAMxYWhBdY_-wDDLgJ2diZRsi0dA6NrC2RtUbTdbppiM4sKxfJkOUX26ec0RQ5BTySI93skHk_JURtaJOQzZxPOmf72cPFUTYABTAQIxiR8ICdcS54xBsXR2DOls7JUvz6S075_ZozLnOsT8nva2C65NdJpm2gVfGg39HacrNw_m1xo6U-XlvQmNEgrP_QJo2v_0EWINC2R_hh8cg12IdEnXLraI70PQ9pK7mKYe1ydk-OF9T1-eqtn5PH7xUN1lc1uL6-r6SyrhShShiUqrgGFZg1qAXqeS7soRYmyKOYAtZQ1AKDGXCiRK5lDbeWcYcGB5U0uzgjsfIe2s5sX673polvZuDGcmW1GJuG6NtuMzFtGI_R1B3Ux_B2wT-Y5DLEd7zSgdK7GNaUeVeVOVcfQ9xEXpnbpNZwUrfN7_-0PDv35AXl403vMlx3jEHGv11pzJZX4DxQqkiE |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s11227_023_05706_1 crossref_primary_10_1109_TSMC_2024_3389751 crossref_primary_10_1016_j_joitmc_2024_100239 crossref_primary_10_1016_j_eswa_2023_119870 crossref_primary_10_1016_j_eswa_2023_122483 crossref_primary_10_1109_ACCESS_2024_3406222 |
| Cites_doi | 10.4018/ijisscm.2019100101 10.1109/cec.2019.8790025 10.2139/ssrn.3943419 10.3390/ijgi10030106 10.1007/s10489-020-01799-w 10.1287/opre.4.1.61 10.1016/j.asoc.2020.106720 10.1016/j.disopt.2014.03.001 10.1016/j.cor.2020.104996 10.1109/snpd.2019.8935817 10.1145/3321707.3321832 10.1007/s12652-021-03120-0 10.1007/978-3-319-47605-6_32 10.1007/978-3-319-76072-8_24 10.1109/access.2019.2900029 10.1007/s10732-018-9366-0 10.1007/978-3-030-38629-0_17 10.1016/j.cor.2021.105269 10.1016/j.jclepro.2019.03.185 10.1007/s10462-015-9441-y 10.1063/1.5039120 10.1287/mnsc.6.1.80 10.1007/s11047-020-09783-6 10.1145/3205651.3208274 10.1007/3-540-45724-0_22 10.1109/aicai.2019.8701269 10.1007/978-3-319-03859-9_18 10.3390/ijgi9080489 10.1016/j.jclepro.2019.05.344 10.1504/ijstm.2020.106693 10.3390/su12083500 10.30560/sdr.v3n1p36 10.1007/978-3-030-43890-6_19 10.1109/hora49412.2020.9152916 10.1007/s10479-017-2531-2 10.3390/s20102926 10.1016/j.swevo.2017.07.004 10.1016/j.swevo.2022.101056 10.1109/access.2020.2967076 10.1007/s11465-020-0613-3 10.1007/978-3-030-98260-7_6 10.1016/j.jterra.2020.06.004 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/TEVC.2022.3230042 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1880 |
| ExternalDocumentID | 10.1109/tevc.2022.3230042 10_1109_TEVC_2022_3230042 9991848 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of the Interior of the Czech Republic through the Project An Artificial Intelligence-Controlled Robotic System for Intelligence and Reconnaissance Operations grantid: VJ02010036 funderid: 10.13039/100009532 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c336t-e7e8192e390de9329b54af737e466b22c44c222e9e538358452ca4b0e61205d53 |
| IEDL.DBID | UNPAY |
| ISSN | 1089-778X 1941-0026 |
| IngestDate | Tue Aug 19 17:22:49 EDT 2025 Mon Jun 30 07:06:18 EDT 2025 Wed Oct 01 02:39:38 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Wed Aug 27 02:07:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-e7e8192e390de9329b54af737e466b22c44c222e9e538358452ca4b0e61205d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2251-8711 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4235/4358751/09991848.pdf |
| PQID | 2895884579 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9991848 unpaywall_primary_10_1109_tevc_2022_3230042 proquest_journals_2895884579 crossref_citationtrail_10_1109_TEVC_2022_3230042 crossref_primary_10_1109_TEVC_2022_3230042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref34 ref15 ref37 ref14 ref36 ref31 Sedighpour (ref35) 2014; 41 ref30 ref11 ref33 ref10 ref32 ref2 ref1 Madarász (ref13) ref17 ref39 ref16 ref38 ref19 Prabu (ref18) 2019; 6 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 (ref44) 2022 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref17 doi: 10.4018/ijisscm.2019100101 – ident: ref31 doi: 10.1109/cec.2019.8790025 – volume-title: Multiple depot VRP instances year: 2022 ident: ref44 – ident: ref29 doi: 10.2139/ssrn.3943419 – ident: ref9 doi: 10.3390/ijgi10030106 – ident: ref38 doi: 10.1007/s10489-020-01799-w – ident: ref1 doi: 10.1287/opre.4.1.61 – ident: ref40 doi: 10.1016/j.asoc.2020.106720 – ident: ref45 doi: 10.1016/j.disopt.2014.03.001 – ident: ref46 doi: 10.1016/j.cor.2020.104996 – ident: ref30 doi: 10.1109/snpd.2019.8935817 – ident: ref37 doi: 10.1145/3321707.3321832 – ident: ref41 doi: 10.1007/s12652-021-03120-0 – ident: ref7 doi: 10.1007/978-3-319-47605-6_32 – ident: ref15 doi: 10.1007/978-3-319-76072-8_24 – ident: ref43 doi: 10.1109/access.2019.2900029 – ident: ref19 doi: 10.1007/s10732-018-9366-0 – ident: ref22 doi: 10.1007/978-3-030-38629-0_17 – ident: ref20 doi: 10.1016/j.cor.2021.105269 – ident: ref25 doi: 10.1016/j.jclepro.2019.03.185 – volume: 41 start-page: 139 issue: 3 year: 2014 ident: ref35 article-title: Solving the open vehicle routing problem by a hybrid ant colony optimization publication-title: Kuwait J. Sci. – ident: ref5 doi: 10.1007/s10462-015-9441-y – ident: ref42 doi: 10.1063/1.5039120 – ident: ref16 doi: 10.1287/mnsc.6.1.80 – ident: ref3 doi: 10.1007/s11047-020-09783-6 – start-page: 113 volume-title: Proc. IEEE Int. Symp. Logist. Ind. Informat. ident: ref13 article-title: Concept of situational control in road tunnels – ident: ref36 doi: 10.1145/3205651.3208274 – ident: ref34 doi: 10.1007/3-540-45724-0_22 – ident: ref23 doi: 10.1109/aicai.2019.8701269 – ident: ref33 doi: 10.1007/978-3-319-03859-9_18 – ident: ref12 doi: 10.3390/ijgi9080489 – ident: ref24 doi: 10.1016/j.jclepro.2019.05.344 – ident: ref26 doi: 10.1504/ijstm.2020.106693 – volume: 6 start-page: e8 issue: 21 year: 2019 ident: ref18 article-title: EODVGA: An enhanced ODV based genetic algorithm for multi-depot vehicle routing problem publication-title: EAI Endorsed Trans. Scalable Inf. Syst. – ident: ref28 doi: 10.3390/su12083500 – ident: ref2 doi: 10.30560/sdr.v3n1p36 – ident: ref11 doi: 10.1007/978-3-030-43890-6_19 – ident: ref21 doi: 10.1109/hora49412.2020.9152916 – ident: ref27 doi: 10.1007/s10479-017-2531-2 – ident: ref14 doi: 10.3390/s20102926 – ident: ref32 doi: 10.1016/j.swevo.2017.07.004 – ident: ref4 doi: 10.1016/j.swevo.2022.101056 – ident: ref39 doi: 10.1109/access.2020.2967076 – ident: ref6 doi: 10.1007/s11465-020-0613-3 – ident: ref10 doi: 10.1007/978-3-030-98260-7_6 – ident: ref8 doi: 10.1016/j.jterra.2020.06.004 |
| SSID | ssj0014519 |
| Score | 2.5150273 |
| Snippet | This article deals with the novel metaheuristic algorithm based on the ant colony optimization (ACO) principle. It implements several novel mechanisms that... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1866 |
| SubjectTerms | Adaptive pheromone evaporation Algorithms Ant colony optimization ant colony optimization (ACO) Apexes Behavioral sciences Clustering Clustering algorithms Convergence entropy Entropy (Information theory) Heuristic methods Metaheuristics multidepot vehicle routing problem node clustering Optimization Reconnaissance Sociology Statistics Vehicle routing |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BF-ihwNKKbaHyoafSLFnHceLjagVClYAe-NhbGjuDQGyzqzYpgl_fmcQbsW1VcYsiJ3Y045nnzMwbgI9DMngGUxXg0LlAEaIP0iLSwQ1KM3QRuUTLEd3TM31yqb5M4skKfO5qYRCxST7DAV82sfxi5mr-VXbIYCZV6SqsJqlua7W6iAHTpLTJ9IYQYzrxEcxhaA4vjq7GdBKUchBJJpiSSz6oaaqyhC_X63KePz7k0-kzV3O8CaeLRbYZJveDurID9_QHf-NLv2ILXnvMKUatkmzDCpY92Fz0cxB-e_fg1TNywh5sMA5taZx34NuoyOdsGcWorMSYLGb5KM7pzndfxymu76pbcTYrUIynNbMv0EsEIWJBCFM0Zb4FYf1KXOEtr0JwKhIP-dp2tHkDl8dHF-OTwDdnCEiCugowQeZSw8iEBRIINDZW-U0SJai0tlI6pRxhDzRIJjUimBNLlysbIkGqMC7i6C2slbMSd0GoSCUMs6yzToW5JgcpbWq1LhKXyBT7EC7ElTnPXM4NNKZZc4IJTcYSzljCmZdwHz51j8xb2o7_Dd5hKXUDvYD6sLfQicxv7J8ZnU-5tDdOTB8OOj35a44Kf7mlOd79e473sMH969v8mD1Yq37UuE8op7IfGvX-DWGr9hc priority: 102 providerName: IEEE |
| Title | Adaptive Ant Colony Optimization With Node Clustering for the Multidepot Vehicle Routing Problem |
| URI | https://ieeexplore.ieee.org/document/9991848 https://www.proquest.com/docview/2895884579 https://ieeexplore.ieee.org/ielx7/4235/4358751/09991848.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB70fKg-aOsPetbKPvSpJblks9lk6dNxKFLo1QfPniCk2c0cimk8bK5q__rOJnuH10LBvoUwyybM7Mw37Mw3AO9CcngKU-FhaIwnCNF7aRFJb4JchSaikKjtje7noTwZiU_jeLwCHxe9MIjYFJ-hbx-bu_xrLB-SHsX9uEfBnQB22GtwTSpSf1pMVmFNxgTEO7A2Gp72L9qSekW4MR03d8qCEmZKNdydZhioXo0_LX0h537ELeUUX4pKzZiVJcT5YlZN88f7vCyfBJ_jLbicf3Zbc3Ljz2rtm19_MDr-53-9hE0HSlm_taJXsILVNmzNBz4wd_63YeMJe-EOfOsX-dR6S9avajYgL1o9si_05rvr7WRfr-srNrwtkA3KmWVkoHWMUDIj1Mma1t-C8H_NzvHKbsxseZIVOW2n3OzC6PjobHDiuYENHmlV1h4maPnVMFJBgQQMlY5FPkmiBIWUmnMjhCE8ggrJzdIfi5ibXOgACWYFcRFHe9Cpbit8DUxEIrHQSxttRJBLCppcp1rKIjEJT7ELwVxhmXFs5naoRpk1WU2gsrOj80FmdZw5HXfh_WLJtKXy-JfwjtXTQtDppQsHc6vI3GH_kVHOatt940R14cPCUv7awxrd0h77z5J-A-t21H1bSnMAnfpuhm8JENX6sOlaPHTm_xsQrQEq |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2Vcmg5tJBSEVpgD5wAp856_bHHKGoVoAkc0pKb8a6nKiJ1omK3Kr-eGXtjNYAQN8tae9ea2Zm3npk3AK_7ZPA0JsrDvrWeIkTvJXkQeRcodd8G5BINR3THk2h0pj7MwtkGvGtrYRCxTj7DHl_Wsfx8YSv-VXbEYCZRyQN4GCqlwqZaq40ZMFFKk06vCTMmMxfD7Pv6aHp8PqSzoJS9QDLFlFzzQnVblTWEuVUVy-zuNpvP7zmbk10Yr5bZ5Jh871Wl6dmfvzE4_u93PIYdhzrFoFGTJ7CBRQd2Vx0dhNvgHXh0j56wA9uMRBsi5z34OsizJdtGMShKMSSbWdyJT3TnylVyii_fyksxWeQohvOK-RfoJYIwsSCMKepC35zQfinO8ZJXITgZiYd8bnraPIWzk-PpcOS59gweyTAqPYyR2dQw0H6OBAO1CVV2EQcxqigyUlqlLKEP1EhGNSCgE0qbKeMjgSo_zMNgHzaLRYHPQKhAxQy0jDVW-VlELlKaxERRHttYJtgFfyWu1Drucm6hMU_rM4yvU5ZwyhJOnYS78KZ9ZNkQd_xr8B5LqR3oBNSFw5VOpG5r_0jphMrFvWGsu_C21ZM_5ijxxq7N8fzvc7yCrdF0fJqevp98PIBt7mbfZMscwmZ5XeELwjyleVmr-i9oyPlk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB7s-dD6oK1WPKtlH_rUklyy2Wyy9Ok4FCn06oNnr1BIs5s5lKbx0Jy__npnk73DUyi0byHMsgkzO_MNO_MNwIeQHJ7CVHgYGuMJQvReWkTSmyBXoYkoJGp7o_t1KI9G4ss4Hq_A50UvDCI2xWfo28fmLv8cy9ukR3E_7lFwJ4Ad9hpck4rUnxaTF7AqYwLiHVgdDY_7P9qSekW4MR03d8qCEmZKNdydZhioXo3Xlr6Qcz_ilnKKL0WlZszKEuJ8Oaum-d1NXpaPgs_hBvycf3Zbc_Lbn9XaN_dPGB3_879ew7oDpazfWtEbWMFqEzbmAx-YO_-bsPaIvXALfvWLfGq9JetXNRuQF63u2Dd688f1drLv5_UZG14UyAblzDIy0DpGKJkR6mRN629B-L9mp3hmN2a2PMmKHLdTbt7C6PDgZHDkuYENHmlV1h4maPnVMFJBgQQMlY5FPkmiBIWUmnMjhCE8ggrJzdIfi5ibXOgACWYFcRFH29CpLircASYikVjopY02IsglBU2uUy1lkZiEp9iFYK6wzDg2cztUo8yarCZQ2cnB6SCzOs6cjrvwcbFk2lJ5_E14y-ppIej00oW9uVVk7rBfZZSz2nbfOFFd-LSwlGd7WKNb2mP3n6TfwSs76r4tpdmDTn05w30CRLV-7wz_AQ9CACk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Ant+Colony+Optimization+With+Node+Clustering+for+the+Multidepot+Vehicle+Routing+Problem&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Stodola%2C+Petr&rft.au=Nohel%2C+Jan&rft.date=2023-12-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1866&rft.epage=1880&rft_id=info:doi/10.1109%2FTEVC.2022.3230042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3230042 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |