GFO: A data driven approach for optimizing the Gaussian function based similarity metric in computational biology

The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its outstanding capability of measuring the remote similarity between any two samples in a mapped space. The Gaussian kernel can not only be use...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 99; pp. 307 - 315
Main Authors Lei, Jian-Bo, Yin, Jiang-Bo, Shen, Hong-Bin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2012.07.003

Cover

Abstract The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its outstanding capability of measuring the remote similarity between any two samples in a mapped space. The Gaussian kernel can not only be used in unsupervised fields but also in supervised cases. Despite the success of the Gaussian kernel in bioinformatics applications, the scalar parameter β is demonstrated to have significant influences on final results. There are no good methods to determine optimal values of β until now since they vary in different applications, which are usually identified by trial and error tests achieved by a global grid search in a pre-defined potential rage. This global grid search approach is heavily limited by the difficulty for setting proper start and end edges of the range, grid scales, as well as the huge search computational complexity in both cases of large dataset size and complicated learning algorithms. To deal with these problems, we present a systematic protocol consisting of two data-driven approaches to derive optimal choices for the Gaussian kernel parameter in bioinformatics studies, one for unsupervised cases and the other for supervised applications. The advantage of the two methods is that they only depend on the original dataset. The corresponding experiments on 6 datasets demonstrate the robustness and efficacy of the proposed approaches. An online calculator is implemented at: http://www.csbio.sjtu.edu.cn/bioinf/GFO/ for free academic use.
AbstractList The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its outstanding capability of measuring the remote similarity between any two samples in a mapped space. The Gaussian kernel can not only be used in unsupervised fields but also in supervised cases. Despite the success of the Gaussian kernel in bioinformatics applications, the scalar parameter β is demonstrated to have significant influences on final results. There are no good methods to determine optimal values of β until now since they vary in different applications, which are usually identified by trial and error tests achieved by a global grid search in a pre-defined potential rage. This global grid search approach is heavily limited by the difficulty for setting proper start and end edges of the range, grid scales, as well as the huge search computational complexity in both cases of large dataset size and complicated learning algorithms. To deal with these problems, we present a systematic protocol consisting of two data-driven approaches to derive optimal choices for the Gaussian kernel parameter in bioinformatics studies, one for unsupervised cases and the other for supervised applications. The advantage of the two methods is that they only depend on the original dataset. The corresponding experiments on 6 datasets demonstrate the robustness and efficacy of the proposed approaches. An online calculator is implemented at: http://www.csbio.sjtu.edu.cn/bioinf/GFO/ for free academic use.
Author Yin, Jiang-Bo
Shen, Hong-Bin
Lei, Jian-Bo
Author_xml – sequence: 1
  givenname: Jian-Bo
  surname: Lei
  fullname: Lei, Jian-Bo
– sequence: 2
  givenname: Jiang-Bo
  surname: Yin
  fullname: Yin, Jiang-Bo
– sequence: 3
  givenname: Hong-Bin
  surname: Shen
  fullname: Shen, Hong-Bin
  email: hbshen@sjtu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27097359$$DView record in Pascal Francis
BookMark eNqFkDFv2zAQhYkiBeqk_QcduHSUeiQlUcpQIAgaN0CALNmJM0UmZ8ikStIB3F9fGWqXDs10y_c9vHuX7CLE4Bj7LKAWILqv-zq4o42HWoKQNegaQL1jG9FrWfWy7y7YBgbZVlIJ-YFd5rwHEFrIYcN-bu8er_kNH7EgHxO9usBxnlNE-8J9TDzOhQ70i8IzLy-Ob_GYM2Hg_hhsoRj4DrMbeV6gCROVEz-4kshyCnypNB8LnjGc-I7iFJ9PH9l7j1N2n_7cK_Z09_3p9kf18Li9v715qKxSXamcamGU0skWB7WTDWrdNyi01a3qNSplO99h00IDSrajs-AlCutBCunbnbpiX9bYGbPFyScMlrKZEx0wnYzUMGjVDgt3vXI2xZyT88bSWrkkpMkIMOeNzd6sG5vzxga0WTZe5OYf-W_-G9q3VXPL_6_kksmWXLBupORsMWOk_wf8BjdCm60
CitedBy_id crossref_primary_10_1016_j_neucom_2013_10_034
crossref_primary_10_1016_j_jtbi_2013_09_007
crossref_primary_10_1093_bioinformatics_btu772
crossref_primary_10_1002_prot_24322
crossref_primary_10_1016_j_jtbi_2014_01_003
crossref_primary_10_1007_s00521_018_3387_3
crossref_primary_10_1016_j_neucom_2012_11_058
crossref_primary_10_1016_j_eswa_2016_01_003
crossref_primary_10_1038_s41598_017_06219_7
Cites_doi 10.1162/089976600300014980
10.1006/jmbi.2000.3903
10.2174/138920311796957711
10.1186/1471-2105-9-135
10.1093/bioinformatics/btq373
10.1093/bioinformatics/btm026
10.1002/jcc.21053
10.1093/bioinformatics/btn069
10.1038/ng765
10.1186/1471-2105-9-430
10.1109/72.991427
10.1093/bioinformatics/17.8.721
10.1016/j.jtbi.2010.11.017
10.1016/j.neucom.2009.09.018
10.1007/s11030-008-9073-0
10.1016/j.neucom.2011.07.017
10.1093/nar/gkg602
10.1016/j.str.2011.05.004
10.1002/prot.10634
10.1016/j.compbiomed.2010.11.003
10.1158/0008-5472.CAN-06-1736
10.1016/j.neucom.2003.10.004
10.1021/jm060333s
10.1073/pnas.0308067101
10.1093/bioinformatics/btr153
10.1080/07391102.2007.10507154
10.1021/pr0255654
10.1002/prot.21616
10.1074/jbc.M204161200
10.1016/j.jtbi.2003.08.015
10.1016/j.jtbi.2006.05.006
10.1002/jcc.21230
10.1093/bioinformatics/16.10.906
10.1093/bioinformatics/bti697
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.neucom.2012.07.003
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 315
ExternalDocumentID 27097359
10_1016_j_neucom_2012_07_003
S0925231212005644
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-e350d22e25a93b24a7784a17c75387a33c6f6a45040325dec0f2a1cf0212f5b3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Wed Apr 02 07:15:04 EDT 2025
Wed Oct 01 03:45:17 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:27:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GFO
Supervised learning
Bioinformatics
Gaussian function similarity
Unsupervised learning
Capability index
Grid
Very large databases
Data driven modelling
Case based reasoning
Computational complexity
Optimization
Kernel function
Gaussian process
Calculator
Metric
Robustness
Learning algorithm
Artificial intelligence
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-e350d22e25a93b24a7784a17c75387a33c6f6a45040325dec0f2a1cf0212f5b3
PageCount 9
ParticipantIDs pascalfrancis_primary_27097359
crossref_citationtrail_10_1016_j_neucom_2012_07_003
crossref_primary_10_1016_j_neucom_2012_07_003
elsevier_sciencedirect_doi_10_1016_j_neucom_2012_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
2013-1-00
2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chou, Cai (bib18) 2002; 277
Chen, Lu, Feng, Li, Song, Zheng, Yuan, Zeng, Feng, Lu, Cai (bib17) 2009; 30
Kurgan, Miri Disfani (bib6) 2011; 12
Frank, Asuncion (bib30) 2010
Li, Liu, Cai, Li (bib11) 2007; 25
Jensen, Vind, Padkjær, Brockhoff, Refsgaard (bib26) 2007; 50
Zheng, Kurgan (bib15) 2008; 9
Hua, Sun (bib19) 2001; 17
Hayat, Khan (bib24) 2011; 271
Xuan, Guo, Liu, Huang, Li (bib31) 2011; 27
Armstrong, Staunton, Silverman, Pieters, den Boer, Minden, Sallan, Lander, Golub, Korsmeyer (bib34) 2002; 30
Niu, Jin, Feng, Lu, Cai, Li (bib20) 2008; 12
Kaminker, Zhang, Waugh, Haverty, Peters, Sebisanovic, Stinson, Forrest, Bazan, Seshagiri (bib33) 2007; 67
Yin, Li, Shen (bib35) 2011; 74
Chen, Jiang, Du, Kurgan (bib8) 2009; 30
Ng, Mishra (bib12) 2007; 23
Gardy, Spencer, Wang, Ester, Tusnady, Simon, Hua, Lambert, Nakai, Brinkman (bib27) 2003; 31
Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (bib2) 2000; 16
Wu, Szilagyi, Zhang (bib3) 2011; 19
Guo, Chen, Sun, Lin (bib14) 2004; 54
Gromiha, Yabuki (bib9) 2008; 9
Emanuelsson, Nielsen, Brunak, von Heijne (bib22) 2000; 300
Wang, Yang, Chou (bib5) 2006; 242
Mizianty, Stach, Chen, Kedarisetti, Disfani, Kurgan (bib7) 2010; 26
Gromiha, Suresh (bib10) 2008; 70
Anderson, Li, Payan, Noble (bib32) 2003; 2
.
Cai, Ricardo, Jen, Chou (bib23) 2004; 226
Hsu, Lin (bib29) 2002; 13
C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, 2003
Kutlu, Kuntalp (bib25) 2011; 41
Park, Gromiha, Horton, Suwa (bib21) 2005; 21
Wu, Zhang (bib4) 2008; 24
Damasevicius (bib13) 2010; 73
Weston, Zhou, Leslie, Noble (bib1) 2004; 101
Baudat, Anouar (bib28) 2000; 12
Guermeur, Pollastri, Elisseeff, Zelus, Paugam-Moisy, Baldi (bib16) 2004; 56
Zheng (10.1016/j.neucom.2012.07.003_bib15) 2008; 9
Cai (10.1016/j.neucom.2012.07.003_bib23) 2004; 226
Emanuelsson (10.1016/j.neucom.2012.07.003_bib22) 2000; 300
Kaminker (10.1016/j.neucom.2012.07.003_bib33) 2007; 67
Chou (10.1016/j.neucom.2012.07.003_bib18) 2002; 277
10.1016/j.neucom.2012.07.003_bib36
Mizianty (10.1016/j.neucom.2012.07.003_bib7) 2010; 26
Damasevicius (10.1016/j.neucom.2012.07.003_bib13) 2010; 73
Guo (10.1016/j.neucom.2012.07.003_bib14) 2004; 54
Armstrong (10.1016/j.neucom.2012.07.003_bib34) 2002; 30
Gromiha (10.1016/j.neucom.2012.07.003_bib10) 2008; 70
Weston (10.1016/j.neucom.2012.07.003_bib1) 2004; 101
Ng (10.1016/j.neucom.2012.07.003_bib12) 2007; 23
Hua (10.1016/j.neucom.2012.07.003_bib19) 2001; 17
Yin (10.1016/j.neucom.2012.07.003_bib35) 2011; 74
Gromiha (10.1016/j.neucom.2012.07.003_bib9) 2008; 9
Gardy (10.1016/j.neucom.2012.07.003_bib27) 2003; 31
Baudat (10.1016/j.neucom.2012.07.003_bib28) 2000; 12
Park (10.1016/j.neucom.2012.07.003_bib21) 2005; 21
Wu (10.1016/j.neucom.2012.07.003_bib3) 2011; 19
Niu (10.1016/j.neucom.2012.07.003_bib20) 2008; 12
Hayat (10.1016/j.neucom.2012.07.003_bib24) 2011; 271
Furey (10.1016/j.neucom.2012.07.003_bib2) 2000; 16
Guermeur (10.1016/j.neucom.2012.07.003_bib16) 2004; 56
Frank (10.1016/j.neucom.2012.07.003_bib30) 2010
Chen (10.1016/j.neucom.2012.07.003_bib17) 2009; 30
Chen (10.1016/j.neucom.2012.07.003_bib8) 2009; 30
Wang (10.1016/j.neucom.2012.07.003_bib5) 2006; 242
Xuan (10.1016/j.neucom.2012.07.003_bib31) 2011; 27
Li (10.1016/j.neucom.2012.07.003_bib11) 2007; 25
Kutlu (10.1016/j.neucom.2012.07.003_bib25) 2011; 41
Wu (10.1016/j.neucom.2012.07.003_bib4) 2008; 24
Kurgan (10.1016/j.neucom.2012.07.003_bib6) 2011; 12
Jensen (10.1016/j.neucom.2012.07.003_bib26) 2007; 50
Hsu (10.1016/j.neucom.2012.07.003_bib29) 2002; 13
Anderson (10.1016/j.neucom.2012.07.003_bib32) 2003; 2
References_xml – volume: 12
  start-page: 470
  year: 2011
  end-page: 489
  ident: bib6
  article-title: Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions
  publication-title: Curr. Protein. Pept. Sci.
– volume: 2
  start-page: 137
  year: 2003
  end-page: 146
  ident: bib32
  article-title: A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores
  publication-title: J. Proteomic Res.
– volume: 277
  start-page: 45765
  year: 2002
  end-page: 45769
  ident: bib18
  article-title: Using functional domain composition and support vector machines for prediction of protein subcellular location
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 1368
  year: 2011
  end-page: 1376
  ident: bib31
  article-title: PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs
  publication-title: Bioinformatics
– volume: 12
  start-page: 41
  year: 2008
  end-page: 45
  ident: bib20
  article-title: Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins
  publication-title: Mol. Diversity
– volume: 242
  start-page: 941
  year: 2006
  end-page: 946
  ident: bib5
  article-title: Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition
  publication-title: J. Theor. Biol.
– volume: 30
  start-page: 163
  year: 2009
  end-page: 172
  ident: bib8
  article-title: Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs
  publication-title: J. Comput. Chem.
– year: 2010
  ident: bib30
  article-title: UCI Machine Learning Repository
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib29
  article-title: A comparison of methods for multiclass support vector machines,
  publication-title: IEEE Trans. Neural Network
– volume: 67
  start-page: 465
  year: 2007
  ident: bib33
  article-title: Distinguishing cancer-associated missense mutations from common polymorphisms
  publication-title: Cancer Res.
– volume: 25
  start-page: 49
  year: 2007
  end-page: 54
  ident: bib11
  article-title: Predicting protein N-glycosylation by combining functional domain and secretion information
  publication-title: J. Biomol. Struct. Dyn.
– volume: 31
  start-page: 3613
  year: 2003
  end-page: 3617
  ident: bib27
  article-title: PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 906
  year: 2000
  end-page: 914
  ident: bib2
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
– volume: 101
  start-page: 6559
  year: 2004
  end-page: 6563
  ident: bib1
  article-title: Protein ranking: from local to global structure in the protein similarity network
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 1321
  year: 2007
  end-page: 1330
  ident: bib12
  article-title: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
  publication-title: Bioinformatics
– volume: 26
  start-page: i489
  year: 2010
  end-page: i496
  ident: bib7
  article-title: Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources
  publication-title: Bioinformatics
– volume: 30
  start-page: 41
  year: 2002
  end-page: 47
  ident: bib34
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet.
– volume: 50
  start-page: 501
  year: 2007
  end-page: 511
  ident: bib26
  article-title: In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
  publication-title: J. Med. Chem.
– volume: 74
  start-page: 3816
  year: 2011
  end-page: 3822
  ident: bib35
  article-title: Gaussian kernel optimization: Complex problem and a simple solution
  publication-title: Neurocomputing
– reference: .
– volume: 30
  start-page: 2248
  year: 2009
  end-page: 2254
  ident: bib17
  article-title: Multiple classifier integration for the prediction of protein structural classes
  publication-title: J. Comput. Chem.
– volume: 24
  start-page: 924
  year: 2008
  end-page: 931
  ident: bib4
  article-title: A comprehensive assessment of sequence-based and template-based methods for protein contact prediction
  publication-title: Bioinformatics
– volume: 271
  start-page: 10
  year: 2011
  end-page: 17
  ident: bib24
  article-title: Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
  publication-title: J. Theor. Biol.
– volume: 54
  start-page: 738
  year: 2004
  end-page: 743
  ident: bib14
  article-title: A novel method for protein secondary structure prediction using dual‐layer SVM and profiles,
  publication-title: Proteins Struct. Funct. Bioinformatics
– volume: 56
  start-page: 305
  year: 2004
  end-page: 327
  ident: bib16
  article-title: Combining protein secondary structure prediction models with ensemble methods of optimal complexity
  publication-title: Neurocomputing
– volume: 19
  start-page: 1182
  year: 2011
  end-page: 1191
  ident: bib3
  article-title: Improving protein structure prediction using multiple sequence-based contact predictions
  publication-title: Structure
– volume: 70
  start-page: 1274
  year: 2008
  end-page: 1279
  ident: bib10
  article-title: Discrimination of mesophilic and thermophilic proteins using machine learning algorithms
  publication-title: Proteins Struct. Funct. Bioinformatics
– volume: 9
  start-page: 430
  year: 2008
  ident: bib15
  article-title: Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments
  publication-title: BMC Bioinformatics
– volume: 41
  start-page: 37
  year: 2011
  end-page: 45
  ident: bib25
  article-title: A multi-stage automatic arrhythmia recognition and classification system
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 721
  year: 2001
  end-page: 728
  ident: bib19
  article-title: Support vector machine approach for protein subcellular localization prediction
  publication-title: Bioinformatics
– volume: 12
  start-page: 2385
  year: 2000
  end-page: 2404
  ident: bib28
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
– volume: 226
  start-page: 373
  year: 2004
  end-page: 376
  ident: bib23
  article-title: Application of SVM to predict membrane protein types
  publication-title: J. Theor. Biol.
– volume: 21
  start-page: 4223
  year: 2005
  end-page: 4229
  ident: bib21
  article-title: Discrimination of outer membrane proteins using support vector machines
  publication-title: Bioinformatics
– volume: 73
  start-page: 633
  year: 2010
  end-page: 638
  ident: bib13
  article-title: Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine
  publication-title: Neurocomputing
– reference: C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, 2003,
– volume: 9
  start-page: 135
  year: 2008
  ident: bib9
  article-title: Functional discrimination of membrane proteins using machine learning techniques
  publication-title: BMC Bioinformatics
– volume: 300
  start-page: 1005
  year: 2000
  end-page: 1016
  ident: bib22
  article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
  publication-title: J. Mol. Biol.
– volume: 12
  start-page: 2385
  year: 2000
  ident: 10.1016/j.neucom.2012.07.003_bib28
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014980
– volume: 300
  start-page: 1005
  year: 2000
  ident: 10.1016/j.neucom.2012.07.003_bib22
  article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3903
– volume: 12
  start-page: 470
  year: 2011
  ident: 10.1016/j.neucom.2012.07.003_bib6
  article-title: Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions
  publication-title: Curr. Protein. Pept. Sci.
  doi: 10.2174/138920311796957711
– volume: 9
  start-page: 135
  year: 2008
  ident: 10.1016/j.neucom.2012.07.003_bib9
  article-title: Functional discrimination of membrane proteins using machine learning techniques
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-135
– volume: 26
  start-page: i489
  year: 2010
  ident: 10.1016/j.neucom.2012.07.003_bib7
  article-title: Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq373
– volume: 23
  start-page: 1321
  year: 2007
  ident: 10.1016/j.neucom.2012.07.003_bib12
  article-title: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm026
– volume: 30
  start-page: 163
  year: 2009
  ident: 10.1016/j.neucom.2012.07.003_bib8
  article-title: Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21053
– volume: 24
  start-page: 924
  year: 2008
  ident: 10.1016/j.neucom.2012.07.003_bib4
  article-title: A comprehensive assessment of sequence-based and template-based methods for protein contact prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn069
– ident: 10.1016/j.neucom.2012.07.003_bib36
– volume: 30
  start-page: 41
  year: 2002
  ident: 10.1016/j.neucom.2012.07.003_bib34
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet.
  doi: 10.1038/ng765
– volume: 9
  start-page: 430
  year: 2008
  ident: 10.1016/j.neucom.2012.07.003_bib15
  article-title: Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-430
– volume: 13
  start-page: 415
  year: 2002
  ident: 10.1016/j.neucom.2012.07.003_bib29
  article-title: A comparison of methods for multiclass support vector machines,
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/72.991427
– volume: 17
  start-page: 721
  year: 2001
  ident: 10.1016/j.neucom.2012.07.003_bib19
  article-title: Support vector machine approach for protein subcellular localization prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.8.721
– volume: 271
  start-page: 10
  year: 2011
  ident: 10.1016/j.neucom.2012.07.003_bib24
  article-title: Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.11.017
– volume: 73
  start-page: 633
  year: 2010
  ident: 10.1016/j.neucom.2012.07.003_bib13
  article-title: Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.09.018
– volume: 12
  start-page: 41
  year: 2008
  ident: 10.1016/j.neucom.2012.07.003_bib20
  article-title: Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins
  publication-title: Mol. Diversity
  doi: 10.1007/s11030-008-9073-0
– volume: 74
  start-page: 3816
  year: 2011
  ident: 10.1016/j.neucom.2012.07.003_bib35
  article-title: Gaussian kernel optimization: Complex problem and a simple solution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.017
– volume: 31
  start-page: 3613
  year: 2003
  ident: 10.1016/j.neucom.2012.07.003_bib27
  article-title: PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg602
– volume: 19
  start-page: 1182
  year: 2011
  ident: 10.1016/j.neucom.2012.07.003_bib3
  article-title: Improving protein structure prediction using multiple sequence-based contact predictions
  publication-title: Structure
  doi: 10.1016/j.str.2011.05.004
– volume: 54
  start-page: 738
  year: 2004
  ident: 10.1016/j.neucom.2012.07.003_bib14
  article-title: A novel method for protein secondary structure prediction using dual‐layer SVM and profiles,
  publication-title: Proteins Struct. Funct. Bioinformatics
  doi: 10.1002/prot.10634
– volume: 41
  start-page: 37
  year: 2011
  ident: 10.1016/j.neucom.2012.07.003_bib25
  article-title: A multi-stage automatic arrhythmia recognition and classification system
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2010.11.003
– volume: 67
  start-page: 465
  year: 2007
  ident: 10.1016/j.neucom.2012.07.003_bib33
  article-title: Distinguishing cancer-associated missense mutations from common polymorphisms
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-1736
– volume: 56
  start-page: 305
  year: 2004
  ident: 10.1016/j.neucom.2012.07.003_bib16
  article-title: Combining protein secondary structure prediction models with ensemble methods of optimal complexity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.10.004
– volume: 50
  start-page: 501
  year: 2007
  ident: 10.1016/j.neucom.2012.07.003_bib26
  article-title: In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm060333s
– volume: 101
  start-page: 6559
  year: 2004
  ident: 10.1016/j.neucom.2012.07.003_bib1
  article-title: Protein ranking: from local to global structure in the protein similarity network
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0308067101
– volume: 27
  start-page: 1368
  year: 2011
  ident: 10.1016/j.neucom.2012.07.003_bib31
  article-title: PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr153
– volume: 25
  start-page: 49
  year: 2007
  ident: 10.1016/j.neucom.2012.07.003_bib11
  article-title: Predicting protein N-glycosylation by combining functional domain and secretion information
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2007.10507154
– volume: 2
  start-page: 137
  year: 2003
  ident: 10.1016/j.neucom.2012.07.003_bib32
  article-title: A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores
  publication-title: J. Proteomic Res.
  doi: 10.1021/pr0255654
– volume: 70
  start-page: 1274
  year: 2008
  ident: 10.1016/j.neucom.2012.07.003_bib10
  article-title: Discrimination of mesophilic and thermophilic proteins using machine learning algorithms
  publication-title: Proteins Struct. Funct. Bioinformatics
  doi: 10.1002/prot.21616
– volume: 277
  start-page: 45765
  year: 2002
  ident: 10.1016/j.neucom.2012.07.003_bib18
  article-title: Using functional domain composition and support vector machines for prediction of protein subcellular location
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M204161200
– year: 2010
  ident: 10.1016/j.neucom.2012.07.003_bib30
– volume: 226
  start-page: 373
  year: 2004
  ident: 10.1016/j.neucom.2012.07.003_bib23
  article-title: Application of SVM to predict membrane protein types
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2003.08.015
– volume: 242
  start-page: 941
  year: 2006
  ident: 10.1016/j.neucom.2012.07.003_bib5
  article-title: Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2006.05.006
– volume: 30
  start-page: 2248
  year: 2009
  ident: 10.1016/j.neucom.2012.07.003_bib17
  article-title: Multiple classifier integration for the prediction of protein structural classes
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21230
– volume: 16
  start-page: 906
  year: 2000
  ident: 10.1016/j.neucom.2012.07.003_bib2
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 21
  start-page: 4223
  year: 2005
  ident: 10.1016/j.neucom.2012.07.003_bib21
  article-title: Discrimination of outer membrane proteins using support vector machines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti697
SSID ssj0017129
Score 2.0882702
Snippet The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 307
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Bioinformatics
Biological and medical sciences
Computer science; control theory; systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gaussian function similarity
General aspects
GFO
Information systems. Data bases
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Memory organisation. Data processing
Software
Supervised learning
Theoretical computing
Unsupervised learning
Title GFO: A data driven approach for optimizing the Gaussian function based similarity metric in computational biology
URI https://dx.doi.org/10.1016/j.neucom.2012.07.003
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdQuUyaBoxNY0D1DruaJv6ICbcK0RbQ2GFM4hY5tiMV0bSj7YUDfzvvJU4F2gFp1-g5jvzs9-G89_sx9qMUlHeInJsgHVfeSW59mfIyJNrnqlJZRc3JP2-yyR91dafvtth51wtDZZXR9rc2vbHW8ckgruZgMZ0Ofic5TiJTtL2EZ6kIE1QpQywGJ8-bMo_UpKLF2xOak3TXPtfUeNVhTTUj6ARFA-HZUWf9654-LuwSF61q2S5euaDRLvsUY0cYtp-3x7ZC_ZntdLwMEI_pPvs7Hv06gyFQ9Sf4R7Jn0GGHAwapMEc7MZs-odcCjP9gbNdL6qUEcnKkKCDf5mGJQpj4YpwOMyLecjCtwTXTxStEiBhOX9jt6OL2fMIjtQJ3UmYrHqROvBBBaJvLUihrzKmyqXGYvZwaK6XLqswqjUdcCu2DSyphU1cRIHylS_mV9ep5Hb4xKFOTGe9VaQiazmO6oisVBG4NK6307oDJbkELF2HHif3ioejqy-6LVg0FqaFI6H-4PGB8M2rRwm68I286XRVvtk-BnuGdkf03qt1MJwwhGen8-3-_-pB9EA15Bl3YHLHe6nEdjjGEWZX9Zo_22fbw8npy8wLRLvK-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHKhUUaCtCrQwB65mEz9iwg0hli3PA4vELXJsR1rEhi27e-mhv52ZxFmBekDqNRrHkceehzPzfYztl4LyDpFzE6TjyjvJrS9TXoZE-1xVKquoOfnqOhvcqfN7fb_ETrpeGCqrjLa_temNtY5PenE1e5PRqHeb5DiJTNH2Ep6lUh_YitLCUAZ28HdR55GaVLSAe0JzEu_655oirzrMqWgEvaBoMDw77qx__dOniZ3iqlUt3cUrH9RfZ2sxeITj9vs22FKoN9nnjpgB4jn9wn6f9W-O4Bio_BP8Mxk06MDDAaNUeEJDMR79QbcFGADCmZ1PqZkSyMuRpoCcm4cpCmHmi4E6jIl5y8GoBtdMF-8QIYI4fWXD_unwZMAjtwJ3UmYzHqROvBBBaJvLUihrzKGyqXGYvhwaK6XLqswqjWdcCu2DSyphU1cRInylS_mNLddPdfjOoExNZrxXpSFsOo_5iq5UELg3rLTSuy0muwUtXMQdJ_qLx6IrMHsoWjUUpIYioR_icovxxahJi7vxjrzpdFW82T8FuoZ3Ru6-Ue1iOmEIykjn2__96j22OhheXRaXv64vdthH0TBp0O3ND7Y8e56HnxjPzMrdZr--AHE29FM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GFO%3A+A+data+driven+approach+for+optimizing+the+Gaussian+function+based+similarity+metric+in+computational+biology&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=LEI%2C+Jian-Bo&rft.au=YIN%2C+Jiang-Bo&rft.au=SHEN%2C+Hong-Bin&rft.date=2013&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=99&rft.spage=307&rft.epage=315&rft_id=info:doi/10.1016%2Fj.neucom.2012.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=27097359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon