GFO: A data driven approach for optimizing the Gaussian function based similarity metric in computational biology
The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its outstanding capability of measuring the remote similarity between any two samples in a mapped space. The Gaussian kernel can not only be use...
        Saved in:
      
    
          | Published in | Neurocomputing (Amsterdam) Vol. 99; pp. 307 - 315 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.01.2013
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-2312 1872-8286  | 
| DOI | 10.1016/j.neucom.2012.07.003 | 
Cover
| Abstract | The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its outstanding capability of measuring the remote similarity between any two samples in a mapped space. The Gaussian kernel can not only be used in unsupervised fields but also in supervised cases. Despite the success of the Gaussian kernel in bioinformatics applications, the scalar parameter β is demonstrated to have significant influences on final results. There are no good methods to determine optimal values of β until now since they vary in different applications, which are usually identified by trial and error tests achieved by a global grid search in a pre-defined potential rage. This global grid search approach is heavily limited by the difficulty for setting proper start and end edges of the range, grid scales, as well as the huge search computational complexity in both cases of large dataset size and complicated learning algorithms. To deal with these problems, we present a systematic protocol consisting of two data-driven approaches to derive optimal choices for the Gaussian kernel parameter in bioinformatics studies, one for unsupervised cases and the other for supervised applications. The advantage of the two methods is that they only depend on the original dataset. The corresponding experiments on 6 datasets demonstrate the robustness and efficacy of the proposed approaches. An online calculator is implemented at: http://www.csbio.sjtu.edu.cn/bioinf/GFO/ for free academic use. | 
    
|---|---|
| AbstractList | The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its outstanding capability of measuring the remote similarity between any two samples in a mapped space. The Gaussian kernel can not only be used in unsupervised fields but also in supervised cases. Despite the success of the Gaussian kernel in bioinformatics applications, the scalar parameter β is demonstrated to have significant influences on final results. There are no good methods to determine optimal values of β until now since they vary in different applications, which are usually identified by trial and error tests achieved by a global grid search in a pre-defined potential rage. This global grid search approach is heavily limited by the difficulty for setting proper start and end edges of the range, grid scales, as well as the huge search computational complexity in both cases of large dataset size and complicated learning algorithms. To deal with these problems, we present a systematic protocol consisting of two data-driven approaches to derive optimal choices for the Gaussian kernel parameter in bioinformatics studies, one for unsupervised cases and the other for supervised applications. The advantage of the two methods is that they only depend on the original dataset. The corresponding experiments on 6 datasets demonstrate the robustness and efficacy of the proposed approaches. An online calculator is implemented at: http://www.csbio.sjtu.edu.cn/bioinf/GFO/ for free academic use. | 
    
| Author | Yin, Jiang-Bo Shen, Hong-Bin Lei, Jian-Bo  | 
    
| Author_xml | – sequence: 1 givenname: Jian-Bo surname: Lei fullname: Lei, Jian-Bo – sequence: 2 givenname: Jiang-Bo surname: Yin fullname: Yin, Jiang-Bo – sequence: 3 givenname: Hong-Bin surname: Shen fullname: Shen, Hong-Bin email: hbshen@sjtu.edu.cn  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27097359$$DView record in Pascal Francis | 
    
| BookMark | eNqFkDFv2zAQhYkiBeqk_QcduHSUeiQlUcpQIAgaN0CALNmJM0UmZ8ikStIB3F9fGWqXDs10y_c9vHuX7CLE4Bj7LKAWILqv-zq4o42HWoKQNegaQL1jG9FrWfWy7y7YBgbZVlIJ-YFd5rwHEFrIYcN-bu8er_kNH7EgHxO9usBxnlNE-8J9TDzOhQ70i8IzLy-Ob_GYM2Hg_hhsoRj4DrMbeV6gCROVEz-4kshyCnypNB8LnjGc-I7iFJ9PH9l7j1N2n_7cK_Z09_3p9kf18Li9v715qKxSXamcamGU0skWB7WTDWrdNyi01a3qNSplO99h00IDSrajs-AlCutBCunbnbpiX9bYGbPFyScMlrKZEx0wnYzUMGjVDgt3vXI2xZyT88bSWrkkpMkIMOeNzd6sG5vzxga0WTZe5OYf-W_-G9q3VXPL_6_kksmWXLBupORsMWOk_wf8BjdCm60 | 
    
| CitedBy_id | crossref_primary_10_1016_j_neucom_2013_10_034 crossref_primary_10_1016_j_jtbi_2013_09_007 crossref_primary_10_1093_bioinformatics_btu772 crossref_primary_10_1002_prot_24322 crossref_primary_10_1016_j_jtbi_2014_01_003 crossref_primary_10_1007_s00521_018_3387_3 crossref_primary_10_1016_j_neucom_2012_11_058 crossref_primary_10_1016_j_eswa_2016_01_003 crossref_primary_10_1038_s41598_017_06219_7  | 
    
| Cites_doi | 10.1162/089976600300014980 10.1006/jmbi.2000.3903 10.2174/138920311796957711 10.1186/1471-2105-9-135 10.1093/bioinformatics/btq373 10.1093/bioinformatics/btm026 10.1002/jcc.21053 10.1093/bioinformatics/btn069 10.1038/ng765 10.1186/1471-2105-9-430 10.1109/72.991427 10.1093/bioinformatics/17.8.721 10.1016/j.jtbi.2010.11.017 10.1016/j.neucom.2009.09.018 10.1007/s11030-008-9073-0 10.1016/j.neucom.2011.07.017 10.1093/nar/gkg602 10.1016/j.str.2011.05.004 10.1002/prot.10634 10.1016/j.compbiomed.2010.11.003 10.1158/0008-5472.CAN-06-1736 10.1016/j.neucom.2003.10.004 10.1021/jm060333s 10.1073/pnas.0308067101 10.1093/bioinformatics/btr153 10.1080/07391102.2007.10507154 10.1021/pr0255654 10.1002/prot.21616 10.1074/jbc.M204161200 10.1016/j.jtbi.2003.08.015 10.1016/j.jtbi.2006.05.006 10.1002/jcc.21230 10.1093/bioinformatics/16.10.906 10.1093/bioinformatics/bti697  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW  | 
    
| DOI | 10.1016/j.neucom.2012.07.003 | 
    
| DatabaseName | CrossRef Pascal-Francis  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Applied Sciences  | 
    
| EISSN | 1872-8286 | 
    
| EndPage | 315 | 
    
| ExternalDocumentID | 27097359 10_1016_j_neucom_2012_07_003 S0925231212005644  | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD BNPGV IQODW SSH  | 
    
| ID | FETCH-LOGICAL-c336t-e350d22e25a93b24a7784a17c75387a33c6f6a45040325dec0f2a1cf0212f5b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0925-2312 | 
    
| IngestDate | Wed Apr 02 07:15:04 EDT 2025 Wed Oct 01 03:45:17 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Fri Feb 23 02:27:17 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | GFO Supervised learning Bioinformatics Gaussian function similarity Unsupervised learning Capability index Grid Very large databases Data driven modelling Case based reasoning Computational complexity Optimization Kernel function Gaussian process Calculator Metric Robustness Learning algorithm Artificial intelligence  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c336t-e350d22e25a93b24a7784a17c75387a33c6f6a45040325dec0f2a1cf0212f5b3 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | pascalfrancis_primary_27097359 crossref_citationtrail_10_1016_j_neucom_2012_07_003 crossref_primary_10_1016_j_neucom_2012_07_003 elsevier_sciencedirect_doi_10_1016_j_neucom_2012_07_003  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-01-01 2013-1-00 2013  | 
    
| PublicationDateYYYYMMDD | 2013-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Neurocomputing (Amsterdam) | 
    
| PublicationYear | 2013 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Chou, Cai (bib18) 2002; 277 Chen, Lu, Feng, Li, Song, Zheng, Yuan, Zeng, Feng, Lu, Cai (bib17) 2009; 30 Kurgan, Miri Disfani (bib6) 2011; 12 Frank, Asuncion (bib30) 2010 Li, Liu, Cai, Li (bib11) 2007; 25 Jensen, Vind, Padkjær, Brockhoff, Refsgaard (bib26) 2007; 50 Zheng, Kurgan (bib15) 2008; 9 Hua, Sun (bib19) 2001; 17 Hayat, Khan (bib24) 2011; 271 Xuan, Guo, Liu, Huang, Li (bib31) 2011; 27 Armstrong, Staunton, Silverman, Pieters, den Boer, Minden, Sallan, Lander, Golub, Korsmeyer (bib34) 2002; 30 Niu, Jin, Feng, Lu, Cai, Li (bib20) 2008; 12 Kaminker, Zhang, Waugh, Haverty, Peters, Sebisanovic, Stinson, Forrest, Bazan, Seshagiri (bib33) 2007; 67 Yin, Li, Shen (bib35) 2011; 74 Chen, Jiang, Du, Kurgan (bib8) 2009; 30 Ng, Mishra (bib12) 2007; 23 Gardy, Spencer, Wang, Ester, Tusnady, Simon, Hua, Lambert, Nakai, Brinkman (bib27) 2003; 31 Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (bib2) 2000; 16 Wu, Szilagyi, Zhang (bib3) 2011; 19 Guo, Chen, Sun, Lin (bib14) 2004; 54 Gromiha, Yabuki (bib9) 2008; 9 Emanuelsson, Nielsen, Brunak, von Heijne (bib22) 2000; 300 Wang, Yang, Chou (bib5) 2006; 242 Mizianty, Stach, Chen, Kedarisetti, Disfani, Kurgan (bib7) 2010; 26 Gromiha, Suresh (bib10) 2008; 70 Anderson, Li, Payan, Noble (bib32) 2003; 2 . Cai, Ricardo, Jen, Chou (bib23) 2004; 226 Hsu, Lin (bib29) 2002; 13 C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, 2003 Kutlu, Kuntalp (bib25) 2011; 41 Park, Gromiha, Horton, Suwa (bib21) 2005; 21 Wu, Zhang (bib4) 2008; 24 Damasevicius (bib13) 2010; 73 Weston, Zhou, Leslie, Noble (bib1) 2004; 101 Baudat, Anouar (bib28) 2000; 12 Guermeur, Pollastri, Elisseeff, Zelus, Paugam-Moisy, Baldi (bib16) 2004; 56 Zheng (10.1016/j.neucom.2012.07.003_bib15) 2008; 9 Cai (10.1016/j.neucom.2012.07.003_bib23) 2004; 226 Emanuelsson (10.1016/j.neucom.2012.07.003_bib22) 2000; 300 Kaminker (10.1016/j.neucom.2012.07.003_bib33) 2007; 67 Chou (10.1016/j.neucom.2012.07.003_bib18) 2002; 277 10.1016/j.neucom.2012.07.003_bib36 Mizianty (10.1016/j.neucom.2012.07.003_bib7) 2010; 26 Damasevicius (10.1016/j.neucom.2012.07.003_bib13) 2010; 73 Guo (10.1016/j.neucom.2012.07.003_bib14) 2004; 54 Armstrong (10.1016/j.neucom.2012.07.003_bib34) 2002; 30 Gromiha (10.1016/j.neucom.2012.07.003_bib10) 2008; 70 Weston (10.1016/j.neucom.2012.07.003_bib1) 2004; 101 Ng (10.1016/j.neucom.2012.07.003_bib12) 2007; 23 Hua (10.1016/j.neucom.2012.07.003_bib19) 2001; 17 Yin (10.1016/j.neucom.2012.07.003_bib35) 2011; 74 Gromiha (10.1016/j.neucom.2012.07.003_bib9) 2008; 9 Gardy (10.1016/j.neucom.2012.07.003_bib27) 2003; 31 Baudat (10.1016/j.neucom.2012.07.003_bib28) 2000; 12 Park (10.1016/j.neucom.2012.07.003_bib21) 2005; 21 Wu (10.1016/j.neucom.2012.07.003_bib3) 2011; 19 Niu (10.1016/j.neucom.2012.07.003_bib20) 2008; 12 Hayat (10.1016/j.neucom.2012.07.003_bib24) 2011; 271 Furey (10.1016/j.neucom.2012.07.003_bib2) 2000; 16 Guermeur (10.1016/j.neucom.2012.07.003_bib16) 2004; 56 Frank (10.1016/j.neucom.2012.07.003_bib30) 2010 Chen (10.1016/j.neucom.2012.07.003_bib17) 2009; 30 Chen (10.1016/j.neucom.2012.07.003_bib8) 2009; 30 Wang (10.1016/j.neucom.2012.07.003_bib5) 2006; 242 Xuan (10.1016/j.neucom.2012.07.003_bib31) 2011; 27 Li (10.1016/j.neucom.2012.07.003_bib11) 2007; 25 Kutlu (10.1016/j.neucom.2012.07.003_bib25) 2011; 41 Wu (10.1016/j.neucom.2012.07.003_bib4) 2008; 24 Kurgan (10.1016/j.neucom.2012.07.003_bib6) 2011; 12 Jensen (10.1016/j.neucom.2012.07.003_bib26) 2007; 50 Hsu (10.1016/j.neucom.2012.07.003_bib29) 2002; 13 Anderson (10.1016/j.neucom.2012.07.003_bib32) 2003; 2  | 
    
| References_xml | – volume: 12 start-page: 470 year: 2011 end-page: 489 ident: bib6 article-title: Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions publication-title: Curr. Protein. Pept. Sci. – volume: 2 start-page: 137 year: 2003 end-page: 146 ident: bib32 article-title: A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores publication-title: J. Proteomic Res. – volume: 277 start-page: 45765 year: 2002 end-page: 45769 ident: bib18 article-title: Using functional domain composition and support vector machines for prediction of protein subcellular location publication-title: J. Biol. Chem. – volume: 27 start-page: 1368 year: 2011 end-page: 1376 ident: bib31 article-title: PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs publication-title: Bioinformatics – volume: 12 start-page: 41 year: 2008 end-page: 45 ident: bib20 article-title: Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins publication-title: Mol. Diversity – volume: 242 start-page: 941 year: 2006 end-page: 946 ident: bib5 article-title: Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition publication-title: J. Theor. Biol. – volume: 30 start-page: 163 year: 2009 end-page: 172 ident: bib8 article-title: Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs publication-title: J. Comput. Chem. – year: 2010 ident: bib30 article-title: UCI Machine Learning Repository – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib29 article-title: A comparison of methods for multiclass support vector machines, publication-title: IEEE Trans. Neural Network – volume: 67 start-page: 465 year: 2007 ident: bib33 article-title: Distinguishing cancer-associated missense mutations from common polymorphisms publication-title: Cancer Res. – volume: 25 start-page: 49 year: 2007 end-page: 54 ident: bib11 article-title: Predicting protein N-glycosylation by combining functional domain and secretion information publication-title: J. Biomol. Struct. Dyn. – volume: 31 start-page: 3613 year: 2003 end-page: 3617 ident: bib27 article-title: PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria publication-title: Nucleic Acids Res – volume: 16 start-page: 906 year: 2000 end-page: 914 ident: bib2 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics – volume: 101 start-page: 6559 year: 2004 end-page: 6563 ident: bib1 article-title: Protein ranking: from local to global structure in the protein similarity network publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 1321 year: 2007 end-page: 1330 ident: bib12 article-title: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures publication-title: Bioinformatics – volume: 26 start-page: i489 year: 2010 end-page: i496 ident: bib7 article-title: Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources publication-title: Bioinformatics – volume: 30 start-page: 41 year: 2002 end-page: 47 ident: bib34 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet. – volume: 50 start-page: 501 year: 2007 end-page: 511 ident: bib26 article-title: In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors publication-title: J. Med. Chem. – volume: 74 start-page: 3816 year: 2011 end-page: 3822 ident: bib35 article-title: Gaussian kernel optimization: Complex problem and a simple solution publication-title: Neurocomputing – reference: . – volume: 30 start-page: 2248 year: 2009 end-page: 2254 ident: bib17 article-title: Multiple classifier integration for the prediction of protein structural classes publication-title: J. Comput. Chem. – volume: 24 start-page: 924 year: 2008 end-page: 931 ident: bib4 article-title: A comprehensive assessment of sequence-based and template-based methods for protein contact prediction publication-title: Bioinformatics – volume: 271 start-page: 10 year: 2011 end-page: 17 ident: bib24 article-title: Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition publication-title: J. Theor. Biol. – volume: 54 start-page: 738 year: 2004 end-page: 743 ident: bib14 article-title: A novel method for protein secondary structure prediction using dual‐layer SVM and profiles, publication-title: Proteins Struct. Funct. Bioinformatics – volume: 56 start-page: 305 year: 2004 end-page: 327 ident: bib16 article-title: Combining protein secondary structure prediction models with ensemble methods of optimal complexity publication-title: Neurocomputing – volume: 19 start-page: 1182 year: 2011 end-page: 1191 ident: bib3 article-title: Improving protein structure prediction using multiple sequence-based contact predictions publication-title: Structure – volume: 70 start-page: 1274 year: 2008 end-page: 1279 ident: bib10 article-title: Discrimination of mesophilic and thermophilic proteins using machine learning algorithms publication-title: Proteins Struct. Funct. Bioinformatics – volume: 9 start-page: 430 year: 2008 ident: bib15 article-title: Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments publication-title: BMC Bioinformatics – volume: 41 start-page: 37 year: 2011 end-page: 45 ident: bib25 article-title: A multi-stage automatic arrhythmia recognition and classification system publication-title: Comput. Biol. Med. – volume: 17 start-page: 721 year: 2001 end-page: 728 ident: bib19 article-title: Support vector machine approach for protein subcellular localization prediction publication-title: Bioinformatics – volume: 12 start-page: 2385 year: 2000 end-page: 2404 ident: bib28 article-title: Generalized discriminant analysis using a kernel approach publication-title: Neural Comput. – volume: 226 start-page: 373 year: 2004 end-page: 376 ident: bib23 article-title: Application of SVM to predict membrane protein types publication-title: J. Theor. Biol. – volume: 21 start-page: 4223 year: 2005 end-page: 4229 ident: bib21 article-title: Discrimination of outer membrane proteins using support vector machines publication-title: Bioinformatics – volume: 73 start-page: 633 year: 2010 end-page: 638 ident: bib13 article-title: Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine publication-title: Neurocomputing – reference: C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, 2003, – volume: 9 start-page: 135 year: 2008 ident: bib9 article-title: Functional discrimination of membrane proteins using machine learning techniques publication-title: BMC Bioinformatics – volume: 300 start-page: 1005 year: 2000 end-page: 1016 ident: bib22 article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence publication-title: J. Mol. Biol. – volume: 12 start-page: 2385 year: 2000 ident: 10.1016/j.neucom.2012.07.003_bib28 article-title: Generalized discriminant analysis using a kernel approach publication-title: Neural Comput. doi: 10.1162/089976600300014980 – volume: 300 start-page: 1005 year: 2000 ident: 10.1016/j.neucom.2012.07.003_bib22 article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3903 – volume: 12 start-page: 470 year: 2011 ident: 10.1016/j.neucom.2012.07.003_bib6 article-title: Structural Protein Descriptors in 1-Dimension and their Sequence-Based Predictions publication-title: Curr. Protein. Pept. Sci. doi: 10.2174/138920311796957711 – volume: 9 start-page: 135 year: 2008 ident: 10.1016/j.neucom.2012.07.003_bib9 article-title: Functional discrimination of membrane proteins using machine learning techniques publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-135 – volume: 26 start-page: i489 year: 2010 ident: 10.1016/j.neucom.2012.07.003_bib7 article-title: Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq373 – volume: 23 start-page: 1321 year: 2007 ident: 10.1016/j.neucom.2012.07.003_bib12 article-title: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm026 – volume: 30 start-page: 163 year: 2009 ident: 10.1016/j.neucom.2012.07.003_bib8 article-title: Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs publication-title: J. Comput. Chem. doi: 10.1002/jcc.21053 – volume: 24 start-page: 924 year: 2008 ident: 10.1016/j.neucom.2012.07.003_bib4 article-title: A comprehensive assessment of sequence-based and template-based methods for protein contact prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn069 – ident: 10.1016/j.neucom.2012.07.003_bib36 – volume: 30 start-page: 41 year: 2002 ident: 10.1016/j.neucom.2012.07.003_bib34 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet. doi: 10.1038/ng765 – volume: 9 start-page: 430 year: 2008 ident: 10.1016/j.neucom.2012.07.003_bib15 article-title: Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-430 – volume: 13 start-page: 415 year: 2002 ident: 10.1016/j.neucom.2012.07.003_bib29 article-title: A comparison of methods for multiclass support vector machines, publication-title: IEEE Trans. Neural Network doi: 10.1109/72.991427 – volume: 17 start-page: 721 year: 2001 ident: 10.1016/j.neucom.2012.07.003_bib19 article-title: Support vector machine approach for protein subcellular localization prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.8.721 – volume: 271 start-page: 10 year: 2011 ident: 10.1016/j.neucom.2012.07.003_bib24 article-title: Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.11.017 – volume: 73 start-page: 633 year: 2010 ident: 10.1016/j.neucom.2012.07.003_bib13 article-title: Structural analysis of regulatory DNA sequences using grammar inference and Support Vector Machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.09.018 – volume: 12 start-page: 41 year: 2008 ident: 10.1016/j.neucom.2012.07.003_bib20 article-title: Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins publication-title: Mol. Diversity doi: 10.1007/s11030-008-9073-0 – volume: 74 start-page: 3816 year: 2011 ident: 10.1016/j.neucom.2012.07.003_bib35 article-title: Gaussian kernel optimization: Complex problem and a simple solution publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.07.017 – volume: 31 start-page: 3613 year: 2003 ident: 10.1016/j.neucom.2012.07.003_bib27 article-title: PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg602 – volume: 19 start-page: 1182 year: 2011 ident: 10.1016/j.neucom.2012.07.003_bib3 article-title: Improving protein structure prediction using multiple sequence-based contact predictions publication-title: Structure doi: 10.1016/j.str.2011.05.004 – volume: 54 start-page: 738 year: 2004 ident: 10.1016/j.neucom.2012.07.003_bib14 article-title: A novel method for protein secondary structure prediction using dual‐layer SVM and profiles, publication-title: Proteins Struct. Funct. Bioinformatics doi: 10.1002/prot.10634 – volume: 41 start-page: 37 year: 2011 ident: 10.1016/j.neucom.2012.07.003_bib25 article-title: A multi-stage automatic arrhythmia recognition and classification system publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2010.11.003 – volume: 67 start-page: 465 year: 2007 ident: 10.1016/j.neucom.2012.07.003_bib33 article-title: Distinguishing cancer-associated missense mutations from common polymorphisms publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-1736 – volume: 56 start-page: 305 year: 2004 ident: 10.1016/j.neucom.2012.07.003_bib16 article-title: Combining protein secondary structure prediction models with ensemble methods of optimal complexity publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.10.004 – volume: 50 start-page: 501 year: 2007 ident: 10.1016/j.neucom.2012.07.003_bib26 article-title: In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using the Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors publication-title: J. Med. Chem. doi: 10.1021/jm060333s – volume: 101 start-page: 6559 year: 2004 ident: 10.1016/j.neucom.2012.07.003_bib1 article-title: Protein ranking: from local to global structure in the protein similarity network publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0308067101 – volume: 27 start-page: 1368 year: 2011 ident: 10.1016/j.neucom.2012.07.003_bib31 article-title: PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr153 – volume: 25 start-page: 49 year: 2007 ident: 10.1016/j.neucom.2012.07.003_bib11 article-title: Predicting protein N-glycosylation by combining functional domain and secretion information publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2007.10507154 – volume: 2 start-page: 137 year: 2003 ident: 10.1016/j.neucom.2012.07.003_bib32 article-title: A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores publication-title: J. Proteomic Res. doi: 10.1021/pr0255654 – volume: 70 start-page: 1274 year: 2008 ident: 10.1016/j.neucom.2012.07.003_bib10 article-title: Discrimination of mesophilic and thermophilic proteins using machine learning algorithms publication-title: Proteins Struct. Funct. Bioinformatics doi: 10.1002/prot.21616 – volume: 277 start-page: 45765 year: 2002 ident: 10.1016/j.neucom.2012.07.003_bib18 article-title: Using functional domain composition and support vector machines for prediction of protein subcellular location publication-title: J. Biol. Chem. doi: 10.1074/jbc.M204161200 – year: 2010 ident: 10.1016/j.neucom.2012.07.003_bib30 – volume: 226 start-page: 373 year: 2004 ident: 10.1016/j.neucom.2012.07.003_bib23 article-title: Application of SVM to predict membrane protein types publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2003.08.015 – volume: 242 start-page: 941 year: 2006 ident: 10.1016/j.neucom.2012.07.003_bib5 article-title: Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2006.05.006 – volume: 30 start-page: 2248 year: 2009 ident: 10.1016/j.neucom.2012.07.003_bib17 article-title: Multiple classifier integration for the prediction of protein structural classes publication-title: J. Comput. Chem. doi: 10.1002/jcc.21230 – volume: 16 start-page: 906 year: 2000 ident: 10.1016/j.neucom.2012.07.003_bib2 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 21 start-page: 4223 year: 2005 ident: 10.1016/j.neucom.2012.07.003_bib21 article-title: Discrimination of outer membrane proteins using support vector machines publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti697  | 
    
| SSID | ssj0017129 | 
    
| Score | 2.0882702 | 
    
| Snippet | The Gaussian function or kernel (exp(−‖xi−xj‖2/β)) based algorithms are popularly applied in various computational biology researches. It is well known for its... | 
    
| SourceID | pascalfrancis crossref elsevier  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 307 | 
    
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Bioinformatics Biological and medical sciences Computer science; control theory; systems Exact sciences and technology Fundamental and applied biological sciences. Psychology Gaussian function similarity General aspects GFO Information systems. Data bases Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Memory organisation. Data processing Software Supervised learning Theoretical computing Unsupervised learning  | 
    
| Title | GFO: A data driven approach for optimizing the Gaussian function based similarity metric in computational biology | 
    
| URI | https://dx.doi.org/10.1016/j.neucom.2012.07.003 | 
    
| Volume | 99 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdQuUyaBoxNY0D1DruaJv6ICbcK0RbQ2GFM4hY5tiMV0bSj7YUDfzvvJU4F2gFp1-g5jvzs9-G89_sx9qMUlHeInJsgHVfeSW59mfIyJNrnqlJZRc3JP2-yyR91dafvtth51wtDZZXR9rc2vbHW8ckgruZgMZ0Ofic5TiJTtL2EZ6kIE1QpQywGJ8-bMo_UpKLF2xOak3TXPtfUeNVhTTUj6ARFA-HZUWf9654-LuwSF61q2S5euaDRLvsUY0cYtp-3x7ZC_ZntdLwMEI_pPvs7Hv06gyFQ9Sf4R7Jn0GGHAwapMEc7MZs-odcCjP9gbNdL6qUEcnKkKCDf5mGJQpj4YpwOMyLecjCtwTXTxStEiBhOX9jt6OL2fMIjtQJ3UmYrHqROvBBBaJvLUihrzKmyqXGYvZwaK6XLqswqjUdcCu2DSyphU1cRIHylS_mV9ep5Hb4xKFOTGe9VaQiazmO6oisVBG4NK6307oDJbkELF2HHif3ioejqy-6LVg0FqaFI6H-4PGB8M2rRwm68I286XRVvtk-BnuGdkf03qt1MJwwhGen8-3-_-pB9EA15Bl3YHLHe6nEdjjGEWZX9Zo_22fbw8npy8wLRLvK- | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHKhUUaCtCrQwB65mEz9iwg0hli3PA4vELXJsR1rEhi27e-mhv52ZxFmBekDqNRrHkceehzPzfYztl4LyDpFzE6TjyjvJrS9TXoZE-1xVKquoOfnqOhvcqfN7fb_ETrpeGCqrjLa_temNtY5PenE1e5PRqHeb5DiJTNH2Ep6lUh_YitLCUAZ28HdR55GaVLSAe0JzEu_655oirzrMqWgEvaBoMDw77qx__dOniZ3iqlUt3cUrH9RfZ2sxeITj9vs22FKoN9nnjpgB4jn9wn6f9W-O4Bio_BP8Mxk06MDDAaNUeEJDMR79QbcFGADCmZ1PqZkSyMuRpoCcm4cpCmHmi4E6jIl5y8GoBtdMF-8QIYI4fWXD_unwZMAjtwJ3UmYzHqROvBBBaJvLUihrzKGyqXGYvhwaK6XLqswqjWdcCu2DSyphU1cRInylS_mNLddPdfjOoExNZrxXpSFsOo_5iq5UELg3rLTSuy0muwUtXMQdJ_qLx6IrMHsoWjUUpIYioR_icovxxahJi7vxjrzpdFW82T8FuoZ3Ru6-Ue1iOmEIykjn2__96j22OhheXRaXv64vdthH0TBp0O3ND7Y8e56HnxjPzMrdZr--AHE29FM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GFO%3A+A+data+driven+approach+for+optimizing+the+Gaussian+function+based+similarity+metric+in+computational+biology&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=LEI%2C+Jian-Bo&rft.au=YIN%2C+Jiang-Bo&rft.au=SHEN%2C+Hong-Bin&rft.date=2013&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=99&rft.spage=307&rft.epage=315&rft_id=info:doi/10.1016%2Fj.neucom.2012.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=27097359 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |