In-situ measuring and predicting dynamics of soil bulk density in a non-rigid soil as affected by tillage practices: Effects of soil subsidence and shrinkage
Non-rigid soils (e.g., Vertisols) present dynamics of bulk density (ρb) due to high shrinkage and swelling. However, the in-situ measurement and prediction of the dynamic of ρb in non-rigid soils are still great challenges. The objectives were to (1) evaluate the performance of the combined soil moi...
Saved in:
| Published in | Soil & tillage research Vol. 234; p. 105818 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-1987 1879-3444 |
| DOI | 10.1016/j.still.2023.105818 |
Cover
| Abstract | Non-rigid soils (e.g., Vertisols) present dynamics of bulk density (ρb) due to high shrinkage and swelling. However, the in-situ measurement and prediction of the dynamic of ρb in non-rigid soils are still great challenges. The objectives were to (1) evaluate the performance of the combined soil moisture and thermal property sensors in estimating in-situ ρb dynamics under different tillage practices, (2) and establish mathematic equations to predict the ρb dynamics associated with soil subsidence and shrink-swelling processes during wetting and drying cycles. The in-situ ρb monitoring and periodical intact soil core sampling were conducted in the 0–10 cm and 10–20 cm layers in a Vertisol under three tillage treatments, containing no-tillage (NT), rotary tillage (RT) and deep ploughing (DP). Our results showed that the dual-sensor combination provided accurate ρb estimates in the field over 2021–2022 year (R2 > 0.487, RMSE < 0.177 g cm−3), except for the early stage after deep tillage. The ρb dynamics in the 0–20 cm in the NT and the 10–20 cm layer in RT treatment were mainly caused by shrink-swelling. Whereas the ρb dynamics in the 0–10 cm and 10–20 cm in the DP and the 0–10 cm layer in RT treatment were predominantly determined by soil subsidence first and then shrink-swelling when the accumulative rainfall (Pt) reached 131.8 mm, 186.1 mm, and 79.3 mm, respectively. The ρb dynamics during soil subsidence were well-fitted by an exponential equation related to accumulative rainfall (R2 > 699, P < 0.01), while the ρb dynamics during shrink-swelling were well-fitted by a newly proposed SSCρb equation derived from the Peng and Horn soil shrinkage model (R2 > 589, P < 0.05). Combined with the long-term monitored rainfall and soil moisture, The SSCρb equation and the two-stage equation involving subsidence and SSCρb exhibited good prediction of ρb dynamic from 2017 to 2022 (R2 > 0.453, RMSE < 0.070 g cm−3). The soil subsidence and shrink-swelling process accounted for 3.32%− 12.5% and 2.84%− 14.8% of the ρb variation in tilled non-rigid soils, respectively. Our results demonstrated that the dual-sensor combination can be applied for field ρb monitoring in non-rigid soil. The proposed two-stage equation has great potential for predicting the field dynamics of ρb.
•The dual-sensor combination showed good estimation of in-situ ρb dynamic in a Vertisol.•The dynamic of ρb was predominantly driven by shrink-swelling in the no-tillage treatment.•A two-stage equation involving both soil subsidence and shrink-swelling was established.•The ρb dynamic was well predicted by the two-stage equation in the deep tillage treatment. |
|---|---|
| AbstractList | Non-rigid soils (e.g., Vertisols) present dynamics of bulk density (ρb) due to high shrinkage and swelling. However, the in-situ measurement and prediction of the dynamic of ρb in non-rigid soils are still great challenges. The objectives were to (1) evaluate the performance of the combined soil moisture and thermal property sensors in estimating in-situ ρb dynamics under different tillage practices, (2) and establish mathematic equations to predict the ρb dynamics associated with soil subsidence and shrink-swelling processes during wetting and drying cycles. The in-situ ρb monitoring and periodical intact soil core sampling were conducted in the 0–10 cm and 10–20 cm layers in a Vertisol under three tillage treatments, containing no-tillage (NT), rotary tillage (RT) and deep ploughing (DP). Our results showed that the dual-sensor combination provided accurate ρb estimates in the field over 2021–2022 year (R² > 0.487, RMSE < 0.177 g cm⁻³), except for the early stage after deep tillage. The ρb dynamics in the 0–20 cm in the NT and the 10–20 cm layer in RT treatment were mainly caused by shrink-swelling. Whereas the ρb dynamics in the 0–10 cm and 10–20 cm in the DP and the 0–10 cm layer in RT treatment were predominantly determined by soil subsidence first and then shrink-swelling when the accumulative rainfall (Pₜ) reached 131.8 mm, 186.1 mm, and 79.3 mm, respectively. The ρb dynamics during soil subsidence were well-fitted by an exponential equation related to accumulative rainfall (R² > 699, P < 0.01), while the ρb dynamics during shrink-swelling were well-fitted by a newly proposed SSCᵨb equation derived from the Peng and Horn soil shrinkage model (R² > 589, P < 0.05). Combined with the long-term monitored rainfall and soil moisture, The SSCᵨb equation and the two-stage equation involving subsidence and SSCᵨb exhibited good prediction of ρb dynamic from 2017 to 2022 (R² > 0.453, RMSE < 0.070 g cm⁻³). The soil subsidence and shrink-swelling process accounted for 3.32%− 12.5% and 2.84%− 14.8% of the ρb variation in tilled non-rigid soils, respectively. Our results demonstrated that the dual-sensor combination can be applied for field ρb monitoring in non-rigid soil. The proposed two-stage equation has great potential for predicting the field dynamics of ρb. Non-rigid soils (e.g., Vertisols) present dynamics of bulk density (ρb) due to high shrinkage and swelling. However, the in-situ measurement and prediction of the dynamic of ρb in non-rigid soils are still great challenges. The objectives were to (1) evaluate the performance of the combined soil moisture and thermal property sensors in estimating in-situ ρb dynamics under different tillage practices, (2) and establish mathematic equations to predict the ρb dynamics associated with soil subsidence and shrink-swelling processes during wetting and drying cycles. The in-situ ρb monitoring and periodical intact soil core sampling were conducted in the 0–10 cm and 10–20 cm layers in a Vertisol under three tillage treatments, containing no-tillage (NT), rotary tillage (RT) and deep ploughing (DP). Our results showed that the dual-sensor combination provided accurate ρb estimates in the field over 2021–2022 year (R2 > 0.487, RMSE < 0.177 g cm−3), except for the early stage after deep tillage. The ρb dynamics in the 0–20 cm in the NT and the 10–20 cm layer in RT treatment were mainly caused by shrink-swelling. Whereas the ρb dynamics in the 0–10 cm and 10–20 cm in the DP and the 0–10 cm layer in RT treatment were predominantly determined by soil subsidence first and then shrink-swelling when the accumulative rainfall (Pt) reached 131.8 mm, 186.1 mm, and 79.3 mm, respectively. The ρb dynamics during soil subsidence were well-fitted by an exponential equation related to accumulative rainfall (R2 > 699, P < 0.01), while the ρb dynamics during shrink-swelling were well-fitted by a newly proposed SSCρb equation derived from the Peng and Horn soil shrinkage model (R2 > 589, P < 0.05). Combined with the long-term monitored rainfall and soil moisture, The SSCρb equation and the two-stage equation involving subsidence and SSCρb exhibited good prediction of ρb dynamic from 2017 to 2022 (R2 > 0.453, RMSE < 0.070 g cm−3). The soil subsidence and shrink-swelling process accounted for 3.32%− 12.5% and 2.84%− 14.8% of the ρb variation in tilled non-rigid soils, respectively. Our results demonstrated that the dual-sensor combination can be applied for field ρb monitoring in non-rigid soil. The proposed two-stage equation has great potential for predicting the field dynamics of ρb. •The dual-sensor combination showed good estimation of in-situ ρb dynamic in a Vertisol.•The dynamic of ρb was predominantly driven by shrink-swelling in the no-tillage treatment.•A two-stage equation involving both soil subsidence and shrink-swelling was established.•The ρb dynamic was well predicted by the two-stage equation in the deep tillage treatment. |
| ArticleNumber | 105818 |
| Author | Wang, Yuekai Yang, Junsheng Guo, Zichun Zhang, Zhongbin Chen, Yueming Peng, Xinhua |
| Author_xml | – sequence: 1 givenname: Yuekai surname: Wang fullname: Wang, Yuekai organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 2 givenname: Zhongbin surname: Zhang fullname: Zhang, Zhongbin email: zbzhang@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 3 givenname: Zichun surname: Guo fullname: Guo, Zichun organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 4 givenname: Yueming surname: Chen fullname: Chen, Yueming organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China – sequence: 5 givenname: Junsheng surname: Yang fullname: Yang, Junsheng organization: Longkang Farm, Anhui Agricultural Reclamation Group Co. LTD, Huaiyuan 233426, PR China – sequence: 6 givenname: Xinhua surname: Peng fullname: Peng, Xinhua email: xhpeng@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China |
| BookMark | eNqFkc2O1DAQhC20SMwuPAEXH7lkcGIn4yBxQKtdWGklLnC2_NMeejbjDO4EaR6Gd8WZICFxgJNlu77qUtc1u0pjAsZe12Jbi7p7e9jShMOwbUQjy0ura_2MbWq96yuplLpim6LaVXWvdy_YNdFBCKFkozfs50OqCKeZH8HSnDHtuU2BnzIE9NNyDedkj-iJj5HTiAN38_DEA6SCnTkmbnlJU2XcY1gFlriNEfwEgbszX5LZPRRPWxw90Dt-d_n-Y0mzIyyWHi7T6VsJ8lSYl-x5tAPBq9_nDft6f_fl9lP1-Pnjw-2Hx8pL2U0VdJ3Xbd_Z1ndt30MjXVCNt7LpWxut73u7U611CgR4p1oXtYBYK6-cC3UT5Q17s_qe8vh9BprMEclDyZ1gnMk0WmshmlbKIu1Xqc8jUYZoPE52wjFN2eJgamGWSszBXCoxSyVmraSw8i_2lPFo8_k_1PuVgrKBHwjZkMdlVwFz2aIJI_6T_wU_66yJ |
| CitedBy_id | crossref_primary_10_1016_j_still_2025_106471 crossref_primary_10_1016_j_agrformet_2024_110252 crossref_primary_10_3390_land13081219 crossref_primary_10_1016_j_still_2024_106103 crossref_primary_10_1016_j_fcr_2024_109396 crossref_primary_10_1177_11786221241261158 |
| Cites_doi | 10.1016/j.still.2017.12.021 10.1029/2000WR900092 10.1016/j.geoderma.2017.11.009 10.1002/saj2.20147 10.1016/j.geoderma.2013.04.015 10.13031/2013.32862 10.1111/j.1365-2389.2009.01147.x 10.1016/S0167-1987(01)00256-2 10.1016/j.still.2019.05.020 10.2136/sssaj2006.0429 10.2136/sssaj2014.05.0218 10.2136/sssaj2015.08.0315 10.1016/j.still.2021.104970 10.1016/j.geoderma.2009.05.023 10.1016/j.geoderma.2022.116149 10.1016/j.geoderma.2021.115195 10.2136/sssaj2004.0146 10.1016/j.still.2020.104844 10.2136/sssaj2013.07.0278 10.1016/j.geoderma.2014.12.006 10.1016/j.geoderma.2020.114352 10.1016/j.still.2019.104550 10.2136/sssaj2015.07.0273 10.1016/j.still.2008.01.007 10.1016/j.still.2019.104445 10.1002/saj2.20041 10.2136/vzj2003.5440 10.1016/j.geoderma.2009.06.009 10.1016/j.still.2011.02.005 10.2136/sssaj2014.01.0014 10.1016/j.still.2016.02.007 10.1111/ejss.12366 10.1016/j.still.2018.03.017 10.1016/j.still.2012.05.019 10.1016/j.still.2021.105132 10.1016/S1002-0160(18)60034-7 10.1016/S0016-7061(03)00091-0 10.2136/vzj2015.09.0131 10.1111/ejss.13313 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.still.2023.105818 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1879-3444 |
| ExternalDocumentID | 10_1016_j_still_2023_105818 S016719872300185X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c336t-e66c8596a5c6599e23bd42ca3295afac99a745ab4e0ecb45bf80ef14c4bbd12f3 |
| IEDL.DBID | .~1 |
| ISSN | 0167-1987 |
| IngestDate | Fri Oct 03 00:08:03 EDT 2025 Thu Oct 02 04:26:41 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Fri Feb 23 02:37:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Soil structure Soil bulk density Soil subsidence Soil shrinkage Vertisol |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-e66c8596a5c6599e23bd42ca3295afac99a745ab4e0ecb45bf80ef14c4bbd12f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2888002533 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2888002533 crossref_citationtrail_10_1016_j_still_2023_105818 crossref_primary_10_1016_j_still_2023_105818 elsevier_sciencedirect_doi_10_1016_j_still_2023_105818 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Soil & tillage research |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Alletto, Pot, Giuliano, Costes, Perdrieux, Justes (bib3) 2015; 243–244 Green, Ahuja, Benjamin (bib13) 2003; 116 Assouline (bib5) 2004; 3 Dörner, Dec, Feest, Vásquez, Díaz (bib9) 2012; 125 Wilson, Zhang, Wells, Liu (bib43) 2020; 198 Liu, Lu, Horton, Ren (bib15) 2014; 78 Tian, Lu, Ren, Horton, Heitman (bib37) 2018; 178 Strudley, Green, Ascough (bib35) 2008; 99 Tian, Ren, Horton, Heitman (bib38) 2020; 196 Geris, Verrot, Gao, Peng, Oyesiku-Blakemore, Smith, Hodson, McKenzie, Zhang, Hallett (bib12) 2021; 213 Sang, Liu, Horton (bib31) 2020; 84 Acclima, 2017. TDR-315 User Manual, Acclima.Inc. Sang, Liu, Ren (bib32) 2021 Lu, Lu, Horton, Ren (bib16) 2014; 78 Or, Ghezzehei (bib21) 2002; 64 Or, Leij, Snyder, Ghezzehei (bib22) 2000; 36 Lu, Liu, Zhang, Heitman, Horton, Ren (bib18) 2017; 84 Rabot, Wiesmeier, Schlueter, Vogel (bib27) 2018; 314 Wang, Zhang, Tian, Lu, Ren, Peng (bib40) 2022; 428 Kool, Tong, Tian, Heitman, Sauer, Horton (bib14) 2019; 193 Al-Shammary, Kouzani, Kaynak, Khoo, Norton, Gates (bib4) 2018; 28 Ren, Ochsner, Horton (bib28) 2003; 2 Onstad, Wolfe, Larson, Slack (bib20) 1984; 27 Schwen, Bodner, Scholl, Buchan, Loiskandl (bib33) 2011; 113 Fu, Lu, Heitman, Ren (bib11) 2021; 403 Fu, Lu, Heitman, Ren (bib10) 2020; 370 Reynolds, Drury, Tan, Fox, Yang (bib29) 2009; 152 Wang, Zhang, Jiang, Guo, Peng (bib41) 2021; 209 Peng, Zhang, Gan, Yoshida (bib26) 2016; 80 . Bodner, Scholl, Loiskandl, Kaul (bib8) 2013; 204–205 Zhang, Heitman, Horton, Ren (bib44) 2014; 78 Moreira, Tormena, Karlen, Silva, Keller, Betioli (bib19) 2016; 160 Wang, Zhang, Guo, Xiong, Peng (bib42) 2022 Alletto, Coquet (bib2) 2009; 152 Augeard, Bresson, Assouline, Kao, Vauclin (bib6) 2008; 72 Peng, Horn (bib24) 2005; 69 Passioura (bib23) 1991 Sandin, Jarvis, Larsbo (bib30) 2018; 181 Vereecken, Schnepf, Hopmans (bib39) 2016; 15 Bakti, L.A.A., G. Kirchhof, H.B. So. 2010. Effect of wetting and drying on structural regeneration of puddled soil. In: Proceedings of 19th World Congress of soil Science, Soil Solutions for a Changing World, Brisbane, Australia. 1–6 Aug. 2010. p. 17–20. Zhang, Peng (bib45) 2021; 206 (bib34) 2015 Peng, Dörner, Zhao, Horn (bib25) 2009; 60 Lu, Liu, Heitman, Horton, Ren (bib17) 2016; 80 Tian, Lu, Horton, Ren (bib36) 2016; 67 Geris (10.1016/j.still.2023.105818_bib12) 2021; 213 Green (10.1016/j.still.2023.105818_bib13) 2003; 116 Alletto (10.1016/j.still.2023.105818_bib3) 2015; 243–244 Lu (10.1016/j.still.2023.105818_bib18) 2017; 84 Sandin (10.1016/j.still.2023.105818_bib30) 2018; 181 Wang (10.1016/j.still.2023.105818_bib41) 2021; 209 Or (10.1016/j.still.2023.105818_bib22) 2000; 36 Strudley (10.1016/j.still.2023.105818_bib35) 2008; 99 Wang (10.1016/j.still.2023.105818_bib40) 2022; 428 Ren (10.1016/j.still.2023.105818_bib28) 2003; 2 Alletto (10.1016/j.still.2023.105818_bib2) 2009; 152 Vereecken (10.1016/j.still.2023.105818_bib39) 2016; 15 Peng (10.1016/j.still.2023.105818_bib24) 2005; 69 Fu (10.1016/j.still.2023.105818_bib10) 2020; 370 Schwen (10.1016/j.still.2023.105818_bib33) 2011; 113 Rabot (10.1016/j.still.2023.105818_bib27) 2018; 314 Onstad (10.1016/j.still.2023.105818_bib20) 1984; 27 Reynolds (10.1016/j.still.2023.105818_bib29) 2009; 152 Wang (10.1016/j.still.2023.105818_bib42) 2022 Tian (10.1016/j.still.2023.105818_bib36) 2016; 67 Liu (10.1016/j.still.2023.105818_bib15) 2014; 78 Sang (10.1016/j.still.2023.105818_bib31) 2020; 84 (10.1016/j.still.2023.105818_bib34) 2015 Tian (10.1016/j.still.2023.105818_bib37) 2018; 178 Zhang (10.1016/j.still.2023.105818_bib45) 2021; 206 Or (10.1016/j.still.2023.105818_bib21) 2002; 64 Zhang (10.1016/j.still.2023.105818_bib44) 2014; 78 Assouline (10.1016/j.still.2023.105818_bib5) 2004; 3 Augeard (10.1016/j.still.2023.105818_bib6) 2008; 72 Dörner (10.1016/j.still.2023.105818_bib9) 2012; 125 Tian (10.1016/j.still.2023.105818_bib38) 2020; 196 Sang (10.1016/j.still.2023.105818_bib32) 2021 Lu (10.1016/j.still.2023.105818_bib16) 2014; 78 Peng (10.1016/j.still.2023.105818_bib26) 2016; 80 Fu (10.1016/j.still.2023.105818_bib11) 2021; 403 Moreira (10.1016/j.still.2023.105818_bib19) 2016; 160 Wilson (10.1016/j.still.2023.105818_bib43) 2020; 198 Kool (10.1016/j.still.2023.105818_bib14) 2019; 193 10.1016/j.still.2023.105818_bib7 Lu (10.1016/j.still.2023.105818_bib17) 2016; 80 Peng (10.1016/j.still.2023.105818_bib25) 2009; 60 Bodner (10.1016/j.still.2023.105818_bib8) 2013; 204–205 Passioura (10.1016/j.still.2023.105818_bib23) 1991 10.1016/j.still.2023.105818_bib1 Al-Shammary (10.1016/j.still.2023.105818_bib4) 2018; 28 |
| References_xml | – volume: 370 year: 2020 ident: bib10 article-title: Root-induced changes in soil thermal and dielectric properties should not be ignored publication-title: Geoderma – volume: 69 start-page: 584 year: 2005 end-page: 592 ident: bib24 article-title: Modeling soil shrinkage curve across a wide range of soil types publication-title: Soil Sci. Soc. Am. J. – volume: 160 start-page: 53 year: 2016 end-page: 64 ident: bib19 article-title: Seasonal changes in soil physical properties under long-term no-tillage publication-title: Soil Tillage Res. – volume: 78 start-page: 1575 year: 2014 end-page: 1583 ident: bib44 article-title: Measuring near-surface soil thermal properties with the heat-pulse method: correction of ambient temperature and soil-air interface effects publication-title: Soil Sci. Soc. Am. J. – volume: 67 start-page: 564 year: 2016 end-page: 572 ident: bib36 article-title: A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil publication-title: Eur. J. Soil Sci. – volume: 84 start-page: 414 year: 2020 end-page: 424 ident: bib31 article-title: Wind effects on soil thermal properties measured by the dual-probe heat pulse method publication-title: Soil Sci. Soc. Am. J. – volume: 213 year: 2021 ident: bib12 article-title: Importance of short-term temporal variability in soil physical properties for soil water modelling under different tillage practices publication-title: Soil Tillage Res. – volume: 116 start-page: 3 year: 2003 end-page: 27 ident: bib13 article-title: Advances and challenges in predicting agricultural management effects on soil hydraulic properties publication-title: Geoderma – volume: 72 start-page: 412 year: 2008 end-page: 423 ident: bib6 article-title: Dynamics of soil surface bulk density: role of water table elevation and rainfall duration publication-title: Soil Sci. Soc. Am. J. – volume: 80 start-page: 48 year: 2016 end-page: 54 ident: bib17 article-title: Determining soil bulk density with thermo-time domain reflectometry: a thermal conductivity-based approach publication-title: Soil Sci. Soc. Am. J. – volume: 27 start-page: 733 year: 1984 end-page: 736 ident: bib20 article-title: Tilled soil subsidence during repeated wetting publication-title: Trans. ASAE – volume: 15 year: 2016 ident: bib39 article-title: Modeling soil processes: review, key challenges, and new perspectives publication-title: Vadose zone J. – volume: 60 start-page: 681 year: 2009 end-page: 694 ident: bib25 article-title: Shrinkage behaviour of transiently- and constantly-loaded soils and its consequences for soil moisture release publication-title: Eur. J. Soil Sci. – volume: 28 start-page: 581 year: 2018 end-page: 596 ident: bib4 article-title: Soil bulk density estimation methods: a review publication-title: Pedosphere – volume: 3 start-page: 570 year: 2004 end-page: 591 ident: bib5 article-title: Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions publication-title: Vadose Zone J. – volume: 196 year: 2020 ident: bib38 article-title: Estimating soil bulk density with combined commercial soil water content and thermal property sensors publication-title: Soil Tillage Res. – volume: 206 start-page: 104844 year: 2021 ident: bib45 article-title: Bio-tillage: A new perspective for sustainable agriculture publication-title: Soil Tillage Res. – reference: Bakti, L.A.A., G. Kirchhof, H.B. So. 2010. Effect of wetting and drying on structural regeneration of puddled soil. In: Proceedings of 19th World Congress of soil Science, Soil Solutions for a Changing World, Brisbane, Australia. 1–6 Aug. 2010. p. 17–20. – volume: 78 start-page: 400 year: 2014 end-page: 407 ident: bib15 article-title: In situ monitoring of soil bulk density with a thermo-TDR sensor publication-title: Soil Sci. Soc. Am. J. – volume: 99 start-page: 4 year: 2008 end-page: 48 ident: bib35 article-title: Tillage effects on soil hydraulic properties in space and time: State of the science publication-title: Soil Tillage Res. – volume: 178 start-page: 118 year: 2018 end-page: 129 ident: bib37 article-title: Improved thermo-time domain reflectometry method for continuous in-situ determination of soil bulk density publication-title: Soil Tillage Res. – volume: 36 start-page: 1641 year: 2000 end-page: 1652 ident: bib22 article-title: Stochastic model for posttillage soil pore space evolution publication-title: Water Resour. Res. – volume: 193 start-page: 95 year: 2019 end-page: 100 ident: bib14 article-title: Soil water retention and hydraulic conductivity dynamics following tillage publication-title: Soil Tillage Res. – volume: 181 start-page: 82 year: 2018 end-page: 92 ident: bib30 article-title: Consolidation and surface sealing of nine harrowed Swedish soils publication-title: Soil Tillage Res. – start-page: 29 year: 1991 ident: bib23 article-title: Soil structure and plant growth publication-title: Aust. J. Soil Res. Aust. J. Soil Res. – volume: 2 start-page: 544 year: 2003 end-page: 551 ident: bib28 article-title: Development of thermo-time domain reflectometry for vadose zone measurements publication-title: Vadose Zone J. – volume: 84 start-page: 1354 year: 2017 end-page: 1360 ident: bib18 article-title: Thermo–time domain reflectometry method: advances in monitoring in situ soil bulk density publication-title: Soil Sci. Soc. Am. J. – reference: Acclima, 2017. TDR-315 User Manual, Acclima.Inc. – reference: . – year: 2022 ident: bib42 article-title: The dynamic changes of soil air-filled porosity associated with soil shrinkage in a Vertisol publication-title: Eur. J. Soil Sci. N./a – volume: 314 start-page: 122 year: 2018 end-page: 137 ident: bib27 article-title: Soil structure as an indicator of soil functions: a review publication-title: Geoderma – volume: 64 start-page: 41 year: 2002 end-page: 59 ident: bib21 article-title: Modeling post-tillage soil structural dynamics: a review publication-title: Soil Tillage Res. – volume: 125 start-page: 52 year: 2012 end-page: 60 ident: bib9 article-title: Dynamics of soil structure and pore functions of a volcanic ash soil under tillage publication-title: Soil Tillage Res. – year: 2015 ident: bib34 publication-title: Illustrated guide to soil taxonomy, version 2 – volume: 78 start-page: 1859 year: 2014 end-page: 1868 ident: bib16 article-title: An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density publication-title: Soil Sci. Soc. Am. J. – volume: 198 year: 2020 ident: bib43 article-title: Consolidation effects on relationships among soil erosion properties and soil physical quality indicators publication-title: Soil Tillage Res. – volume: 152 start-page: 85 year: 2009 end-page: 94 ident: bib2 article-title: Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems publication-title: Geoderma – volume: 209 year: 2021 ident: bib41 article-title: Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain publication-title: Soil Tillage Res. – volume: 204–205 start-page: 120 year: 2013 end-page: 129 ident: bib8 article-title: Environmental and management influences on temporal variability of near saturated soil hydraulic properties publication-title: Geoderma – volume: 428 year: 2022 ident: bib40 article-title: Determination of soil bulk density dynamic in a Vertisol during wetting and drying cycles using combined soil water content and thermal property sensors publication-title: Geoderma – volume: 403 year: 2021 ident: bib11 article-title: Root influences on soil bulk density measurements with thermo-time domain reflectometry publication-title: Geoderma – volume: 152 start-page: 252 year: 2009 end-page: 263 ident: bib29 article-title: Use of indicators and pore volume-function characteristics to quantify soil physical quality publication-title: Geoderma – start-page: 401 year: 2021 ident: bib32 article-title: Field test of two background temperature correction methods of dual probe heat pulse method publication-title: Geoderma – volume: 113 start-page: 89 year: 2011 end-page: 98 ident: bib33 article-title: Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage publication-title: Soil Tillage Res. – volume: 243–244 start-page: 18 year: 2015 end-page: 28 ident: bib3 article-title: Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil publication-title: Geoderma – volume: 80 start-page: 1145 year: 2016 end-page: 1156 ident: bib26 article-title: Linking soil shrinkage behavior and cracking in two paddy soils as affected by wetting and drying cycles publication-title: Soil Sci. Soc. Am. J. – volume: 178 start-page: 118 year: 2018 ident: 10.1016/j.still.2023.105818_bib37 article-title: Improved thermo-time domain reflectometry method for continuous in-situ determination of soil bulk density publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.12.021 – volume: 36 start-page: 1641 year: 2000 ident: 10.1016/j.still.2023.105818_bib22 article-title: Stochastic model for posttillage soil pore space evolution publication-title: Water Resour. Res. doi: 10.1029/2000WR900092 – volume: 314 start-page: 122 year: 2018 ident: 10.1016/j.still.2023.105818_bib27 article-title: Soil structure as an indicator of soil functions: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.009 – volume: 84 start-page: 1354 year: 2017 ident: 10.1016/j.still.2023.105818_bib18 article-title: Thermo–time domain reflectometry method: advances in monitoring in situ soil bulk density publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20147 – volume: 204–205 start-page: 120 year: 2013 ident: 10.1016/j.still.2023.105818_bib8 article-title: Environmental and management influences on temporal variability of near saturated soil hydraulic properties publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.015 – volume: 27 start-page: 733 year: 1984 ident: 10.1016/j.still.2023.105818_bib20 article-title: Tilled soil subsidence during repeated wetting publication-title: Trans. ASAE doi: 10.13031/2013.32862 – start-page: 401 year: 2021 ident: 10.1016/j.still.2023.105818_bib32 article-title: Field test of two background temperature correction methods of dual probe heat pulse method publication-title: Geoderma – volume: 60 start-page: 681 year: 2009 ident: 10.1016/j.still.2023.105818_bib25 article-title: Shrinkage behaviour of transiently- and constantly-loaded soils and its consequences for soil moisture release publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01147.x – volume: 64 start-page: 41 year: 2002 ident: 10.1016/j.still.2023.105818_bib21 article-title: Modeling post-tillage soil structural dynamics: a review publication-title: Soil Tillage Res. doi: 10.1016/S0167-1987(01)00256-2 – volume: 193 start-page: 95 year: 2019 ident: 10.1016/j.still.2023.105818_bib14 article-title: Soil water retention and hydraulic conductivity dynamics following tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.05.020 – volume: 72 start-page: 412 year: 2008 ident: 10.1016/j.still.2023.105818_bib6 article-title: Dynamics of soil surface bulk density: role of water table elevation and rainfall duration publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0429 – start-page: 29 year: 1991 ident: 10.1016/j.still.2023.105818_bib23 article-title: Soil structure and plant growth publication-title: Aust. J. Soil Res. Aust. J. Soil Res. – volume: 78 start-page: 1859 year: 2014 ident: 10.1016/j.still.2023.105818_bib16 article-title: An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.05.0218 – volume: 80 start-page: 48 year: 2016 ident: 10.1016/j.still.2023.105818_bib17 article-title: Determining soil bulk density with thermo-time domain reflectometry: a thermal conductivity-based approach publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.08.0315 – volume: 209 year: 2021 ident: 10.1016/j.still.2023.105818_bib41 article-title: Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.104970 – volume: 152 start-page: 85 year: 2009 ident: 10.1016/j.still.2023.105818_bib2 article-title: Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems publication-title: Geoderma doi: 10.1016/j.geoderma.2009.05.023 – volume: 428 year: 2022 ident: 10.1016/j.still.2023.105818_bib40 article-title: Determination of soil bulk density dynamic in a Vertisol during wetting and drying cycles using combined soil water content and thermal property sensors publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116149 – volume: 403 year: 2021 ident: 10.1016/j.still.2023.105818_bib11 article-title: Root influences on soil bulk density measurements with thermo-time domain reflectometry publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115195 – volume: 69 start-page: 584 year: 2005 ident: 10.1016/j.still.2023.105818_bib24 article-title: Modeling soil shrinkage curve across a wide range of soil types publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0146 – volume: 206 start-page: 104844 year: 2021 ident: 10.1016/j.still.2023.105818_bib45 article-title: Bio-tillage: A new perspective for sustainable agriculture publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104844 – volume: 78 start-page: 400 year: 2014 ident: 10.1016/j.still.2023.105818_bib15 article-title: In situ monitoring of soil bulk density with a thermo-TDR sensor publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.07.0278 – volume: 243–244 start-page: 18 year: 2015 ident: 10.1016/j.still.2023.105818_bib3 article-title: Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.006 – volume: 370 year: 2020 ident: 10.1016/j.still.2023.105818_bib10 article-title: Root-induced changes in soil thermal and dielectric properties should not be ignored publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114352 – volume: 198 year: 2020 ident: 10.1016/j.still.2023.105818_bib43 article-title: Consolidation effects on relationships among soil erosion properties and soil physical quality indicators publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104550 – volume: 80 start-page: 1145 year: 2016 ident: 10.1016/j.still.2023.105818_bib26 article-title: Linking soil shrinkage behavior and cracking in two paddy soils as affected by wetting and drying cycles publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.07.0273 – volume: 99 start-page: 4 year: 2008 ident: 10.1016/j.still.2023.105818_bib35 article-title: Tillage effects on soil hydraulic properties in space and time: State of the science publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.01.007 – volume: 196 year: 2020 ident: 10.1016/j.still.2023.105818_bib38 article-title: Estimating soil bulk density with combined commercial soil water content and thermal property sensors publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104445 – volume: 84 start-page: 414 year: 2020 ident: 10.1016/j.still.2023.105818_bib31 article-title: Wind effects on soil thermal properties measured by the dual-probe heat pulse method publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20041 – year: 2015 ident: 10.1016/j.still.2023.105818_bib34 – volume: 2 start-page: 544 year: 2003 ident: 10.1016/j.still.2023.105818_bib28 article-title: Development of thermo-time domain reflectometry for vadose zone measurements publication-title: Vadose Zone J. doi: 10.2136/vzj2003.5440 – volume: 152 start-page: 252 year: 2009 ident: 10.1016/j.still.2023.105818_bib29 article-title: Use of indicators and pore volume-function characteristics to quantify soil physical quality publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.009 – volume: 113 start-page: 89 year: 2011 ident: 10.1016/j.still.2023.105818_bib33 article-title: Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2011.02.005 – volume: 78 start-page: 1575 year: 2014 ident: 10.1016/j.still.2023.105818_bib44 article-title: Measuring near-surface soil thermal properties with the heat-pulse method: correction of ambient temperature and soil-air interface effects publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.01.0014 – ident: 10.1016/j.still.2023.105818_bib1 – ident: 10.1016/j.still.2023.105818_bib7 – volume: 160 start-page: 53 year: 2016 ident: 10.1016/j.still.2023.105818_bib19 article-title: Seasonal changes in soil physical properties under long-term no-tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.02.007 – volume: 67 start-page: 564 year: 2016 ident: 10.1016/j.still.2023.105818_bib36 article-title: A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12366 – volume: 3 start-page: 570 year: 2004 ident: 10.1016/j.still.2023.105818_bib5 article-title: Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions publication-title: Vadose Zone J. – volume: 181 start-page: 82 year: 2018 ident: 10.1016/j.still.2023.105818_bib30 article-title: Consolidation and surface sealing of nine harrowed Swedish soils publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.03.017 – volume: 125 start-page: 52 year: 2012 ident: 10.1016/j.still.2023.105818_bib9 article-title: Dynamics of soil structure and pore functions of a volcanic ash soil under tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.05.019 – volume: 213 year: 2021 ident: 10.1016/j.still.2023.105818_bib12 article-title: Importance of short-term temporal variability in soil physical properties for soil water modelling under different tillage practices publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.105132 – volume: 28 start-page: 581 year: 2018 ident: 10.1016/j.still.2023.105818_bib4 article-title: Soil bulk density estimation methods: a review publication-title: Pedosphere doi: 10.1016/S1002-0160(18)60034-7 – volume: 116 start-page: 3 year: 2003 ident: 10.1016/j.still.2023.105818_bib13 article-title: Advances and challenges in predicting agricultural management effects on soil hydraulic properties publication-title: Geoderma doi: 10.1016/S0016-7061(03)00091-0 – volume: 15 issue: 5 year: 2016 ident: 10.1016/j.still.2023.105818_bib39 article-title: Modeling soil processes: review, key challenges, and new perspectives publication-title: Vadose zone J. doi: 10.2136/vzj2015.09.0131 – year: 2022 ident: 10.1016/j.still.2023.105818_bib42 article-title: The dynamic changes of soil air-filled porosity associated with soil shrinkage in a Vertisol publication-title: Eur. J. Soil Sci. N./a doi: 10.1111/ejss.13313 |
| SSID | ssj0004328 |
| Score | 2.4512634 |
| Snippet | Non-rigid soils (e.g., Vertisols) present dynamics of bulk density (ρb) due to high shrinkage and swelling. However, the in-situ measurement and prediction of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105818 |
| SubjectTerms | bulk density deep tillage equations no-tillage prediction rain rotary tillage shrinkage Soil bulk density soil density Soil shrinkage Soil structure Soil subsidence soil water subsidence thermal properties Vertisol Vertisols |
| Title | In-situ measuring and predicting dynamics of soil bulk density in a non-rigid soil as affected by tillage practices: Effects of soil subsidence and shrinkage |
| URI | https://dx.doi.org/10.1016/j.still.2023.105818 https://www.proquest.com/docview/2888002533 |
| Volume | 234 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004328 issn: 0167-1987 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004328 issn: 0167-1987 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-3444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004328 issn: 0167-1987 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-3444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004328 issn: 0167-1987 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004328 issn: 0167-1987 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4inKoxokjphNHMcbc1tVVFsQvUClvVl-QuiSXW2yh174J_xXPHZCBUI9cEw0dhyPPTOJv5mPkFduXjhpg6CeC065Lzg1hZaUi2CMaaxziUXh47lYXvD3q3p1QE6mXBiEVY62P9v0ZK3HO7NxNmfbtp19QgA9fjLHILqIXmeFGex8jiwGb35cwzx4lfhVU31vlJ4qDyWMV9xFazx_YBXy3TbI_PFv7_SXnU7O5_QeuTtGjbDIA7tPDnz3gNxZfNmNlTP8Q_LzrKN9O-zhe_rrFz0S6M7BdocnMYhtBpfJ53vYBOg37RrMfn0JDhHswxW0HWjoNh1FpiyXBXQPOuE9vANzBfga0fzAlFnVv4Vc_Pi6yz7aoUxTmp7ef40DuYxtHpGL03efT5Z05F6gtqrEQL0Qtqml0LUVtZSeVcZxZnXFZK2DtlLqOa-1idr11vDahKbwoeSWG-NKFqrH5DCO2T8hUIZKmKYMnjWWF8ZKUYp6boMJZShZYY4Im-Zc2bEwOfJjrNWEQPumkqIUKkplRR2R178bbXNdjpvFxaRM9cfyUtFz3Nzw5aR6FTcenqbozm_2vWJNg8F2DJef_m_nz8htvMrYwOfkcNjt_YsY4wzmOC3iY3JrcfZhef4LsrT_2g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFMtTyNxxGzi2N6YW1W12kLbC620N8tPSLtkV5vsoRf-Cf8Vj51QUaEeuCYex_HYM2P783wIvXfTwkkbBPFMMMJ8wYgptCRMBGNMbZ1LLAonp2J2zj7P-XwL7Y93YQBWOdj-bNOTtR6eTIbenKyaZvIVAPSwZI5BdBG9zvwOuss4ncIK7OPPa5wHqxLBakrwDcXH1EMJ5BWn0QIOIGgFhLc1UH_82z3dMNTJ-xw-Qg-HsBHv5ZY9Rlu-fYIe7H1bD6kz_FP066glXdNv8I-07RddEtatw6s1HMUAuBm7zD7f4WXA3bJZYLNZXGIHEPb-Cjct1rhdtgSoslwuoDusE-DDO2yuMPxGtD94vFrVfcI5-_F1lV00RJmnNH29-x4bchllnqHzw4Oz_RkZyBeIrSrREy-ErbkUmlvBpfS0Mo5RqysquQ7aSqmnjGsT1eutYdyEuvChZJYZ40oaqudoO7bZ7yBchkqYugye1pYVxkpRCj61wYQylLQwu4iOfa7skJkcCDIWaoSgXaikKAWKUllRu-jDH6FVTsxxe3ExKlP9Nb5UdB23C74bVa_izIPjFN365aZTtK4h2o7x8ov_rfwtujc7OzlWx0enX16i-_AmAwVfoe1-vfGvY8DTmzdpQP8GjuYBfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+measuring+and+predicting+dynamics+of+soil+bulk+density+in+a+non-rigid+soil+as+affected+by+tillage+practices%3A+Effects+of+soil+subsidence+and+shrinkage&rft.jtitle=Soil+%26+tillage+research&rft.au=Wang%2C+Yuekai&rft.au=Zhang%2C+Zhongbin&rft.au=Guo%2C+Zichun&rft.au=Chen%2C+Yueming&rft.date=2023-10-01&rft.issn=0167-1987&rft.volume=234&rft.spage=105818&rft_id=info:doi/10.1016%2Fj.still.2023.105818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2023_105818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |