Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna
•25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model inputs are not available.•Our GA generated equation using solar radiation and temperature as inputs showed good overall results. The Brazilian s...
        Saved in:
      
    
          | Published in | Agricultural water management Vol. 232; p. 106040 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.04.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-3774 1873-2283  | 
| DOI | 10.1016/j.agwat.2020.106040 | 
Cover
| Abstract | •25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model inputs are not available.•Our GA generated equation using solar radiation and temperature as inputs showed good overall results.
The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has affected its hydrological cycle and the availability of its water resources. Reference evapotranspiration (ETo) estimates are an important tool for water resources managements because they estimate the potential for atmospheric water loss. The Penman-Monteith method (FAO-PM) is recommended by FAO due to its consistent results in different regions and climates, but it requires a high data demand. Several empirical ETo methods with less inputs have been tested around the world, and machine learning approaches have been studied in the recent years. Therefore, in the present paper, 21 empirical methods, classified as mass transfer-based, radiation-based, temperature-based, or combination methods, and 4 equations generated by genetic algorithm (GA) were evaluated against the FAO-PM method. Radiation-based methods were more accurate than the others, especially De Bruin-Keijman and Priestley-Taylor methods, which were the two models with best performance. Mass transfer-based and temperature-based models were deemed unsuitable due to their high errors and low correlation when compared to the other ETo methods. Among the combination methods, the Copais method showed the fifth best result from all the empirical equations tested. The GA equations were generated based on our results, considering the mass transfer-based and temperature-based models, however only one equation, using air temperature and solar radiation as inputs, presented a performance as good as the best methods found in our study. Therefore, alternatives empirical equations and GA approach could meet ETo estimates similar to the FAO-PM method using less inputs. | 
    
|---|---|
| AbstractList | The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has affected its hydrological cycle and the availability of its water resources. Reference evapotranspiration (ETₒ) estimates are an important tool for water resources managements because they estimate the potential for atmospheric water loss. The Penman-Monteith method (FAO-PM) is recommended by FAO due to its consistent results in different regions and climates, but it requires a high data demand. Several empirical ETₒ methods with less inputs have been tested around the world, and machine learning approaches have been studied in the recent years. Therefore, in the present paper, 21 empirical methods, classified as mass transfer-based, radiation-based, temperature-based, or combination methods, and 4 equations generated by genetic algorithm (GA) were evaluated against the FAO-PM method. Radiation-based methods were more accurate than the others, especially De Bruin-Keijman and Priestley-Taylor methods, which were the two models with best performance. Mass transfer-based and temperature-based models were deemed unsuitable due to their high errors and low correlation when compared to the other ETₒ methods. Among the combination methods, the Copais method showed the fifth best result from all the empirical equations tested. The GA equations were generated based on our results, considering the mass transfer-based and temperature-based models, however only one equation, using air temperature and solar radiation as inputs, presented a performance as good as the best methods found in our study. Therefore, alternatives empirical equations and GA approach could meet ETₒ estimates similar to the FAO-PM method using less inputs. •25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model inputs are not available.•Our GA generated equation using solar radiation and temperature as inputs showed good overall results. The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has affected its hydrological cycle and the availability of its water resources. Reference evapotranspiration (ETo) estimates are an important tool for water resources managements because they estimate the potential for atmospheric water loss. The Penman-Monteith method (FAO-PM) is recommended by FAO due to its consistent results in different regions and climates, but it requires a high data demand. Several empirical ETo methods with less inputs have been tested around the world, and machine learning approaches have been studied in the recent years. Therefore, in the present paper, 21 empirical methods, classified as mass transfer-based, radiation-based, temperature-based, or combination methods, and 4 equations generated by genetic algorithm (GA) were evaluated against the FAO-PM method. Radiation-based methods were more accurate than the others, especially De Bruin-Keijman and Priestley-Taylor methods, which were the two models with best performance. Mass transfer-based and temperature-based models were deemed unsuitable due to their high errors and low correlation when compared to the other ETo methods. Among the combination methods, the Copais method showed the fifth best result from all the empirical equations tested. The GA equations were generated based on our results, considering the mass transfer-based and temperature-based models, however only one equation, using air temperature and solar radiation as inputs, presented a performance as good as the best methods found in our study. Therefore, alternatives empirical equations and GA approach could meet ETo estimates similar to the FAO-PM method using less inputs.  | 
    
| ArticleNumber | 106040 | 
    
| Author | Vourlitis, George L. Rodrigues, Thiago R. Valle Júnior, Luiz C.G. Gomes, Raphael S.R. de A. Lobo, Francisco de S. Nogueira, José Ventura, Thiago M.  | 
    
| Author_xml | – sequence: 1 givenname: Luiz C.G. surname: Valle Júnior fullname: Valle Júnior, Luiz C.G. organization: Programa de Pós-Graduação Tecnologias Ambientais, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil – sequence: 2 givenname: Thiago M. surname: Ventura fullname: Ventura, Thiago M. organization: Instituto de Computação, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil – sequence: 3 givenname: Raphael S.R. surname: Gomes fullname: Gomes, Raphael S.R. organization: Instituto de Computação, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil – sequence: 4 givenname: José surname: de S. Nogueira fullname: de S. Nogueira, José organization: Programa de Pós Graduação em Física Ambiental, Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil – sequence: 5 givenname: Francisco surname: de A. Lobo fullname: de A. Lobo, Francisco organization: Departamento de Agronomia e Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil – sequence: 6 givenname: George L. surname: Vourlitis fullname: Vourlitis, George L. organization: Biological Sciences Department, California State University, San Marcos, CA 92096, USA – sequence: 7 givenname: Thiago R. surname: Rodrigues fullname: Rodrigues, Thiago R. email: thiago.r.rodrigues@ufms.br organization: Laboratório de Ciências Atmosféricas (LCA), Instituto de Física, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil  | 
    
| BookMark | eNqFkD1P5DAQhq0TSOxy_AIalzRZ_JGLk4ICrfiSkGi42prYE_AqsXO2dxH8-vOyVFcc1Ugz7_NK8yzJkQ8eCTnnbMUZby43K3h5g7wSTOw3DavZD7LgrZKVEK08IgsmVVtJpeoTskxpw1iJ1GpBpnWYZoiQ3Q4ppIQpTegzDQOdgsVxREvBW4rT7KIzMNKIA0b0BinuYA45gk_lVhqCpxPm12ATHUKkQPsIH2504GmCHXgPP8nxAGPCs695Sn7f3jyv76vHp7uH9fVjZaRscmW5qutaSMkbq0QL0NWsERah-2V43XddPzCuUPbQGtkCk7bvhJCgmoExgyBPycWhd47hzxZT1pNLpnwDHsM2aSHbVqkiQZWoPERNDCmV5_Qc3QTxXXOm93L1Rn_K1Xu5-iC3UN0_lHH5U0Hx4cZv2KsDi8XAzmHUybi9UOsimqxtcP_l_wIaPJqZ | 
    
| CitedBy_id | crossref_primary_10_3390_ijerph192013127 crossref_primary_10_1016_j_envres_2024_118516 crossref_primary_10_1016_j_jhydrol_2022_128567 crossref_primary_10_3390_w14091491 crossref_primary_10_1007_s10661_020_08659_7 crossref_primary_10_1007_s42729_022_00795_y crossref_primary_10_3390_w13131763 crossref_primary_10_1016_j_jhydrol_2024_132084 crossref_primary_10_3390_w14193032 crossref_primary_10_1016_j_asr_2025_01_058 crossref_primary_10_1007_s00477_022_02209_y crossref_primary_10_1016_j_compag_2020_105577 crossref_primary_10_3390_w14010001 crossref_primary_10_1016_j_compag_2023_108327 crossref_primary_10_3390_hydrology9110206 crossref_primary_10_1016_j_ecolind_2023_110220 crossref_primary_10_1029_2020WR028752 crossref_primary_10_3390_agronomy12010031 crossref_primary_10_1016_j_agwat_2021_106815 crossref_primary_10_1016_j_jhydrol_2020_125241 crossref_primary_10_1007_s00704_024_05313_x crossref_primary_10_1007_s00704_020_03505_9 crossref_primary_10_31413_nat_v12i1_16528 crossref_primary_10_1016_j_jhydrol_2024_132130 crossref_primary_10_1016_j_scitotenv_2020_137562 crossref_primary_10_2166_wcc_2023_448 crossref_primary_10_1007_s10668_023_03234_9 crossref_primary_10_1080_02626667_2022_2063724 crossref_primary_10_1007_s10666_020_09746_2 crossref_primary_10_2166_wcc_2021_352 crossref_primary_10_1002_hyp_14571 crossref_primary_10_1016_j_agwat_2022_107882  | 
    
| Cites_doi | 10.1016/j.agrformet.2009.03.006 10.1007/s00704-014-1240-x 10.2166/nh.1984.0017 10.1002/2013JG002472 10.1007/s00704-004-0044-9 10.13031/2013.26773 10.1080/00045600903378960 10.1126/science.1111772 10.1016/j.agwat.2017.12.017 10.1007/s11269-009-9423-4 10.1002/hyp.9277 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 10.1016/j.agrformet.2006.08.020 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1080/03650340.2012.683425 10.1061/JRCEA4.0000287 10.1590/0001-3765201620150130 10.2307/210739 10.1016/j.agrformet.2015.12.060 10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2 10.1016/j.compag.2018.04.003 10.1590/S0102-77862011000200004 10.1590/0001-3765201620150176 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y 10.1061/(ASCE)0733-9437(2008)134:4(417) 10.1007/s00484-014-0837-1 10.1023/A:1015508322413 10.1111/j.1752-1688.1996.tb04044.x 10.1016/j.jhydrol.2016.11.059 10.1007/BF00120530 10.1007/s11269-015-0990-2 10.1007/BF02242718 10.1007/BF02245865 10.1016/j.jhydrol.2013.04.011 10.1016/j.compag.2017.05.002 10.1007/s11269-014-0813-x 10.1061/(ASCE)IR.1943-4774.0000502 10.1061/(ASCE)0733-9437(2007)133:2(83) 10.1016/j.jhydrol.2019.03.028 10.1016/j.jhydrol.2018.09.021 10.1016/j.jhydrol.2018.04.042 10.1007/s10661-009-0988-4 10.1590/S1415-43662003000200015 10.1016/j.apgeog.2015.01.017 10.1016/j.scitotenv.2018.03.356 10.1590/S1677-04202008000300007 10.1016/j.quaint.2017.01.023 10.1016/j.agwat.2008.01.009 10.1016/j.landusepol.2007.11.008 10.1016/j.jhydrol.2006.03.027 10.1016/j.jenvman.2016.11.010 10.1016/j.iswcr.2017.07.002 10.1111/j.1365-2486.1996.tb00073.x 10.1127/0941-2948/2013/0507 10.1016/j.jhydrol.2018.12.068 10.1016/j.agwat.2009.12.001 10.1016/S0378-3774(02)00172-5 10.1590/S1415-43662003000200013 10.13031/2013.36722 10.1016/S0168-1923(00)00105-2 10.1029/2006WR005526 10.1007/s00704-013-1070-2 10.1016/j.agrformet.2007.04.012 10.1029/2005GL024981 10.1002/2013WR015202 10.1007/BF00128405 10.1002/qj.49710644707 10.5897/IJWREE2018.0772 10.1016/j.jhydrol.2011.01.021 10.1016/j.jhydrol.2015.06.052 10.1007/s00271-011-0295-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.agwat.2020.106040 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| EISSN | 1873-2283 | 
    
| ExternalDocumentID | 10_1016_j_agwat_2020_106040 S0378377419314489  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HVGLF HZ~ R2- SEP SEW VH1 WUQ XPP ZMT ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c336t-d1744423316d728aa94062dea95c14b99bf017e3ba8c38a03db9223a76f00cea3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-3774 | 
    
| IngestDate | Thu Oct 02 07:48:58 EDT 2025 Thu Apr 24 22:50:48 EDT 2025 Thu Oct 16 04:25:50 EDT 2025 Fri Feb 23 02:48:30 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Reference evapotranspiration Comparative analysis cerrado Eddy covariance Limited data Genetic algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c336t-d1744423316d728aa94062dea95c14b99bf017e3ba8c38a03db9223a76f00cea3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 2388770007 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_2388770007 crossref_primary_10_1016_j_agwat_2020_106040 crossref_citationtrail_10_1016_j_agwat_2020_106040 elsevier_sciencedirect_doi_10_1016_j_agwat_2020_106040  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-04-01 2020-04-00 20200401  | 
    
| PublicationDateYYYYMMDD | 2020-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Agricultural water management | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Mitchell (bib0250) 1998 Rocha, Guerra, Azevedo (bib0280) 2003; 7 Hargreaves (bib0160) 1975; 18 Hutyra, Munger, Nobre, Saleska, Vieira, Wofsy (bib0180) 2005; 32 Webb, Pearman, Leuning (bib0415) 1980; 106 Rodrigues, Curado, Pereira, Sanches, Nogueira (bib0295) 2016; 88 Alexandris, Kerkides (bib0020) 2003; 60 Thornthwaite (bib0370) 1948; 38 Bourletsikas, Argyrokastritis, Proutsos (bib0055) 2017 Rodrigues, Vourlitis, Lobo, de, Santanna, de Arruda, Nogueira, de (bib0300) 2016; 218–219 Shiri (bib0340) 2019; 570 Aladenola, Madramootoo (bib0005) 2014; 118 Jovic, Nedeljkovic, Golubovic, Kostic (bib0200) 2018; 150 Zanetti, Sousa, Oliveira, Almeida, Bernardo (bib0445) 2007; 133 De Bruin, Keijman (bib0090) 1979; 18 Trajkovic, Kolakovic (bib0375) 2009; 23 Grace, Malhi, Lloyd, McIntyre, Miranda, Meir, Miranda (bib0150) 1996; 2 Jepson, Brannstrom, Filippi (bib0195) 2010; 100 Jensen, Haise (bib0190) 1963; 4 Willmott (bib0425) 1982; 63 Mahringer (bib0215) 1970; 18 WMO (bib0430) 1966 Caprio (bib0080) 1974 Allen, Pereira, Raes, Smith (bib0025) 1998 Sano, Rosa, Brito, Ferreira (bib0310) 2010; 166 Shiri (bib0335) 2018; 561 Beuchle, Grecchi, Shimabukuro, Seliger, Eva, Sano, Achard (bib0050) 2015; 58 Čadro, Uzunović, Žurovec, Žurovec (bib0070) 2017; 5 Silva, Gaio, Curado, Nogueira, Valle Júnior, Rodrigues (bib0345) 2019; 14 Tangune, Escobedo (bib0365) 2018; 10 Machado, Laurent, Dessay, Miranda (bib0210) 2004; 78 Popova, Kercheva, Pereira (bib0270) 2006; 55 Doorenbos, Pruitt (bib0105) 1977 Shahidian, Serralheiro, Serrano, Teixeira (bib0325) 2013; 27 Rodrigues, Vourlitis, Lobo, de Oliveira, Nogueira (bib0290) 2014; 119 Vourlitis, da Rocha (bib0395) 2011 Cai, Liu, Lei, Pereira (bib0075) 2007; 145 Faria, Rodrigues, Curado, Gaio, Nogueira (bib0115) 2018; 13 Singh, Xu (bib0350) 1997; 11 Feng, Cui, Zhao, Gong, Zhang (bib0120) 2017; 441 Brannstrom, Jepson, Filippi, Redo, Xu, Ganesh (bib0060) 2008; 25 Djaman, Irmak, Asce, Futakuchi (bib0100) 2016 Penman (bib0265) 1948; 193 Jabloun, Sahli (bib0185) 2008; 95 Sentelhas, Gillespie, Santos (bib0320) 2010; 97 Rodrigues, de Paulo, Novais, Curado, Nogueira, de Oliveira, Lobo, Vourlitis (bib0285) 2013; 2013 Zhang, Cui, Feng, Gong, Hu (bib0450) 2018; 566 Oliveira, Nearing, Moran, Goodrich, Wendland, Gupta (bib0260) 2014; 50 Kisi (bib0205) 2015; 528 McMillen (bib0235) 1988; 43 Betts, Desjardins, Worth (bib0045) 2007; 142 Foley, DeFries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (bib0130) 2005; 309 Curado, Musis, Cunha, Rodrigues, Pereira, Nogueira, Sanches (bib0085) 2016; 88 Tabari, Grismer, Trajkovic (bib0360) 2013; 31 Huo, Dai, Feng, Kang, Huang (bib0175) 2013; 492 Sobrinho, T, D.B.B, de, Rebucci, Pertussatti (bib0355) 2011; 26 Makkink (bib0220) 1957; 11 Romanenko (bib0305) 1961 Giambelluca, Scholz, Bucci, Meinzer, Goldstein, Hoffmann, Franco, Buchert (bib0140) 2009; 149 McGuinness, Bordne (bib0230) 1972 Xing, Chow, Meng, Rees, Monteith, Lionel (bib0435) 2008; 134 Mendonça, Sousa, Bernardo, Dias, Grippa (bib0245) 2003; 7 Priestley, Taylor (bib0275) 1972; 100 Dinpashoh, Jhajharia, Fakheri-Fard, Singh, Kahya (bib0095) 2011; 399 Vourlitis, de Souza Nogueira, de Almeida Lobo, Pinto (bib0405) 2015; 59 Wang, Kisi, Zounemat-Kermani, Li (bib0410) 2017; 544 Garcia, Sawakuchi, Ferreira, Ballester (bib0135) 2017; 187 Mattar (bib0225) 2018; 198 Vourlitis, De Souza Nogueira, De Almeida Lobo, Sendall, De Paulo, Antunes Dias, Pinto, De Andrade (bib0400) 2008; 44 Wen, Si, He, Wu, Shao, Yu (bib0420) 2015; 29 Droogers, Allen (bib0110) 2002; 16 Amarakoon, Chen, McLean (bib0035) 2000; 102 Abtew (bib0010) 1996; 32 Turc (bib0380) 1961; 12 Mehdizadeh, Behmanesh, Khalili (bib0240) 2017; 139 Bucci, Scholz, Goldstein, Meinzer, Franco, Zhang, Hao (bib0065) 2008; 20 Schuepp, Leclerc, MacPherson, Desjardins (bib0315) 1990; 50 Gong, Xu, Chen, Halldin, Chen (bib0145) 2006; 329 Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (bib0030) 2013; 22 Albrecht (bib0015) 1950; 2 Hargreaves, Samani (bib0165) 1985; 1 Holland (bib0170) 1975 Bautista, Bautista, Delgado-Carranza (bib0040) 2009; 22 Sharifi, Dinpashoh (bib0330) 2014; 28 Hansen (bib0155) 1984; 15 Nóbrega, Guzha, Lamparter, Amorim, Couto, Hughes, Jungkunst, Gerold (bib0255) 2018; 635 Ferreira, da Cunha, de Oliveira, Fernandes Filho (bib0125) 2019; 572 Valiantzas (bib0385) 2013; 139 Valipour (bib0390) 2015; 121 Xu, Peng, Ding, Wei, Yu (bib0440) 2013; 59 Webb (10.1016/j.agwat.2020.106040_bib0415) 1980; 106 McGuinness (10.1016/j.agwat.2020.106040_bib0230) 1972 Tangune (10.1016/j.agwat.2020.106040_bib0365) 2018; 10 Willmott (10.1016/j.agwat.2020.106040_bib0425) 1982; 63 Djaman (10.1016/j.agwat.2020.106040_bib0100) 2016 Sharifi (10.1016/j.agwat.2020.106040_bib0330) 2014; 28 Beuchle (10.1016/j.agwat.2020.106040_bib0050) 2015; 58 Gong (10.1016/j.agwat.2020.106040_bib0145) 2006; 329 Mendonça (10.1016/j.agwat.2020.106040_bib0245) 2003; 7 Garcia (10.1016/j.agwat.2020.106040_bib0135) 2017; 187 Zanetti (10.1016/j.agwat.2020.106040_bib0445) 2007; 133 Caprio (10.1016/j.agwat.2020.106040_bib0080) 1974 Shahidian (10.1016/j.agwat.2020.106040_bib0325) 2013; 27 Abtew (10.1016/j.agwat.2020.106040_bib0010) 1996; 32 Rodrigues (10.1016/j.agwat.2020.106040_bib0285) 2013; 2013 Sobrinho (10.1016/j.agwat.2020.106040_bib0355) 2011; 26 Valiantzas (10.1016/j.agwat.2020.106040_bib0385) 2013; 139 Curado (10.1016/j.agwat.2020.106040_bib0085) 2016; 88 Sentelhas (10.1016/j.agwat.2020.106040_bib0320) 2010; 97 Alexandris (10.1016/j.agwat.2020.106040_bib0020) 2003; 60 Amarakoon (10.1016/j.agwat.2020.106040_bib0035) 2000; 102 Albrecht (10.1016/j.agwat.2020.106040_bib0015) 1950; 2 Valipour (10.1016/j.agwat.2020.106040_bib0390) 2015; 121 Aladenola (10.1016/j.agwat.2020.106040_bib0005) 2014; 118 Romanenko (10.1016/j.agwat.2020.106040_bib0305) 1961 Sano (10.1016/j.agwat.2020.106040_bib0310) 2010; 166 Priestley (10.1016/j.agwat.2020.106040_bib0275) 1972; 100 Betts (10.1016/j.agwat.2020.106040_bib0045) 2007; 142 Rodrigues (10.1016/j.agwat.2020.106040_bib0290) 2014; 119 Tabari (10.1016/j.agwat.2020.106040_bib0360) 2013; 31 Hargreaves (10.1016/j.agwat.2020.106040_bib0160) 1975; 18 Hansen (10.1016/j.agwat.2020.106040_bib0155) 1984; 15 Silva (10.1016/j.agwat.2020.106040_bib0345) 2019; 14 Brannstrom (10.1016/j.agwat.2020.106040_bib0060) 2008; 25 Huo (10.1016/j.agwat.2020.106040_bib0175) 2013; 492 Wang (10.1016/j.agwat.2020.106040_bib0410) 2017; 544 Jepson (10.1016/j.agwat.2020.106040_bib0195) 2010; 100 Machado (10.1016/j.agwat.2020.106040_bib0210) 2004; 78 Xing (10.1016/j.agwat.2020.106040_bib0435) 2008; 134 Rodrigues (10.1016/j.agwat.2020.106040_bib0295) 2016; 88 Ferreira (10.1016/j.agwat.2020.106040_bib0125) 2019; 572 Makkink (10.1016/j.agwat.2020.106040_bib0220) 1957; 11 Holland (10.1016/j.agwat.2020.106040_bib0170) 1975 Jensen (10.1016/j.agwat.2020.106040_bib0190) 1963; 4 Doorenbos (10.1016/j.agwat.2020.106040_bib0105) 1977 Schuepp (10.1016/j.agwat.2020.106040_bib0315) 1990; 50 Nóbrega (10.1016/j.agwat.2020.106040_bib0255) 2018; 635 Vourlitis (10.1016/j.agwat.2020.106040_bib0395) 2011 Jabloun (10.1016/j.agwat.2020.106040_bib0185) 2008; 95 Jovic (10.1016/j.agwat.2020.106040_bib0200) 2018; 150 Cai (10.1016/j.agwat.2020.106040_bib0075) 2007; 145 Shiri (10.1016/j.agwat.2020.106040_bib0335) 2018; 561 Oliveira (10.1016/j.agwat.2020.106040_bib0260) 2014; 50 Thornthwaite (10.1016/j.agwat.2020.106040_bib0370) 1948; 38 Mitchell (10.1016/j.agwat.2020.106040_bib0250) 1998 Vourlitis (10.1016/j.agwat.2020.106040_bib0405) 2015; 59 Kisi (10.1016/j.agwat.2020.106040_bib0205) 2015; 528 Giambelluca (10.1016/j.agwat.2020.106040_bib0140) 2009; 149 De Bruin (10.1016/j.agwat.2020.106040_bib0090) 1979; 18 Bourletsikas (10.1016/j.agwat.2020.106040_bib0055) 2017 Mattar (10.1016/j.agwat.2020.106040_bib0225) 2018; 198 Grace (10.1016/j.agwat.2020.106040_bib0150) 1996; 2 Mehdizadeh (10.1016/j.agwat.2020.106040_bib0240) 2017; 139 Trajkovic (10.1016/j.agwat.2020.106040_bib0375) 2009; 23 Hargreaves (10.1016/j.agwat.2020.106040_bib0165) 1985; 1 Vourlitis (10.1016/j.agwat.2020.106040_bib0400) 2008; 44 Rocha (10.1016/j.agwat.2020.106040_bib0280) 2003; 7 Wen (10.1016/j.agwat.2020.106040_bib0420) 2015; 29 Bautista (10.1016/j.agwat.2020.106040_bib0040) 2009; 22 Xu (10.1016/j.agwat.2020.106040_bib0440) 2013; 59 Čadro (10.1016/j.agwat.2020.106040_bib0070) 2017; 5 Singh (10.1016/j.agwat.2020.106040_bib0350) 1997; 11 Mahringer (10.1016/j.agwat.2020.106040_bib0215) 1970; 18 Turc (10.1016/j.agwat.2020.106040_bib0380) 1961; 12 Zhang (10.1016/j.agwat.2020.106040_bib0450) 2018; 566 Shiri (10.1016/j.agwat.2020.106040_bib0340) 2019; 570 McMillen (10.1016/j.agwat.2020.106040_bib0235) 1988; 43 Dinpashoh (10.1016/j.agwat.2020.106040_bib0095) 2011; 399 Alvares (10.1016/j.agwat.2020.106040_bib0030) 2013; 22 Popova (10.1016/j.agwat.2020.106040_bib0270) 2006; 55 Foley (10.1016/j.agwat.2020.106040_bib0130) 2005; 309 Faria (10.1016/j.agwat.2020.106040_bib0115) 2018; 13 Rodrigues (10.1016/j.agwat.2020.106040_bib0300) 2016; 218–219 Hutyra (10.1016/j.agwat.2020.106040_bib0180) 2005; 32 Allen (10.1016/j.agwat.2020.106040_bib0025) 1998 Droogers (10.1016/j.agwat.2020.106040_bib0110) 2002; 16 Bucci (10.1016/j.agwat.2020.106040_bib0065) 2008; 20 Feng (10.1016/j.agwat.2020.106040_bib0120) 2017; 441 Penman (10.1016/j.agwat.2020.106040_bib0265) 1948; 193 WMO (10.1016/j.agwat.2020.106040_bib0430) 1966  | 
    
| References_xml | – volume: 149 start-page: 1365 year: 2009 end-page: 1376 ident: bib0140 article-title: Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density publication-title: Agric. For. Meteorol. – volume: 55 start-page: 201 year: 2006 end-page: 215 ident: bib0270 article-title: Validation of the FAO methodology for computing ETo with limited data publication-title: Application to south Bulgaria. Irrig. Drain. – volume: 88 start-page: 2195 year: 2016 end-page: 2209 ident: bib0295 article-title: Hourly interaction between wind speed and energy fluxes in Brazilian wetlands - Mato Grosso - Brazil publication-title: An. Acad. Bras. Cienc. – start-page: 97 year: 2011 end-page: 116 ident: bib0395 article-title: Flux dynamics in the cerrado and cerrado – Forest transition of Brazil publication-title: Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape to Global Scales. – volume: 59 start-page: 217 year: 2015 end-page: 230 ident: bib0405 article-title: Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles publication-title: Int. J. Biometeorol. – year: 1966 ident: bib0430 article-title: Measurement and Estimation of Evaporation and Evapotranspiration. – volume: 88 start-page: 1387 year: 2016 end-page: 1395 ident: bib0085 article-title: Modeling the reflection of Photosynthetically active radiation in a monodominant floodable forest in the Pantanal of Mato Grosso State using multivariate statistics and neural networks publication-title: An. Acad. Bras. Cienc. – volume: 11 start-page: 277 year: 1957 end-page: 288 ident: bib0220 article-title: Testing the Penman formula by means of lysimeters publication-title: J. Inst. Water Eng. – volume: 492 start-page: 24 year: 2013 end-page: 34 ident: bib0175 article-title: Effect of climate change on reference evapotranspiration and aridity index in arid region of China publication-title: J. Hydrol. – volume: 38 start-page: 55 year: 1948 ident: bib0370 article-title: An approach toward a rational classification of climate publication-title: Geogr. Rev. – volume: 100 start-page: 87 year: 2010 end-page: 111 ident: bib0195 article-title: Access regimes and regional land change in the brazilian cerrado, 1972–2002 publication-title: Ann. Assoc. Am. Geogr. – volume: 399 start-page: 422 year: 2011 end-page: 433 ident: bib0095 article-title: Trends in reference crop evapotranspiration over Iran publication-title: J. Hydrol. – volume: 29 start-page: 3195 year: 2015 end-page: 3209 ident: bib0420 article-title: Support-vector-Machine-Based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions publication-title: Water Resour. Manag. – volume: 566 start-page: 264 year: 2018 end-page: 273 ident: bib0450 article-title: Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China publication-title: J. Hydrol. – volume: 150 start-page: 1 year: 2018 end-page: 4 ident: bib0200 article-title: Evolutionary algorithm for reference evapotranspiration analysis publication-title: Comput. Electron. Agric. – year: 1998 ident: bib0250 article-title: An Introduction to Genetic Algorithms – volume: 2 start-page: 1 year: 1950 end-page: 38 ident: bib0015 article-title: Die Methoden Zur Bestimmung Der Verdunstung der natürlichen erdoberfläche publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B – year: 1972 ident: bib0230 article-title: A Comparion of Lysimeter- Derived Potential Evapotranspiration With Computed Values – volume: 7 start-page: 263 year: 2003 end-page: 268 ident: bib0280 article-title: Ajuste do modelo Chistiansen-Hargreaves para estimativa da evapotranspiração do feijão no cerrado publication-title: Rev. Bras. Eng. Agrícola e Ambient. – volume: 60 start-page: 157 year: 2003 end-page: 180 ident: bib0020 article-title: New empirical formula for hourly estimations of reference evapotranspiration publication-title: Agric. Water Manag. – volume: 15 start-page: 205 year: 1984 end-page: 212 ident: bib0155 article-title: Estimation of potential and actual evapotranspiration publication-title: Hydrol. Res. – volume: 133 start-page: 83 year: 2007 end-page: 89 ident: bib0445 article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data publication-title: J. Irrig. Drain. Eng. – volume: 2 start-page: 209 year: 1996 end-page: 217 ident: bib0150 article-title: The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest publication-title: Glob. Chang. Biol. – volume: 18 start-page: 1 year: 1970 end-page: 20 ident: bib0215 article-title: Verdunstungsstudien am neusiedler see publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B – volume: 32 start-page: 465 year: 1996 end-page: 473 ident: bib0010 article-title: Evapotranspiration measurements and modeling for three wetland systems in South Florida publication-title: J. Am. Water Resour. Assoc. – volume: 23 start-page: 3057 year: 2009 end-page: 3067 ident: bib0375 article-title: Evaluation of reference evapotranspiration equations under humid conditions publication-title: Water Resour. Manag. – year: 1977 ident: bib0105 article-title: Guidelines for Predicting Crop Water Requirements – volume: 11 start-page: 311 year: 1997 end-page: 323 ident: bib0350 article-title: Evaluation and generalization of 13 mass‐transfer equations for determining free water evaporation publication-title: Hydrol. Process. – volume: 28 start-page: 5465 year: 2014 end-page: 5476 ident: bib0330 article-title: Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran publication-title: Water Resour. Manag. – volume: 145 start-page: 22 year: 2007 end-page: 35 ident: bib0075 article-title: Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages publication-title: Agric. For. Meteorol. – volume: 635 start-page: 259 year: 2018 end-page: 274 ident: bib0255 article-title: Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes publication-title: Sci. Total Environ. – volume: 572 start-page: 556 year: 2019 end-page: 570 ident: bib0125 article-title: Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach publication-title: J. Hydrol. – volume: 50 start-page: 7100 year: 2014 end-page: 7114 ident: bib0260 article-title: Trends in water balance components across the Brazilian Cerrado publication-title: Water Resour. Res. – volume: 18 start-page: 898 year: 1979 end-page: 903 ident: bib0090 article-title: The priestley-taylor evaporation model applied to a large, Shallow Lake in the Netherlands publication-title: J. Appl. Meteorol. Climatol. – volume: 43 start-page: 231 year: 1988 end-page: 245 ident: bib0235 article-title: An eddy correlation technique with extended applicability to non-simple terrain publication-title: Boundary-Layer Meteorol. – volume: 2013 start-page: 1 year: 2013 end-page: 9 ident: bib0285 article-title: Temporal patterns of energy balance for a brazilian tropical savanna under contrasting seasonal conditions publication-title: Int. J. Atmos. Sci. – volume: 570 start-page: 265 year: 2019 end-page: 280 ident: bib0340 article-title: Modeling reference evapotranspiration in island environments: assessing the practical implications publication-title: J. Hydrol. – volume: 7 start-page: 275 year: 2003 end-page: 279 ident: bib0245 article-title: Comparação entre métodos de estimativa da evapotranspiração de referência (ETo) na região Norte Fluminense publication-title: RJ. Rev. Bras. Eng. Agrícola e Ambient. – volume: 22 start-page: 331 year: 2009 end-page: 348 ident: bib0040 article-title: Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications publication-title: Atmosfera – year: 1975 ident: bib0170 article-title: Adaptation in Natural and Artificial Systems – volume: 95 start-page: 707 year: 2008 end-page: 715 ident: bib0185 article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data publication-title: Application Tunisia. Agric. Water Manag. – volume: 31 start-page: 107 year: 2013 end-page: 117 ident: bib0360 article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions publication-title: Irrig. Sci. – volume: 528 start-page: 312 year: 2015 end-page: 320 ident: bib0205 article-title: Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree publication-title: J. Hydrol. – volume: 12 start-page: 13 year: 1961 end-page: 49 ident: bib0380 article-title: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date publication-title: Ann. Agron. – volume: 198 start-page: 28 year: 2018 end-page: 38 ident: bib0225 article-title: Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt publication-title: Agric. Water Manag. – volume: 121 start-page: 267 year: 2015 end-page: 278 ident: bib0390 article-title: Investigation of Valiantzas’ evapotranspiration equation in Iran publication-title: Theor. Appl. Climatol. – volume: 63 start-page: 1309 year: 1982 end-page: 1313 ident: bib0425 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorol. Soc. – start-page: 353 year: 1974 end-page: 364 ident: bib0080 article-title: The solar thermal unit concept in problems related to plant development and potential evapotranspiration publication-title: Phenology and Seasonality Modeling – volume: 14 start-page: 1 year: 2019 ident: bib0345 article-title: Evaluation of methods for estimating atmospheric emissivity in Mato-Grossense Cerrado publication-title: Ambient. e Agua - An Interdiscip. J. Appl. Sci. – volume: 544 start-page: 407 year: 2017 end-page: 427 ident: bib0410 article-title: Pan evaporation modeling using six different heuristic computing methods in different climates of China publication-title: J. Hydrol. – volume: 25 start-page: 579 year: 2008 end-page: 595 ident: bib0060 article-title: Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy publication-title: Land Use Policy – volume: 50 start-page: 355 year: 1990 end-page: 373 ident: bib0315 article-title: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation publication-title: Boundary-Layer Meteorol. – volume: 20 start-page: 233 year: 2008 end-page: 245 ident: bib0065 article-title: Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand publication-title: Brazilian J. Plant Physiol. – volume: 78 start-page: 61 year: 2004 end-page: 77 ident: bib0210 article-title: Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing publication-title: Theor. Appl. Climatol. – volume: 193 start-page: 120 year: 1948 end-page: 145 ident: bib0265 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 26 start-page: 197 year: 2011 end-page: 203 ident: bib0355 article-title: Estimativa da evapotranspiração de referência através de redes neurais artificiais publication-title: Rev. Bras. Meteorol. – volume: 58 start-page: 116 year: 2015 end-page: 127 ident: bib0050 article-title: Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach publication-title: Appl. Geogr. – volume: 1 start-page: 96 year: 1985 end-page: 99 ident: bib0165 article-title: Reference crop evapotranspiration from temperature publication-title: Appl. Eng. Agric. – volume: 44 start-page: 1 year: 2008 end-page: 14 ident: bib0400 article-title: Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin publication-title: Water Resour. Res. – volume: 218–219 start-page: 218 year: 2016 end-page: 229 ident: bib0300 article-title: Modeling canopy conductance under contrasting seasonal conditions for a tropical savanna ecosystem of south central Mato Grosso, Brazil publication-title: Agric. For. Meteorol. – year: 2017 ident: bib0055 article-title: Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest publication-title: Hydrol. Res – volume: 139 start-page: 9 year: 2013 end-page: 19 ident: bib0385 article-title: Simple ET0 forms of Penman’s equation without wind and/or humidity data. II: comparisons with reduced Set-FAO and other methodologies publication-title: J. Irrig. Drain. Eng. – start-page: 1 year: 2016 end-page: 13 ident: bib0100 article-title: Daily reference evapotranspiration estimation under limited data in Eastern Africa publication-title: J. Irrig. Drain. Eng. – volume: 13 start-page: 1 year: 2018 ident: bib0115 article-title: Surface albedo in different land-use and cover types in Amazon forest region. Ambient. E Agua - an Interdiscip publication-title: J. Appl. Sci. – volume: 102 start-page: 113 year: 2000 end-page: 124 ident: bib0035 article-title: Estimating daytime latent heat flux and evapotranspiration in Jamaica publication-title: Agric. For. Meteorol. – volume: 18 start-page: 0980 year: 1975 end-page: 0984 ident: bib0160 article-title: Moisture availability and crop production publication-title: Trans. ASAE – volume: 119 start-page: 1 year: 2014 end-page: 13 ident: bib0290 article-title: Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso publication-title: Brazil. J. Geophys. Res. Biogeosciences – volume: 139 start-page: 103 year: 2017 end-page: 114 ident: bib0240 article-title: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration publication-title: Comput. Electron. Agric. – volume: 97 start-page: 635 year: 2010 end-page: 644 ident: bib0320 article-title: Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada publication-title: Agric. Water Manag. – volume: 32 year: 2005 ident: bib0180 article-title: Climatic variability and vegetation vulnerability in Amazônia publication-title: Geophys. Res. Lett. – year: 1998 ident: bib0025 article-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements – volume: 118 start-page: 377 year: 2014 end-page: 385 ident: bib0005 article-title: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada publication-title: Theor. Appl. Climatol. – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: bib0030 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift – volume: 441 start-page: 129 year: 2017 end-page: 139 ident: bib0120 article-title: Spatiotemporal variation of reference evapotranspiration during 1954–2013 in Southwest China publication-title: Quat. Int. – volume: 106 start-page: 85 year: 1980 end-page: 100 ident: bib0415 article-title: Correction of flux measurements for density effects due to heat and water vapour transfer publication-title: Q. J. R. Meteorol. Soc. – volume: 142 start-page: 156 year: 2007 end-page: 169 ident: bib0045 article-title: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS publication-title: Agric. For. Meteorol. – volume: 309 start-page: 570 year: 2005 end-page: 574 ident: bib0130 article-title: Global consequences of land use publication-title: Science – volume: 561 start-page: 737 year: 2018 end-page: 750 ident: bib0335 article-title: Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology publication-title: J. Hydrol. – volume: 59 start-page: 845 year: 2013 end-page: 858 ident: bib0440 article-title: Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China publication-title: Arch. Agron. Soil Sci. – volume: 5 start-page: 309 year: 2017 end-page: 324 ident: bib0070 article-title: Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina publication-title: Int. Soil Water Conserv. Res. – volume: 16 start-page: 33 year: 2002 end-page: 45 ident: bib0110 article-title: Estimating reference evapotranspiration under inaccurate data conditions publication-title: Irrig. Drain. Syst. Eng. – volume: 134 start-page: 417 year: 2008 end-page: 424 ident: bib0435 article-title: Testing reference evapotranspiration estimation methods using evaporation Pan and modeling in maritime region of Canada publication-title: J. Irrig. Drain. Eng. – volume: 4 start-page: 15 year: 1963 end-page: 41 ident: bib0190 article-title: Estimating evapotranspiration from solar radiation publication-title: J. Irrig. Drain. Eng. – volume: 100 start-page: 81 year: 1972 end-page: 92 ident: bib0275 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. – volume: 187 start-page: 16 year: 2017 end-page: 23 ident: bib0135 article-title: Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: the role of protected areas in the maintenance of native vegetation publication-title: J. Environ. Manage. – volume: 166 start-page: 113 year: 2010 end-page: 124 ident: bib0310 article-title: Land cover mapping of the tropical savanna region in Brazil publication-title: Environ. Monit. Assess. – volume: 329 start-page: 620 year: 2006 end-page: 629 ident: bib0145 article-title: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin publication-title: J. Hydrol. – volume: 27 start-page: 605 year: 2013 end-page: 616 ident: bib0325 article-title: Parametric calibration of the Hargreaves-Samani equation for use at new locations publication-title: Hydrol. Process. – volume: 10 start-page: 33 year: 2018 end-page: 44 ident: bib0365 article-title: Reference evapotranspiration in so Paulo State: empirical methods and machine learning techniques publication-title: Int. J. Water Resour. Environ. Eng. – start-page: 12 year: 1961 end-page: 25 ident: bib0305 article-title: Computation of the autumn soil moisture using a universal relationship for a large area publication-title: Proc. Ukr. Hydrometeorol. Res. Inst. – volume: 149 start-page: 1365 year: 2009 ident: 10.1016/j.agwat.2020.106040_bib0140 article-title: Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.03.006 – volume: 121 start-page: 267 year: 2015 ident: 10.1016/j.agwat.2020.106040_bib0390 article-title: Investigation of Valiantzas’ evapotranspiration equation in Iran publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-014-1240-x – volume: 15 start-page: 205 year: 1984 ident: 10.1016/j.agwat.2020.106040_bib0155 article-title: Estimation of potential and actual evapotranspiration publication-title: Hydrol. Res. doi: 10.2166/nh.1984.0017 – volume: 119 start-page: 1 year: 2014 ident: 10.1016/j.agwat.2020.106040_bib0290 article-title: Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso publication-title: Brazil. J. Geophys. Res. Biogeosciences doi: 10.1002/2013JG002472 – volume: 78 start-page: 61 year: 2004 ident: 10.1016/j.agwat.2020.106040_bib0210 article-title: Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-004-0044-9 – year: 1998 ident: 10.1016/j.agwat.2020.106040_bib0025 – volume: 1 start-page: 96 year: 1985 ident: 10.1016/j.agwat.2020.106040_bib0165 article-title: Reference crop evapotranspiration from temperature publication-title: Appl. Eng. Agric. doi: 10.13031/2013.26773 – volume: 100 start-page: 87 year: 2010 ident: 10.1016/j.agwat.2020.106040_bib0195 article-title: Access regimes and regional land change in the brazilian cerrado, 1972–2002 publication-title: Ann. Assoc. Am. Geogr. doi: 10.1080/00045600903378960 – volume: 309 start-page: 570 issue: 80 year: 2005 ident: 10.1016/j.agwat.2020.106040_bib0130 article-title: Global consequences of land use publication-title: Science doi: 10.1126/science.1111772 – volume: 198 start-page: 28 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0225 article-title: Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2017.12.017 – volume: 23 start-page: 3057 year: 2009 ident: 10.1016/j.agwat.2020.106040_bib0375 article-title: Evaluation of reference evapotranspiration equations under humid conditions publication-title: Water Resour. Manag. doi: 10.1007/s11269-009-9423-4 – volume: 27 start-page: 605 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0325 article-title: Parametric calibration of the Hargreaves-Samani equation for use at new locations publication-title: Hydrol. Process. doi: 10.1002/hyp.9277 – volume: 63 start-page: 1309 year: 1982 ident: 10.1016/j.agwat.2020.106040_bib0425 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 – start-page: 353 year: 1974 ident: 10.1016/j.agwat.2020.106040_bib0080 article-title: The solar thermal unit concept in problems related to plant development and potential evapotranspiration – volume: 142 start-page: 156 year: 2007 ident: 10.1016/j.agwat.2020.106040_bib0045 article-title: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.08.020 – volume: 100 start-page: 81 year: 1972 ident: 10.1016/j.agwat.2020.106040_bib0275 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume: 55 start-page: 201 year: 2006 ident: 10.1016/j.agwat.2020.106040_bib0270 article-title: Validation of the FAO methodology for computing ETo with limited data publication-title: Application to south Bulgaria. Irrig. Drain. – volume: 59 start-page: 845 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0440 article-title: Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2012.683425 – volume: 4 start-page: 15 year: 1963 ident: 10.1016/j.agwat.2020.106040_bib0190 article-title: Estimating evapotranspiration from solar radiation publication-title: J. Irrig. Drain. Eng. doi: 10.1061/JRCEA4.0000287 – volume: 88 start-page: 2195 year: 2016 ident: 10.1016/j.agwat.2020.106040_bib0295 article-title: Hourly interaction between wind speed and energy fluxes in Brazilian wetlands - Mato Grosso - Brazil publication-title: An. Acad. Bras. Cienc. doi: 10.1590/0001-3765201620150130 – volume: 38 start-page: 55 year: 1948 ident: 10.1016/j.agwat.2020.106040_bib0370 article-title: An approach toward a rational classification of climate publication-title: Geogr. Rev. doi: 10.2307/210739 – volume: 218–219 start-page: 218 year: 2016 ident: 10.1016/j.agwat.2020.106040_bib0300 article-title: Modeling canopy conductance under contrasting seasonal conditions for a tropical savanna ecosystem of south central Mato Grosso, Brazil publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.12.060 – year: 2017 ident: 10.1016/j.agwat.2020.106040_bib0055 article-title: Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest publication-title: Hydrol. Res – volume: 18 start-page: 898 year: 1979 ident: 10.1016/j.agwat.2020.106040_bib0090 article-title: The priestley-taylor evaporation model applied to a large, Shallow Lake in the Netherlands publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2 – volume: 150 start-page: 1 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0200 article-title: Evolutionary algorithm for reference evapotranspiration analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.04.003 – volume: 26 start-page: 197 year: 2011 ident: 10.1016/j.agwat.2020.106040_bib0355 article-title: Estimativa da evapotranspiração de referência através de redes neurais artificiais publication-title: Rev. Bras. Meteorol. doi: 10.1590/S0102-77862011000200004 – volume: 88 start-page: 1387 year: 2016 ident: 10.1016/j.agwat.2020.106040_bib0085 article-title: Modeling the reflection of Photosynthetically active radiation in a monodominant floodable forest in the Pantanal of Mato Grosso State using multivariate statistics and neural networks publication-title: An. Acad. Bras. Cienc. doi: 10.1590/0001-3765201620150176 – start-page: 1 year: 2016 ident: 10.1016/j.agwat.2020.106040_bib0100 article-title: Daily reference evapotranspiration estimation under limited data in Eastern Africa publication-title: J. Irrig. Drain. Eng. – volume: 11 start-page: 311 year: 1997 ident: 10.1016/j.agwat.2020.106040_bib0350 article-title: Evaluation and generalization of 13 mass‐transfer equations for determining free water evaporation publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y – volume: 134 start-page: 417 year: 2008 ident: 10.1016/j.agwat.2020.106040_bib0435 article-title: Testing reference evapotranspiration estimation methods using evaporation Pan and modeling in maritime region of Canada publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2008)134:4(417) – year: 1975 ident: 10.1016/j.agwat.2020.106040_bib0170 – volume: 59 start-page: 217 year: 2015 ident: 10.1016/j.agwat.2020.106040_bib0405 article-title: Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-014-0837-1 – volume: 16 start-page: 33 year: 2002 ident: 10.1016/j.agwat.2020.106040_bib0110 article-title: Estimating reference evapotranspiration under inaccurate data conditions publication-title: Irrig. Drain. Syst. Eng. doi: 10.1023/A:1015508322413 – volume: 32 start-page: 465 year: 1996 ident: 10.1016/j.agwat.2020.106040_bib0010 article-title: Evapotranspiration measurements and modeling for three wetland systems in South Florida publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1996.tb04044.x – volume: 544 start-page: 407 year: 2017 ident: 10.1016/j.agwat.2020.106040_bib0410 article-title: Pan evaporation modeling using six different heuristic computing methods in different climates of China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.059 – volume: 50 start-page: 355 year: 1990 ident: 10.1016/j.agwat.2020.106040_bib0315 article-title: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation publication-title: Boundary-Layer Meteorol. doi: 10.1007/BF00120530 – volume: 29 start-page: 3195 year: 2015 ident: 10.1016/j.agwat.2020.106040_bib0420 article-title: Support-vector-Machine-Based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0990-2 – volume: 2 start-page: 1 year: 1950 ident: 10.1016/j.agwat.2020.106040_bib0015 article-title: Die Methoden Zur Bestimmung Der Verdunstung der natürlichen erdoberfläche publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B doi: 10.1007/BF02242718 – volume: 18 start-page: 1 year: 1970 ident: 10.1016/j.agwat.2020.106040_bib0215 article-title: Verdunstungsstudien am neusiedler see publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B doi: 10.1007/BF02245865 – volume: 492 start-page: 24 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0175 article-title: Effect of climate change on reference evapotranspiration and aridity index in arid region of China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.04.011 – volume: 139 start-page: 103 year: 2017 ident: 10.1016/j.agwat.2020.106040_bib0240 article-title: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.05.002 – volume: 14 start-page: 1 year: 2019 ident: 10.1016/j.agwat.2020.106040_bib0345 article-title: Evaluation of methods for estimating atmospheric emissivity in Mato-Grossense Cerrado publication-title: Ambient. e Agua - An Interdiscip. J. Appl. Sci. – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0115 article-title: Surface albedo in different land-use and cover types in Amazon forest region. Ambient. E Agua - an Interdiscip publication-title: J. Appl. Sci. – volume: 28 start-page: 5465 year: 2014 ident: 10.1016/j.agwat.2020.106040_bib0330 article-title: Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0813-x – year: 1966 ident: 10.1016/j.agwat.2020.106040_bib0430 – volume: 193 start-page: 120 year: 1948 ident: 10.1016/j.agwat.2020.106040_bib0265 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 139 start-page: 9 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0385 article-title: Simple ET0 forms of Penman’s equation without wind and/or humidity data. II: comparisons with reduced Set-FAO and other methodologies publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000502 – volume: 133 start-page: 83 year: 2007 ident: 10.1016/j.agwat.2020.106040_bib0445 article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:2(83) – volume: 572 start-page: 556 year: 2019 ident: 10.1016/j.agwat.2020.106040_bib0125 article-title: Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.028 – volume: 566 start-page: 264 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0450 article-title: Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.021 – volume: 561 start-page: 737 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0335 article-title: Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.042 – start-page: 97 year: 2011 ident: 10.1016/j.agwat.2020.106040_bib0395 article-title: Flux dynamics in the cerrado and cerrado – Forest transition of Brazil – volume: 22 start-page: 331 year: 2009 ident: 10.1016/j.agwat.2020.106040_bib0040 article-title: Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications publication-title: Atmosfera – volume: 166 start-page: 113 year: 2010 ident: 10.1016/j.agwat.2020.106040_bib0310 article-title: Land cover mapping of the tropical savanna region in Brazil publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-009-0988-4 – volume: 12 start-page: 13 year: 1961 ident: 10.1016/j.agwat.2020.106040_bib0380 article-title: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date publication-title: Ann. Agron. – year: 1972 ident: 10.1016/j.agwat.2020.106040_bib0230 – volume: 7 start-page: 275 year: 2003 ident: 10.1016/j.agwat.2020.106040_bib0245 article-title: Comparação entre métodos de estimativa da evapotranspiração de referência (ETo) na região Norte Fluminense publication-title: RJ. Rev. Bras. Eng. Agrícola e Ambient. doi: 10.1590/S1415-43662003000200015 – volume: 58 start-page: 116 year: 2015 ident: 10.1016/j.agwat.2020.106040_bib0050 article-title: Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2015.01.017 – volume: 635 start-page: 259 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0255 article-title: Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.356 – volume: 20 start-page: 233 year: 2008 ident: 10.1016/j.agwat.2020.106040_bib0065 article-title: Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand publication-title: Brazilian J. Plant Physiol. doi: 10.1590/S1677-04202008000300007 – volume: 441 start-page: 129 year: 2017 ident: 10.1016/j.agwat.2020.106040_bib0120 article-title: Spatiotemporal variation of reference evapotranspiration during 1954–2013 in Southwest China publication-title: Quat. Int. doi: 10.1016/j.quaint.2017.01.023 – volume: 95 start-page: 707 year: 2008 ident: 10.1016/j.agwat.2020.106040_bib0185 article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data publication-title: Application Tunisia. Agric. Water Manag. doi: 10.1016/j.agwat.2008.01.009 – volume: 25 start-page: 579 year: 2008 ident: 10.1016/j.agwat.2020.106040_bib0060 article-title: Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy publication-title: Land Use Policy doi: 10.1016/j.landusepol.2007.11.008 – volume: 329 start-page: 620 year: 2006 ident: 10.1016/j.agwat.2020.106040_bib0145 article-title: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.03.027 – volume: 187 start-page: 16 year: 2017 ident: 10.1016/j.agwat.2020.106040_bib0135 article-title: Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: the role of protected areas in the maintenance of native vegetation publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.11.010 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0285 article-title: Temporal patterns of energy balance for a brazilian tropical savanna under contrasting seasonal conditions publication-title: Int. J. Atmos. Sci. – volume: 5 start-page: 309 year: 2017 ident: 10.1016/j.agwat.2020.106040_bib0070 article-title: Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2017.07.002 – volume: 2 start-page: 209 year: 1996 ident: 10.1016/j.agwat.2020.106040_bib0150 article-title: The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.1996.tb00073.x – volume: 11 start-page: 277 year: 1957 ident: 10.1016/j.agwat.2020.106040_bib0220 article-title: Testing the Penman formula by means of lysimeters publication-title: J. Inst. Water Eng. – start-page: 12 year: 1961 ident: 10.1016/j.agwat.2020.106040_bib0305 article-title: Computation of the autumn soil moisture using a universal relationship for a large area publication-title: Proc. Ukr. Hydrometeorol. Res. Inst. – volume: 22 start-page: 711 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0030 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift doi: 10.1127/0941-2948/2013/0507 – volume: 570 start-page: 265 year: 2019 ident: 10.1016/j.agwat.2020.106040_bib0340 article-title: Modeling reference evapotranspiration in island environments: assessing the practical implications publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.068 – volume: 97 start-page: 635 year: 2010 ident: 10.1016/j.agwat.2020.106040_bib0320 article-title: Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2009.12.001 – volume: 60 start-page: 157 year: 2003 ident: 10.1016/j.agwat.2020.106040_bib0020 article-title: New empirical formula for hourly estimations of reference evapotranspiration publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(02)00172-5 – volume: 7 start-page: 263 year: 2003 ident: 10.1016/j.agwat.2020.106040_bib0280 article-title: Ajuste do modelo Chistiansen-Hargreaves para estimativa da evapotranspiração do feijão no cerrado publication-title: Rev. Bras. Eng. Agrícola e Ambient. doi: 10.1590/S1415-43662003000200013 – year: 1977 ident: 10.1016/j.agwat.2020.106040_bib0105 – volume: 18 start-page: 0980 year: 1975 ident: 10.1016/j.agwat.2020.106040_bib0160 article-title: Moisture availability and crop production publication-title: Trans. ASAE doi: 10.13031/2013.36722 – volume: 102 start-page: 113 year: 2000 ident: 10.1016/j.agwat.2020.106040_bib0035 article-title: Estimating daytime latent heat flux and evapotranspiration in Jamaica publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(00)00105-2 – volume: 44 start-page: 1 year: 2008 ident: 10.1016/j.agwat.2020.106040_bib0400 article-title: Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin publication-title: Water Resour. Res. doi: 10.1029/2006WR005526 – volume: 118 start-page: 377 year: 2014 ident: 10.1016/j.agwat.2020.106040_bib0005 article-title: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-1070-2 – volume: 145 start-page: 22 year: 2007 ident: 10.1016/j.agwat.2020.106040_bib0075 article-title: Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.04.012 – volume: 32 year: 2005 ident: 10.1016/j.agwat.2020.106040_bib0180 article-title: Climatic variability and vegetation vulnerability in Amazônia publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL024981 – volume: 50 start-page: 7100 year: 2014 ident: 10.1016/j.agwat.2020.106040_bib0260 article-title: Trends in water balance components across the Brazilian Cerrado publication-title: Water Resour. Res. doi: 10.1002/2013WR015202 – volume: 43 start-page: 231 year: 1988 ident: 10.1016/j.agwat.2020.106040_bib0235 article-title: An eddy correlation technique with extended applicability to non-simple terrain publication-title: Boundary-Layer Meteorol. doi: 10.1007/BF00128405 – volume: 106 start-page: 85 year: 1980 ident: 10.1016/j.agwat.2020.106040_bib0415 article-title: Correction of flux measurements for density effects due to heat and water vapour transfer publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49710644707 – volume: 10 start-page: 33 year: 2018 ident: 10.1016/j.agwat.2020.106040_bib0365 article-title: Reference evapotranspiration in so Paulo State: empirical methods and machine learning techniques publication-title: Int. J. Water Resour. Environ. Eng. doi: 10.5897/IJWREE2018.0772 – year: 1998 ident: 10.1016/j.agwat.2020.106040_bib0250 – volume: 399 start-page: 422 year: 2011 ident: 10.1016/j.agwat.2020.106040_bib0095 article-title: Trends in reference crop evapotranspiration over Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.021 – volume: 528 start-page: 312 year: 2015 ident: 10.1016/j.agwat.2020.106040_bib0205 article-title: Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.06.052 – volume: 31 start-page: 107 year: 2013 ident: 10.1016/j.agwat.2020.106040_bib0360 article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions publication-title: Irrig. Sci. doi: 10.1007/s00271-011-0295-z  | 
    
| SSID | ssj0004047 | 
    
| Score | 2.469391 | 
    
| Snippet | •25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model... The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 106040 | 
    
| SubjectTerms | air temperature algorithms artificial intelligence cerrado climate Comparative analysis cerrado Eddy covariance empirical research equations evapotranspiration Genetic algorithm hydrologic cycle indigenous species land cover Limited data Reference evapotranspiration savannas solar radiation water resources  | 
    
| Title | Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna | 
    
| URI | https://dx.doi.org/10.1016/j.agwat.2020.106040 https://www.proquest.com/docview/2388770007  | 
    
| Volume | 232 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2283 dateEnd: 20221130 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: ACRLP dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2283 dateEnd: 20221130 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AIKHN dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2283 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AKRWK dateStart: 19761201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iFz2In_hNBI_WbZuYtMdlUVZFLyp4C5M0KxXtLu6q4MHf7kzarijiwWNDUsokmXmTvrxh7AAU7mY_EJFPnYtkanVE1zcj5ZLEZxgSCkfnkJdXqn8rz--O72ZYr70LQ7TKxvfXPj1466al01izMyrLznUsNGZXGBFzgVlBRpf4pNRUxeDo44vmIeNQZIw6R9S7VR4KHC-4fwMiVKbUomI6Afk9Ov3w0yH4nC6xxQY18m79YctsxlcrbKF7_9woZ_hV9tT70vHmMNXb5MMBD9VuHn3BoSq4fxqVQRaETyuMcP8Ko-EkyJyX9YrgdWXpMUdMy4FjSv1e0oEIHwNC7wrW2O3pyU2vHzW1FCInhJpEBWYeEqGTSFSh0wwgx0ieFh7yY5dIm-d2gHvTCwuZExnEorA5IgfQahDHzoNYZ7PVsPIbjCea6FKxtDbNJWR5hphHK6stWJJ3t5ssbW1oXCM0TvUuHk3LKHswwfCGDG9qw2-yw-mgUa2z8Xd31U6O-bZcDEaCvwfut1NpcCPR3xGo_PBlbBC7ZFoTZtr678u32Tw91cSeHTY7eX7xu4hZJnYvLMo9Ntc9u-hffQJoVuyo | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYHGAHtA0QMNg8iSOhSZza8RFVVOXnhVbqzXp2XBQEaUXLkHbY3773nKSIaeKwq2NH0bP93vecz99j7Agk7mY_EZFPnYuy1KqIrm9G0iWJzzEkFI7OIa9v5GCUXYy74xXWa-_CEK2y8f21Tw_eumnpNNbszMqycxsLhdkVRkQtMCvI9Qe2lnVTRRnYye9XnkcWhypj1Dui7q30UCB5wd0LEKMypRYZ0xHIv8PTX446RJ_-J7bZwEZ-Wn_ZZ7biqy_s4-ndUyOd4bfYY-9VyJvDUnCTTyc8lLt58AWHquD-cVYGXRC-LDHC_U-YTRdB57yslwSvS0vPOYJaDhxz6l8lnYjwOSD2rmCbjfpnw94gaoopRE4IuYgKTD0yxE4ikYVKcwCNoTwtPOiuSzKrtZ3g5vTCQu5EDrEorEboAEpO4th5EDtstZpWfpfxRBFfKs6sTXUGuc4R9ChplQVL-u52j6WtDY1rlMap4MWDaSll9yYY3pDhTW34PXa8HDSrhTbe7y7byTFv1ovBUPD-wB_tVBrcSfR7BCo_fZ4bBC-5UgSa9v_35d_Z-mB4fWWuzm8uv7INelKzfA7Y6uLp2R8igFnYb2GB_gHsue49 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+assessment+of+modelled+and+empirical+reference+evapotranspiration+methods+for+a+brazilian+savanna&rft.jtitle=Agricultural+water+management&rft.au=Valle+J%C3%BAnior%2C+Luiz+C.G.&rft.au=Ventura%2C+Thiago+M.&rft.au=Gomes%2C+Raphael+S.R.&rft.au=de+S.+Nogueira%2C+Jos%C3%A9&rft.date=2020-04-01&rft.issn=0378-3774&rft.volume=232&rft.spage=106040&rft_id=info:doi/10.1016%2Fj.agwat.2020.106040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agwat_2020_106040 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |