Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna

•25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model inputs are not available.•Our GA generated equation using solar radiation and temperature as inputs showed good overall results. The Brazilian s...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 232; p. 106040
Main Authors Valle Júnior, Luiz C.G., Ventura, Thiago M., Gomes, Raphael S.R., de S. Nogueira, José, de A. Lobo, Francisco, Vourlitis, George L., Rodrigues, Thiago R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text
ISSN0378-3774
1873-2283
DOI10.1016/j.agwat.2020.106040

Cover

Abstract •25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model inputs are not available.•Our GA generated equation using solar radiation and temperature as inputs showed good overall results. The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has affected its hydrological cycle and the availability of its water resources. Reference evapotranspiration (ETo) estimates are an important tool for water resources managements because they estimate the potential for atmospheric water loss. The Penman-Monteith method (FAO-PM) is recommended by FAO due to its consistent results in different regions and climates, but it requires a high data demand. Several empirical ETo methods with less inputs have been tested around the world, and machine learning approaches have been studied in the recent years. Therefore, in the present paper, 21 empirical methods, classified as mass transfer-based, radiation-based, temperature-based, or combination methods, and 4 equations generated by genetic algorithm (GA) were evaluated against the FAO-PM method. Radiation-based methods were more accurate than the others, especially De Bruin-Keijman and Priestley-Taylor methods, which were the two models with best performance. Mass transfer-based and temperature-based models were deemed unsuitable due to their high errors and low correlation when compared to the other ETo methods. Among the combination methods, the Copais method showed the fifth best result from all the empirical equations tested. The GA equations were generated based on our results, considering the mass transfer-based and temperature-based models, however only one equation, using air temperature and solar radiation as inputs, presented a performance as good as the best methods found in our study. Therefore, alternatives empirical equations and GA approach could meet ETo estimates similar to the FAO-PM method using less inputs.
AbstractList The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has affected its hydrological cycle and the availability of its water resources. Reference evapotranspiration (ETₒ) estimates are an important tool for water resources managements because they estimate the potential for atmospheric water loss. The Penman-Monteith method (FAO-PM) is recommended by FAO due to its consistent results in different regions and climates, but it requires a high data demand. Several empirical ETₒ methods with less inputs have been tested around the world, and machine learning approaches have been studied in the recent years. Therefore, in the present paper, 21 empirical methods, classified as mass transfer-based, radiation-based, temperature-based, or combination methods, and 4 equations generated by genetic algorithm (GA) were evaluated against the FAO-PM method. Radiation-based methods were more accurate than the others, especially De Bruin-Keijman and Priestley-Taylor methods, which were the two models with best performance. Mass transfer-based and temperature-based models were deemed unsuitable due to their high errors and low correlation when compared to the other ETₒ methods. Among the combination methods, the Copais method showed the fifth best result from all the empirical equations tested. The GA equations were generated based on our results, considering the mass transfer-based and temperature-based models, however only one equation, using air temperature and solar radiation as inputs, presented a performance as good as the best methods found in our study. Therefore, alternatives empirical equations and GA approach could meet ETₒ estimates similar to the FAO-PM method using less inputs.
•25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model inputs are not available.•Our GA generated equation using solar radiation and temperature as inputs showed good overall results. The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has affected its hydrological cycle and the availability of its water resources. Reference evapotranspiration (ETo) estimates are an important tool for water resources managements because they estimate the potential for atmospheric water loss. The Penman-Monteith method (FAO-PM) is recommended by FAO due to its consistent results in different regions and climates, but it requires a high data demand. Several empirical ETo methods with less inputs have been tested around the world, and machine learning approaches have been studied in the recent years. Therefore, in the present paper, 21 empirical methods, classified as mass transfer-based, radiation-based, temperature-based, or combination methods, and 4 equations generated by genetic algorithm (GA) were evaluated against the FAO-PM method. Radiation-based methods were more accurate than the others, especially De Bruin-Keijman and Priestley-Taylor methods, which were the two models with best performance. Mass transfer-based and temperature-based models were deemed unsuitable due to their high errors and low correlation when compared to the other ETo methods. Among the combination methods, the Copais method showed the fifth best result from all the empirical equations tested. The GA equations were generated based on our results, considering the mass transfer-based and temperature-based models, however only one equation, using air temperature and solar radiation as inputs, presented a performance as good as the best methods found in our study. Therefore, alternatives empirical equations and GA approach could meet ETo estimates similar to the FAO-PM method using less inputs.
ArticleNumber 106040
Author Vourlitis, George L.
Rodrigues, Thiago R.
Valle Júnior, Luiz C.G.
Gomes, Raphael S.R.
de A. Lobo, Francisco
de S. Nogueira, José
Ventura, Thiago M.
Author_xml – sequence: 1
  givenname: Luiz C.G.
  surname: Valle Júnior
  fullname: Valle Júnior, Luiz C.G.
  organization: Programa de Pós-Graduação Tecnologias Ambientais, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
– sequence: 2
  givenname: Thiago M.
  surname: Ventura
  fullname: Ventura, Thiago M.
  organization: Instituto de Computação, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
– sequence: 3
  givenname: Raphael S.R.
  surname: Gomes
  fullname: Gomes, Raphael S.R.
  organization: Instituto de Computação, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
– sequence: 4
  givenname: José
  surname: de S. Nogueira
  fullname: de S. Nogueira, José
  organization: Programa de Pós Graduação em Física Ambiental, Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
– sequence: 5
  givenname: Francisco
  surname: de A. Lobo
  fullname: de A. Lobo, Francisco
  organization: Departamento de Agronomia e Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
– sequence: 6
  givenname: George L.
  surname: Vourlitis
  fullname: Vourlitis, George L.
  organization: Biological Sciences Department, California State University, San Marcos, CA 92096, USA
– sequence: 7
  givenname: Thiago R.
  surname: Rodrigues
  fullname: Rodrigues, Thiago R.
  email: thiago.r.rodrigues@ufms.br
  organization: Laboratório de Ciências Atmosféricas (LCA), Instituto de Física, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
BookMark eNqFkD1P5DAQhq0TSOxy_AIalzRZ_JGLk4ICrfiSkGi42prYE_AqsXO2dxH8-vOyVFcc1Ugz7_NK8yzJkQ8eCTnnbMUZby43K3h5g7wSTOw3DavZD7LgrZKVEK08IgsmVVtJpeoTskxpw1iJ1GpBpnWYZoiQ3Q4ppIQpTegzDQOdgsVxREvBW4rT7KIzMNKIA0b0BinuYA45gk_lVhqCpxPm12ATHUKkQPsIH2504GmCHXgPP8nxAGPCs695Sn7f3jyv76vHp7uH9fVjZaRscmW5qutaSMkbq0QL0NWsERah-2V43XddPzCuUPbQGtkCk7bvhJCgmoExgyBPycWhd47hzxZT1pNLpnwDHsM2aSHbVqkiQZWoPERNDCmV5_Qc3QTxXXOm93L1Rn_K1Xu5-iC3UN0_lHH5U0Hx4cZv2KsDi8XAzmHUybi9UOsimqxtcP_l_wIaPJqZ
CitedBy_id crossref_primary_10_3390_ijerph192013127
crossref_primary_10_1016_j_envres_2024_118516
crossref_primary_10_1016_j_jhydrol_2022_128567
crossref_primary_10_3390_w14091491
crossref_primary_10_1007_s10661_020_08659_7
crossref_primary_10_1007_s42729_022_00795_y
crossref_primary_10_3390_w13131763
crossref_primary_10_1016_j_jhydrol_2024_132084
crossref_primary_10_3390_w14193032
crossref_primary_10_1016_j_asr_2025_01_058
crossref_primary_10_1007_s00477_022_02209_y
crossref_primary_10_1016_j_compag_2020_105577
crossref_primary_10_3390_w14010001
crossref_primary_10_1016_j_compag_2023_108327
crossref_primary_10_3390_hydrology9110206
crossref_primary_10_1016_j_ecolind_2023_110220
crossref_primary_10_1029_2020WR028752
crossref_primary_10_3390_agronomy12010031
crossref_primary_10_1016_j_agwat_2021_106815
crossref_primary_10_1016_j_jhydrol_2020_125241
crossref_primary_10_1007_s00704_024_05313_x
crossref_primary_10_1007_s00704_020_03505_9
crossref_primary_10_31413_nat_v12i1_16528
crossref_primary_10_1016_j_jhydrol_2024_132130
crossref_primary_10_1016_j_scitotenv_2020_137562
crossref_primary_10_2166_wcc_2023_448
crossref_primary_10_1007_s10668_023_03234_9
crossref_primary_10_1080_02626667_2022_2063724
crossref_primary_10_1007_s10666_020_09746_2
crossref_primary_10_2166_wcc_2021_352
crossref_primary_10_1002_hyp_14571
crossref_primary_10_1016_j_agwat_2022_107882
Cites_doi 10.1016/j.agrformet.2009.03.006
10.1007/s00704-014-1240-x
10.2166/nh.1984.0017
10.1002/2013JG002472
10.1007/s00704-004-0044-9
10.13031/2013.26773
10.1080/00045600903378960
10.1126/science.1111772
10.1016/j.agwat.2017.12.017
10.1007/s11269-009-9423-4
10.1002/hyp.9277
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1016/j.agrformet.2006.08.020
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1080/03650340.2012.683425
10.1061/JRCEA4.0000287
10.1590/0001-3765201620150130
10.2307/210739
10.1016/j.agrformet.2015.12.060
10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
10.1016/j.compag.2018.04.003
10.1590/S0102-77862011000200004
10.1590/0001-3765201620150176
10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
10.1061/(ASCE)0733-9437(2008)134:4(417)
10.1007/s00484-014-0837-1
10.1023/A:1015508322413
10.1111/j.1752-1688.1996.tb04044.x
10.1016/j.jhydrol.2016.11.059
10.1007/BF00120530
10.1007/s11269-015-0990-2
10.1007/BF02242718
10.1007/BF02245865
10.1016/j.jhydrol.2013.04.011
10.1016/j.compag.2017.05.002
10.1007/s11269-014-0813-x
10.1061/(ASCE)IR.1943-4774.0000502
10.1061/(ASCE)0733-9437(2007)133:2(83)
10.1016/j.jhydrol.2019.03.028
10.1016/j.jhydrol.2018.09.021
10.1016/j.jhydrol.2018.04.042
10.1007/s10661-009-0988-4
10.1590/S1415-43662003000200015
10.1016/j.apgeog.2015.01.017
10.1016/j.scitotenv.2018.03.356
10.1590/S1677-04202008000300007
10.1016/j.quaint.2017.01.023
10.1016/j.agwat.2008.01.009
10.1016/j.landusepol.2007.11.008
10.1016/j.jhydrol.2006.03.027
10.1016/j.jenvman.2016.11.010
10.1016/j.iswcr.2017.07.002
10.1111/j.1365-2486.1996.tb00073.x
10.1127/0941-2948/2013/0507
10.1016/j.jhydrol.2018.12.068
10.1016/j.agwat.2009.12.001
10.1016/S0378-3774(02)00172-5
10.1590/S1415-43662003000200013
10.13031/2013.36722
10.1016/S0168-1923(00)00105-2
10.1029/2006WR005526
10.1007/s00704-013-1070-2
10.1016/j.agrformet.2007.04.012
10.1029/2005GL024981
10.1002/2013WR015202
10.1007/BF00128405
10.1002/qj.49710644707
10.5897/IJWREE2018.0772
10.1016/j.jhydrol.2011.01.021
10.1016/j.jhydrol.2015.06.052
10.1007/s00271-011-0295-z
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agwat.2020.106040
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID 10_1016_j_agwat_2020_106040
S0378377419314489
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
VH1
WUQ
XPP
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-c336t-d1744423316d728aa94062dea95c14b99bf017e3ba8c38a03db9223a76f00cea3
IEDL.DBID .~1
ISSN 0378-3774
IngestDate Thu Oct 02 07:48:58 EDT 2025
Thu Apr 24 22:50:48 EDT 2025
Thu Oct 16 04:25:50 EDT 2025
Fri Feb 23 02:48:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reference evapotranspiration
Comparative analysis cerrado
Eddy covariance
Limited data
Genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-d1744423316d728aa94062dea95c14b99bf017e3ba8c38a03db9223a76f00cea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388770007
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388770007
crossref_primary_10_1016_j_agwat_2020_106040
crossref_citationtrail_10_1016_j_agwat_2020_106040
elsevier_sciencedirect_doi_10_1016_j_agwat_2020_106040
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mitchell (bib0250) 1998
Rocha, Guerra, Azevedo (bib0280) 2003; 7
Hargreaves (bib0160) 1975; 18
Hutyra, Munger, Nobre, Saleska, Vieira, Wofsy (bib0180) 2005; 32
Webb, Pearman, Leuning (bib0415) 1980; 106
Rodrigues, Curado, Pereira, Sanches, Nogueira (bib0295) 2016; 88
Alexandris, Kerkides (bib0020) 2003; 60
Thornthwaite (bib0370) 1948; 38
Bourletsikas, Argyrokastritis, Proutsos (bib0055) 2017
Rodrigues, Vourlitis, Lobo, de, Santanna, de Arruda, Nogueira, de (bib0300) 2016; 218–219
Shiri (bib0340) 2019; 570
Aladenola, Madramootoo (bib0005) 2014; 118
Jovic, Nedeljkovic, Golubovic, Kostic (bib0200) 2018; 150
Zanetti, Sousa, Oliveira, Almeida, Bernardo (bib0445) 2007; 133
De Bruin, Keijman (bib0090) 1979; 18
Trajkovic, Kolakovic (bib0375) 2009; 23
Grace, Malhi, Lloyd, McIntyre, Miranda, Meir, Miranda (bib0150) 1996; 2
Jepson, Brannstrom, Filippi (bib0195) 2010; 100
Jensen, Haise (bib0190) 1963; 4
Willmott (bib0425) 1982; 63
Mahringer (bib0215) 1970; 18
WMO (bib0430) 1966
Caprio (bib0080) 1974
Allen, Pereira, Raes, Smith (bib0025) 1998
Sano, Rosa, Brito, Ferreira (bib0310) 2010; 166
Shiri (bib0335) 2018; 561
Beuchle, Grecchi, Shimabukuro, Seliger, Eva, Sano, Achard (bib0050) 2015; 58
Čadro, Uzunović, Žurovec, Žurovec (bib0070) 2017; 5
Silva, Gaio, Curado, Nogueira, Valle Júnior, Rodrigues (bib0345) 2019; 14
Tangune, Escobedo (bib0365) 2018; 10
Machado, Laurent, Dessay, Miranda (bib0210) 2004; 78
Popova, Kercheva, Pereira (bib0270) 2006; 55
Doorenbos, Pruitt (bib0105) 1977
Shahidian, Serralheiro, Serrano, Teixeira (bib0325) 2013; 27
Rodrigues, Vourlitis, Lobo, de Oliveira, Nogueira (bib0290) 2014; 119
Vourlitis, da Rocha (bib0395) 2011
Cai, Liu, Lei, Pereira (bib0075) 2007; 145
Faria, Rodrigues, Curado, Gaio, Nogueira (bib0115) 2018; 13
Singh, Xu (bib0350) 1997; 11
Feng, Cui, Zhao, Gong, Zhang (bib0120) 2017; 441
Brannstrom, Jepson, Filippi, Redo, Xu, Ganesh (bib0060) 2008; 25
Djaman, Irmak, Asce, Futakuchi (bib0100) 2016
Penman (bib0265) 1948; 193
Jabloun, Sahli (bib0185) 2008; 95
Sentelhas, Gillespie, Santos (bib0320) 2010; 97
Rodrigues, de Paulo, Novais, Curado, Nogueira, de Oliveira, Lobo, Vourlitis (bib0285) 2013; 2013
Zhang, Cui, Feng, Gong, Hu (bib0450) 2018; 566
Oliveira, Nearing, Moran, Goodrich, Wendland, Gupta (bib0260) 2014; 50
Kisi (bib0205) 2015; 528
McMillen (bib0235) 1988; 43
Betts, Desjardins, Worth (bib0045) 2007; 142
Foley, DeFries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (bib0130) 2005; 309
Curado, Musis, Cunha, Rodrigues, Pereira, Nogueira, Sanches (bib0085) 2016; 88
Tabari, Grismer, Trajkovic (bib0360) 2013; 31
Huo, Dai, Feng, Kang, Huang (bib0175) 2013; 492
Sobrinho, T, D.B.B, de, Rebucci, Pertussatti (bib0355) 2011; 26
Makkink (bib0220) 1957; 11
Romanenko (bib0305) 1961
Giambelluca, Scholz, Bucci, Meinzer, Goldstein, Hoffmann, Franco, Buchert (bib0140) 2009; 149
McGuinness, Bordne (bib0230) 1972
Xing, Chow, Meng, Rees, Monteith, Lionel (bib0435) 2008; 134
Mendonça, Sousa, Bernardo, Dias, Grippa (bib0245) 2003; 7
Priestley, Taylor (bib0275) 1972; 100
Dinpashoh, Jhajharia, Fakheri-Fard, Singh, Kahya (bib0095) 2011; 399
Vourlitis, de Souza Nogueira, de Almeida Lobo, Pinto (bib0405) 2015; 59
Wang, Kisi, Zounemat-Kermani, Li (bib0410) 2017; 544
Garcia, Sawakuchi, Ferreira, Ballester (bib0135) 2017; 187
Mattar (bib0225) 2018; 198
Vourlitis, De Souza Nogueira, De Almeida Lobo, Sendall, De Paulo, Antunes Dias, Pinto, De Andrade (bib0400) 2008; 44
Wen, Si, He, Wu, Shao, Yu (bib0420) 2015; 29
Droogers, Allen (bib0110) 2002; 16
Amarakoon, Chen, McLean (bib0035) 2000; 102
Abtew (bib0010) 1996; 32
Turc (bib0380) 1961; 12
Mehdizadeh, Behmanesh, Khalili (bib0240) 2017; 139
Bucci, Scholz, Goldstein, Meinzer, Franco, Zhang, Hao (bib0065) 2008; 20
Schuepp, Leclerc, MacPherson, Desjardins (bib0315) 1990; 50
Gong, Xu, Chen, Halldin, Chen (bib0145) 2006; 329
Alvares, Stape, Sentelhas, de Moraes Gonçalves, Sparovek (bib0030) 2013; 22
Albrecht (bib0015) 1950; 2
Hargreaves, Samani (bib0165) 1985; 1
Holland (bib0170) 1975
Bautista, Bautista, Delgado-Carranza (bib0040) 2009; 22
Sharifi, Dinpashoh (bib0330) 2014; 28
Hansen (bib0155) 1984; 15
Nóbrega, Guzha, Lamparter, Amorim, Couto, Hughes, Jungkunst, Gerold (bib0255) 2018; 635
Ferreira, da Cunha, de Oliveira, Fernandes Filho (bib0125) 2019; 572
Valiantzas (bib0385) 2013; 139
Valipour (bib0390) 2015; 121
Xu, Peng, Ding, Wei, Yu (bib0440) 2013; 59
Webb (10.1016/j.agwat.2020.106040_bib0415) 1980; 106
McGuinness (10.1016/j.agwat.2020.106040_bib0230) 1972
Tangune (10.1016/j.agwat.2020.106040_bib0365) 2018; 10
Willmott (10.1016/j.agwat.2020.106040_bib0425) 1982; 63
Djaman (10.1016/j.agwat.2020.106040_bib0100) 2016
Sharifi (10.1016/j.agwat.2020.106040_bib0330) 2014; 28
Beuchle (10.1016/j.agwat.2020.106040_bib0050) 2015; 58
Gong (10.1016/j.agwat.2020.106040_bib0145) 2006; 329
Mendonça (10.1016/j.agwat.2020.106040_bib0245) 2003; 7
Garcia (10.1016/j.agwat.2020.106040_bib0135) 2017; 187
Zanetti (10.1016/j.agwat.2020.106040_bib0445) 2007; 133
Caprio (10.1016/j.agwat.2020.106040_bib0080) 1974
Shahidian (10.1016/j.agwat.2020.106040_bib0325) 2013; 27
Abtew (10.1016/j.agwat.2020.106040_bib0010) 1996; 32
Rodrigues (10.1016/j.agwat.2020.106040_bib0285) 2013; 2013
Sobrinho (10.1016/j.agwat.2020.106040_bib0355) 2011; 26
Valiantzas (10.1016/j.agwat.2020.106040_bib0385) 2013; 139
Curado (10.1016/j.agwat.2020.106040_bib0085) 2016; 88
Sentelhas (10.1016/j.agwat.2020.106040_bib0320) 2010; 97
Alexandris (10.1016/j.agwat.2020.106040_bib0020) 2003; 60
Amarakoon (10.1016/j.agwat.2020.106040_bib0035) 2000; 102
Albrecht (10.1016/j.agwat.2020.106040_bib0015) 1950; 2
Valipour (10.1016/j.agwat.2020.106040_bib0390) 2015; 121
Aladenola (10.1016/j.agwat.2020.106040_bib0005) 2014; 118
Romanenko (10.1016/j.agwat.2020.106040_bib0305) 1961
Sano (10.1016/j.agwat.2020.106040_bib0310) 2010; 166
Priestley (10.1016/j.agwat.2020.106040_bib0275) 1972; 100
Betts (10.1016/j.agwat.2020.106040_bib0045) 2007; 142
Rodrigues (10.1016/j.agwat.2020.106040_bib0290) 2014; 119
Tabari (10.1016/j.agwat.2020.106040_bib0360) 2013; 31
Hargreaves (10.1016/j.agwat.2020.106040_bib0160) 1975; 18
Hansen (10.1016/j.agwat.2020.106040_bib0155) 1984; 15
Silva (10.1016/j.agwat.2020.106040_bib0345) 2019; 14
Brannstrom (10.1016/j.agwat.2020.106040_bib0060) 2008; 25
Huo (10.1016/j.agwat.2020.106040_bib0175) 2013; 492
Wang (10.1016/j.agwat.2020.106040_bib0410) 2017; 544
Jepson (10.1016/j.agwat.2020.106040_bib0195) 2010; 100
Machado (10.1016/j.agwat.2020.106040_bib0210) 2004; 78
Xing (10.1016/j.agwat.2020.106040_bib0435) 2008; 134
Rodrigues (10.1016/j.agwat.2020.106040_bib0295) 2016; 88
Ferreira (10.1016/j.agwat.2020.106040_bib0125) 2019; 572
Makkink (10.1016/j.agwat.2020.106040_bib0220) 1957; 11
Holland (10.1016/j.agwat.2020.106040_bib0170) 1975
Jensen (10.1016/j.agwat.2020.106040_bib0190) 1963; 4
Doorenbos (10.1016/j.agwat.2020.106040_bib0105) 1977
Schuepp (10.1016/j.agwat.2020.106040_bib0315) 1990; 50
Nóbrega (10.1016/j.agwat.2020.106040_bib0255) 2018; 635
Vourlitis (10.1016/j.agwat.2020.106040_bib0395) 2011
Jabloun (10.1016/j.agwat.2020.106040_bib0185) 2008; 95
Jovic (10.1016/j.agwat.2020.106040_bib0200) 2018; 150
Cai (10.1016/j.agwat.2020.106040_bib0075) 2007; 145
Shiri (10.1016/j.agwat.2020.106040_bib0335) 2018; 561
Oliveira (10.1016/j.agwat.2020.106040_bib0260) 2014; 50
Thornthwaite (10.1016/j.agwat.2020.106040_bib0370) 1948; 38
Mitchell (10.1016/j.agwat.2020.106040_bib0250) 1998
Vourlitis (10.1016/j.agwat.2020.106040_bib0405) 2015; 59
Kisi (10.1016/j.agwat.2020.106040_bib0205) 2015; 528
Giambelluca (10.1016/j.agwat.2020.106040_bib0140) 2009; 149
De Bruin (10.1016/j.agwat.2020.106040_bib0090) 1979; 18
Bourletsikas (10.1016/j.agwat.2020.106040_bib0055) 2017
Mattar (10.1016/j.agwat.2020.106040_bib0225) 2018; 198
Grace (10.1016/j.agwat.2020.106040_bib0150) 1996; 2
Mehdizadeh (10.1016/j.agwat.2020.106040_bib0240) 2017; 139
Trajkovic (10.1016/j.agwat.2020.106040_bib0375) 2009; 23
Hargreaves (10.1016/j.agwat.2020.106040_bib0165) 1985; 1
Vourlitis (10.1016/j.agwat.2020.106040_bib0400) 2008; 44
Rocha (10.1016/j.agwat.2020.106040_bib0280) 2003; 7
Wen (10.1016/j.agwat.2020.106040_bib0420) 2015; 29
Bautista (10.1016/j.agwat.2020.106040_bib0040) 2009; 22
Xu (10.1016/j.agwat.2020.106040_bib0440) 2013; 59
Čadro (10.1016/j.agwat.2020.106040_bib0070) 2017; 5
Singh (10.1016/j.agwat.2020.106040_bib0350) 1997; 11
Mahringer (10.1016/j.agwat.2020.106040_bib0215) 1970; 18
Turc (10.1016/j.agwat.2020.106040_bib0380) 1961; 12
Zhang (10.1016/j.agwat.2020.106040_bib0450) 2018; 566
Shiri (10.1016/j.agwat.2020.106040_bib0340) 2019; 570
McMillen (10.1016/j.agwat.2020.106040_bib0235) 1988; 43
Dinpashoh (10.1016/j.agwat.2020.106040_bib0095) 2011; 399
Alvares (10.1016/j.agwat.2020.106040_bib0030) 2013; 22
Popova (10.1016/j.agwat.2020.106040_bib0270) 2006; 55
Foley (10.1016/j.agwat.2020.106040_bib0130) 2005; 309
Faria (10.1016/j.agwat.2020.106040_bib0115) 2018; 13
Rodrigues (10.1016/j.agwat.2020.106040_bib0300) 2016; 218–219
Hutyra (10.1016/j.agwat.2020.106040_bib0180) 2005; 32
Allen (10.1016/j.agwat.2020.106040_bib0025) 1998
Droogers (10.1016/j.agwat.2020.106040_bib0110) 2002; 16
Bucci (10.1016/j.agwat.2020.106040_bib0065) 2008; 20
Feng (10.1016/j.agwat.2020.106040_bib0120) 2017; 441
Penman (10.1016/j.agwat.2020.106040_bib0265) 1948; 193
WMO (10.1016/j.agwat.2020.106040_bib0430) 1966
References_xml – volume: 149
  start-page: 1365
  year: 2009
  end-page: 1376
  ident: bib0140
  article-title: Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density
  publication-title: Agric. For. Meteorol.
– volume: 55
  start-page: 201
  year: 2006
  end-page: 215
  ident: bib0270
  article-title: Validation of the FAO methodology for computing ETo with limited data
  publication-title: Application to south Bulgaria. Irrig. Drain.
– volume: 88
  start-page: 2195
  year: 2016
  end-page: 2209
  ident: bib0295
  article-title: Hourly interaction between wind speed and energy fluxes in Brazilian wetlands - Mato Grosso - Brazil
  publication-title: An. Acad. Bras. Cienc.
– start-page: 97
  year: 2011
  end-page: 116
  ident: bib0395
  article-title: Flux dynamics in the cerrado and cerrado – Forest transition of Brazil
  publication-title: Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape to Global Scales.
– volume: 59
  start-page: 217
  year: 2015
  end-page: 230
  ident: bib0405
  article-title: Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles
  publication-title: Int. J. Biometeorol.
– year: 1966
  ident: bib0430
  article-title: Measurement and Estimation of Evaporation and Evapotranspiration.
– volume: 88
  start-page: 1387
  year: 2016
  end-page: 1395
  ident: bib0085
  article-title: Modeling the reflection of Photosynthetically active radiation in a monodominant floodable forest in the Pantanal of Mato Grosso State using multivariate statistics and neural networks
  publication-title: An. Acad. Bras. Cienc.
– volume: 11
  start-page: 277
  year: 1957
  end-page: 288
  ident: bib0220
  article-title: Testing the Penman formula by means of lysimeters
  publication-title: J. Inst. Water Eng.
– volume: 492
  start-page: 24
  year: 2013
  end-page: 34
  ident: bib0175
  article-title: Effect of climate change on reference evapotranspiration and aridity index in arid region of China
  publication-title: J. Hydrol.
– volume: 38
  start-page: 55
  year: 1948
  ident: bib0370
  article-title: An approach toward a rational classification of climate
  publication-title: Geogr. Rev.
– volume: 100
  start-page: 87
  year: 2010
  end-page: 111
  ident: bib0195
  article-title: Access regimes and regional land change in the brazilian cerrado, 1972–2002
  publication-title: Ann. Assoc. Am. Geogr.
– volume: 399
  start-page: 422
  year: 2011
  end-page: 433
  ident: bib0095
  article-title: Trends in reference crop evapotranspiration over Iran
  publication-title: J. Hydrol.
– volume: 29
  start-page: 3195
  year: 2015
  end-page: 3209
  ident: bib0420
  article-title: Support-vector-Machine-Based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions
  publication-title: Water Resour. Manag.
– volume: 566
  start-page: 264
  year: 2018
  end-page: 273
  ident: bib0450
  article-title: Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China
  publication-title: J. Hydrol.
– volume: 150
  start-page: 1
  year: 2018
  end-page: 4
  ident: bib0200
  article-title: Evolutionary algorithm for reference evapotranspiration analysis
  publication-title: Comput. Electron. Agric.
– year: 1998
  ident: bib0250
  article-title: An Introduction to Genetic Algorithms
– volume: 2
  start-page: 1
  year: 1950
  end-page: 38
  ident: bib0015
  article-title: Die Methoden Zur Bestimmung Der Verdunstung der natürlichen erdoberfläche
  publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B
– year: 1972
  ident: bib0230
  article-title: A Comparion of Lysimeter- Derived Potential Evapotranspiration With Computed Values
– volume: 7
  start-page: 263
  year: 2003
  end-page: 268
  ident: bib0280
  article-title: Ajuste do modelo Chistiansen-Hargreaves para estimativa da evapotranspiração do feijão no cerrado
  publication-title: Rev. Bras. Eng. Agrícola e Ambient.
– volume: 60
  start-page: 157
  year: 2003
  end-page: 180
  ident: bib0020
  article-title: New empirical formula for hourly estimations of reference evapotranspiration
  publication-title: Agric. Water Manag.
– volume: 15
  start-page: 205
  year: 1984
  end-page: 212
  ident: bib0155
  article-title: Estimation of potential and actual evapotranspiration
  publication-title: Hydrol. Res.
– volume: 133
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib0445
  article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data
  publication-title: J. Irrig. Drain. Eng.
– volume: 2
  start-page: 209
  year: 1996
  end-page: 217
  ident: bib0150
  article-title: The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest
  publication-title: Glob. Chang. Biol.
– volume: 18
  start-page: 1
  year: 1970
  end-page: 20
  ident: bib0215
  article-title: Verdunstungsstudien am neusiedler see
  publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B
– volume: 32
  start-page: 465
  year: 1996
  end-page: 473
  ident: bib0010
  article-title: Evapotranspiration measurements and modeling for three wetland systems in South Florida
  publication-title: J. Am. Water Resour. Assoc.
– volume: 23
  start-page: 3057
  year: 2009
  end-page: 3067
  ident: bib0375
  article-title: Evaluation of reference evapotranspiration equations under humid conditions
  publication-title: Water Resour. Manag.
– year: 1977
  ident: bib0105
  article-title: Guidelines for Predicting Crop Water Requirements
– volume: 11
  start-page: 311
  year: 1997
  end-page: 323
  ident: bib0350
  article-title: Evaluation and generalization of 13 mass‐transfer equations for determining free water evaporation
  publication-title: Hydrol. Process.
– volume: 28
  start-page: 5465
  year: 2014
  end-page: 5476
  ident: bib0330
  article-title: Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran
  publication-title: Water Resour. Manag.
– volume: 145
  start-page: 22
  year: 2007
  end-page: 35
  ident: bib0075
  article-title: Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages
  publication-title: Agric. For. Meteorol.
– volume: 635
  start-page: 259
  year: 2018
  end-page: 274
  ident: bib0255
  article-title: Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes
  publication-title: Sci. Total Environ.
– volume: 572
  start-page: 556
  year: 2019
  end-page: 570
  ident: bib0125
  article-title: Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach
  publication-title: J. Hydrol.
– volume: 50
  start-page: 7100
  year: 2014
  end-page: 7114
  ident: bib0260
  article-title: Trends in water balance components across the Brazilian Cerrado
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 898
  year: 1979
  end-page: 903
  ident: bib0090
  article-title: The priestley-taylor evaporation model applied to a large, Shallow Lake in the Netherlands
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 43
  start-page: 231
  year: 1988
  end-page: 245
  ident: bib0235
  article-title: An eddy correlation technique with extended applicability to non-simple terrain
  publication-title: Boundary-Layer Meteorol.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0285
  article-title: Temporal patterns of energy balance for a brazilian tropical savanna under contrasting seasonal conditions
  publication-title: Int. J. Atmos. Sci.
– volume: 570
  start-page: 265
  year: 2019
  end-page: 280
  ident: bib0340
  article-title: Modeling reference evapotranspiration in island environments: assessing the practical implications
  publication-title: J. Hydrol.
– volume: 7
  start-page: 275
  year: 2003
  end-page: 279
  ident: bib0245
  article-title: Comparação entre métodos de estimativa da evapotranspiração de referência (ETo) na região Norte Fluminense
  publication-title: RJ. Rev. Bras. Eng. Agrícola e Ambient.
– volume: 22
  start-page: 331
  year: 2009
  end-page: 348
  ident: bib0040
  article-title: Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications
  publication-title: Atmosfera
– year: 1975
  ident: bib0170
  article-title: Adaptation in Natural and Artificial Systems
– volume: 95
  start-page: 707
  year: 2008
  end-page: 715
  ident: bib0185
  article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data
  publication-title: Application Tunisia. Agric. Water Manag.
– volume: 31
  start-page: 107
  year: 2013
  end-page: 117
  ident: bib0360
  article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions
  publication-title: Irrig. Sci.
– volume: 528
  start-page: 312
  year: 2015
  end-page: 320
  ident: bib0205
  article-title: Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree
  publication-title: J. Hydrol.
– volume: 12
  start-page: 13
  year: 1961
  end-page: 49
  ident: bib0380
  article-title: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date
  publication-title: Ann. Agron.
– volume: 198
  start-page: 28
  year: 2018
  end-page: 38
  ident: bib0225
  article-title: Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt
  publication-title: Agric. Water Manag.
– volume: 121
  start-page: 267
  year: 2015
  end-page: 278
  ident: bib0390
  article-title: Investigation of Valiantzas’ evapotranspiration equation in Iran
  publication-title: Theor. Appl. Climatol.
– volume: 63
  start-page: 1309
  year: 1982
  end-page: 1313
  ident: bib0425
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
– start-page: 353
  year: 1974
  end-page: 364
  ident: bib0080
  article-title: The solar thermal unit concept in problems related to plant development and potential evapotranspiration
  publication-title: Phenology and Seasonality Modeling
– volume: 14
  start-page: 1
  year: 2019
  ident: bib0345
  article-title: Evaluation of methods for estimating atmospheric emissivity in Mato-Grossense Cerrado
  publication-title: Ambient. e Agua - An Interdiscip. J. Appl. Sci.
– volume: 544
  start-page: 407
  year: 2017
  end-page: 427
  ident: bib0410
  article-title: Pan evaporation modeling using six different heuristic computing methods in different climates of China
  publication-title: J. Hydrol.
– volume: 25
  start-page: 579
  year: 2008
  end-page: 595
  ident: bib0060
  article-title: Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy
  publication-title: Land Use Policy
– volume: 50
  start-page: 355
  year: 1990
  end-page: 373
  ident: bib0315
  article-title: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation
  publication-title: Boundary-Layer Meteorol.
– volume: 20
  start-page: 233
  year: 2008
  end-page: 245
  ident: bib0065
  article-title: Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand
  publication-title: Brazilian J. Plant Physiol.
– volume: 78
  start-page: 61
  year: 2004
  end-page: 77
  ident: bib0210
  article-title: Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing
  publication-title: Theor. Appl. Climatol.
– volume: 193
  start-page: 120
  year: 1948
  end-page: 145
  ident: bib0265
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 26
  start-page: 197
  year: 2011
  end-page: 203
  ident: bib0355
  article-title: Estimativa da evapotranspiração de referência através de redes neurais artificiais
  publication-title: Rev. Bras. Meteorol.
– volume: 58
  start-page: 116
  year: 2015
  end-page: 127
  ident: bib0050
  article-title: Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach
  publication-title: Appl. Geogr.
– volume: 1
  start-page: 96
  year: 1985
  end-page: 99
  ident: bib0165
  article-title: Reference crop evapotranspiration from temperature
  publication-title: Appl. Eng. Agric.
– volume: 44
  start-page: 1
  year: 2008
  end-page: 14
  ident: bib0400
  article-title: Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin
  publication-title: Water Resour. Res.
– volume: 218–219
  start-page: 218
  year: 2016
  end-page: 229
  ident: bib0300
  article-title: Modeling canopy conductance under contrasting seasonal conditions for a tropical savanna ecosystem of south central Mato Grosso, Brazil
  publication-title: Agric. For. Meteorol.
– year: 2017
  ident: bib0055
  article-title: Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest
  publication-title: Hydrol. Res
– volume: 139
  start-page: 9
  year: 2013
  end-page: 19
  ident: bib0385
  article-title: Simple ET0 forms of Penman’s equation without wind and/or humidity data. II: comparisons with reduced Set-FAO and other methodologies
  publication-title: J. Irrig. Drain. Eng.
– start-page: 1
  year: 2016
  end-page: 13
  ident: bib0100
  article-title: Daily reference evapotranspiration estimation under limited data in Eastern Africa
  publication-title: J. Irrig. Drain. Eng.
– volume: 13
  start-page: 1
  year: 2018
  ident: bib0115
  article-title: Surface albedo in different land-use and cover types in Amazon forest region. Ambient. E Agua - an Interdiscip
  publication-title: J. Appl. Sci.
– volume: 102
  start-page: 113
  year: 2000
  end-page: 124
  ident: bib0035
  article-title: Estimating daytime latent heat flux and evapotranspiration in Jamaica
  publication-title: Agric. For. Meteorol.
– volume: 18
  start-page: 0980
  year: 1975
  end-page: 0984
  ident: bib0160
  article-title: Moisture availability and crop production
  publication-title: Trans. ASAE
– volume: 119
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0290
  article-title: Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso
  publication-title: Brazil. J. Geophys. Res. Biogeosciences
– volume: 139
  start-page: 103
  year: 2017
  end-page: 114
  ident: bib0240
  article-title: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration
  publication-title: Comput. Electron. Agric.
– volume: 97
  start-page: 635
  year: 2010
  end-page: 644
  ident: bib0320
  article-title: Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada
  publication-title: Agric. Water Manag.
– volume: 32
  year: 2005
  ident: bib0180
  article-title: Climatic variability and vegetation vulnerability in Amazônia
  publication-title: Geophys. Res. Lett.
– year: 1998
  ident: bib0025
  article-title: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements
– volume: 118
  start-page: 377
  year: 2014
  end-page: 385
  ident: bib0005
  article-title: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada
  publication-title: Theor. Appl. Climatol.
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: bib0030
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
– volume: 441
  start-page: 129
  year: 2017
  end-page: 139
  ident: bib0120
  article-title: Spatiotemporal variation of reference evapotranspiration during 1954–2013 in Southwest China
  publication-title: Quat. Int.
– volume: 106
  start-page: 85
  year: 1980
  end-page: 100
  ident: bib0415
  article-title: Correction of flux measurements for density effects due to heat and water vapour transfer
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 142
  start-page: 156
  year: 2007
  end-page: 169
  ident: bib0045
  article-title: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS
  publication-title: Agric. For. Meteorol.
– volume: 309
  start-page: 570
  year: 2005
  end-page: 574
  ident: bib0130
  article-title: Global consequences of land use
  publication-title: Science
– volume: 561
  start-page: 737
  year: 2018
  end-page: 750
  ident: bib0335
  article-title: Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology
  publication-title: J. Hydrol.
– volume: 59
  start-page: 845
  year: 2013
  end-page: 858
  ident: bib0440
  article-title: Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China
  publication-title: Arch. Agron. Soil Sci.
– volume: 5
  start-page: 309
  year: 2017
  end-page: 324
  ident: bib0070
  article-title: Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina
  publication-title: Int. Soil Water Conserv. Res.
– volume: 16
  start-page: 33
  year: 2002
  end-page: 45
  ident: bib0110
  article-title: Estimating reference evapotranspiration under inaccurate data conditions
  publication-title: Irrig. Drain. Syst. Eng.
– volume: 134
  start-page: 417
  year: 2008
  end-page: 424
  ident: bib0435
  article-title: Testing reference evapotranspiration estimation methods using evaporation Pan and modeling in maritime region of Canada
  publication-title: J. Irrig. Drain. Eng.
– volume: 4
  start-page: 15
  year: 1963
  end-page: 41
  ident: bib0190
  article-title: Estimating evapotranspiration from solar radiation
  publication-title: J. Irrig. Drain. Eng.
– volume: 100
  start-page: 81
  year: 1972
  end-page: 92
  ident: bib0275
  article-title: On the assessment of surface heat flux and evaporation using large-scale parameters
  publication-title: Mon. Weather Rev.
– volume: 187
  start-page: 16
  year: 2017
  end-page: 23
  ident: bib0135
  article-title: Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: the role of protected areas in the maintenance of native vegetation
  publication-title: J. Environ. Manage.
– volume: 166
  start-page: 113
  year: 2010
  end-page: 124
  ident: bib0310
  article-title: Land cover mapping of the tropical savanna region in Brazil
  publication-title: Environ. Monit. Assess.
– volume: 329
  start-page: 620
  year: 2006
  end-page: 629
  ident: bib0145
  article-title: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin
  publication-title: J. Hydrol.
– volume: 27
  start-page: 605
  year: 2013
  end-page: 616
  ident: bib0325
  article-title: Parametric calibration of the Hargreaves-Samani equation for use at new locations
  publication-title: Hydrol. Process.
– volume: 10
  start-page: 33
  year: 2018
  end-page: 44
  ident: bib0365
  article-title: Reference evapotranspiration in so Paulo State: empirical methods and machine learning techniques
  publication-title: Int. J. Water Resour. Environ. Eng.
– start-page: 12
  year: 1961
  end-page: 25
  ident: bib0305
  article-title: Computation of the autumn soil moisture using a universal relationship for a large area
  publication-title: Proc. Ukr. Hydrometeorol. Res. Inst.
– volume: 149
  start-page: 1365
  year: 2009
  ident: 10.1016/j.agwat.2020.106040_bib0140
  article-title: Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.03.006
– volume: 121
  start-page: 267
  year: 2015
  ident: 10.1016/j.agwat.2020.106040_bib0390
  article-title: Investigation of Valiantzas’ evapotranspiration equation in Iran
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-014-1240-x
– volume: 15
  start-page: 205
  year: 1984
  ident: 10.1016/j.agwat.2020.106040_bib0155
  article-title: Estimation of potential and actual evapotranspiration
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.1984.0017
– volume: 119
  start-page: 1
  year: 2014
  ident: 10.1016/j.agwat.2020.106040_bib0290
  article-title: Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso
  publication-title: Brazil. J. Geophys. Res. Biogeosciences
  doi: 10.1002/2013JG002472
– volume: 78
  start-page: 61
  year: 2004
  ident: 10.1016/j.agwat.2020.106040_bib0210
  article-title: Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-004-0044-9
– year: 1998
  ident: 10.1016/j.agwat.2020.106040_bib0025
– volume: 1
  start-page: 96
  year: 1985
  ident: 10.1016/j.agwat.2020.106040_bib0165
  article-title: Reference crop evapotranspiration from temperature
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.26773
– volume: 100
  start-page: 87
  year: 2010
  ident: 10.1016/j.agwat.2020.106040_bib0195
  article-title: Access regimes and regional land change in the brazilian cerrado, 1972–2002
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1080/00045600903378960
– volume: 309
  start-page: 570
  issue: 80
  year: 2005
  ident: 10.1016/j.agwat.2020.106040_bib0130
  article-title: Global consequences of land use
  publication-title: Science
  doi: 10.1126/science.1111772
– volume: 198
  start-page: 28
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0225
  article-title: Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2017.12.017
– volume: 23
  start-page: 3057
  year: 2009
  ident: 10.1016/j.agwat.2020.106040_bib0375
  article-title: Evaluation of reference evapotranspiration equations under humid conditions
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-009-9423-4
– volume: 27
  start-page: 605
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0325
  article-title: Parametric calibration of the Hargreaves-Samani equation for use at new locations
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9277
– volume: 63
  start-page: 1309
  year: 1982
  ident: 10.1016/j.agwat.2020.106040_bib0425
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– start-page: 353
  year: 1974
  ident: 10.1016/j.agwat.2020.106040_bib0080
  article-title: The solar thermal unit concept in problems related to plant development and potential evapotranspiration
– volume: 142
  start-page: 156
  year: 2007
  ident: 10.1016/j.agwat.2020.106040_bib0045
  article-title: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.08.020
– volume: 100
  start-page: 81
  year: 1972
  ident: 10.1016/j.agwat.2020.106040_bib0275
  article-title: On the assessment of surface heat flux and evaporation using large-scale parameters
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume: 55
  start-page: 201
  year: 2006
  ident: 10.1016/j.agwat.2020.106040_bib0270
  article-title: Validation of the FAO methodology for computing ETo with limited data
  publication-title: Application to south Bulgaria. Irrig. Drain.
– volume: 59
  start-page: 845
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0440
  article-title: Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2012.683425
– volume: 4
  start-page: 15
  year: 1963
  ident: 10.1016/j.agwat.2020.106040_bib0190
  article-title: Estimating evapotranspiration from solar radiation
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/JRCEA4.0000287
– volume: 88
  start-page: 2195
  year: 2016
  ident: 10.1016/j.agwat.2020.106040_bib0295
  article-title: Hourly interaction between wind speed and energy fluxes in Brazilian wetlands - Mato Grosso - Brazil
  publication-title: An. Acad. Bras. Cienc.
  doi: 10.1590/0001-3765201620150130
– volume: 38
  start-page: 55
  year: 1948
  ident: 10.1016/j.agwat.2020.106040_bib0370
  article-title: An approach toward a rational classification of climate
  publication-title: Geogr. Rev.
  doi: 10.2307/210739
– volume: 218–219
  start-page: 218
  year: 2016
  ident: 10.1016/j.agwat.2020.106040_bib0300
  article-title: Modeling canopy conductance under contrasting seasonal conditions for a tropical savanna ecosystem of south central Mato Grosso, Brazil
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.12.060
– year: 2017
  ident: 10.1016/j.agwat.2020.106040_bib0055
  article-title: Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest
  publication-title: Hydrol. Res
– volume: 18
  start-page: 898
  year: 1979
  ident: 10.1016/j.agwat.2020.106040_bib0090
  article-title: The priestley-taylor evaporation model applied to a large, Shallow Lake in the Netherlands
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
– volume: 150
  start-page: 1
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0200
  article-title: Evolutionary algorithm for reference evapotranspiration analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.003
– volume: 26
  start-page: 197
  year: 2011
  ident: 10.1016/j.agwat.2020.106040_bib0355
  article-title: Estimativa da evapotranspiração de referência através de redes neurais artificiais
  publication-title: Rev. Bras. Meteorol.
  doi: 10.1590/S0102-77862011000200004
– volume: 88
  start-page: 1387
  year: 2016
  ident: 10.1016/j.agwat.2020.106040_bib0085
  article-title: Modeling the reflection of Photosynthetically active radiation in a monodominant floodable forest in the Pantanal of Mato Grosso State using multivariate statistics and neural networks
  publication-title: An. Acad. Bras. Cienc.
  doi: 10.1590/0001-3765201620150176
– start-page: 1
  year: 2016
  ident: 10.1016/j.agwat.2020.106040_bib0100
  article-title: Daily reference evapotranspiration estimation under limited data in Eastern Africa
  publication-title: J. Irrig. Drain. Eng.
– volume: 11
  start-page: 311
  year: 1997
  ident: 10.1016/j.agwat.2020.106040_bib0350
  article-title: Evaluation and generalization of 13 mass‐transfer equations for determining free water evaporation
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
– volume: 134
  start-page: 417
  year: 2008
  ident: 10.1016/j.agwat.2020.106040_bib0435
  article-title: Testing reference evapotranspiration estimation methods using evaporation Pan and modeling in maritime region of Canada
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2008)134:4(417)
– year: 1975
  ident: 10.1016/j.agwat.2020.106040_bib0170
– volume: 59
  start-page: 217
  year: 2015
  ident: 10.1016/j.agwat.2020.106040_bib0405
  article-title: Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-014-0837-1
– volume: 16
  start-page: 33
  year: 2002
  ident: 10.1016/j.agwat.2020.106040_bib0110
  article-title: Estimating reference evapotranspiration under inaccurate data conditions
  publication-title: Irrig. Drain. Syst. Eng.
  doi: 10.1023/A:1015508322413
– volume: 32
  start-page: 465
  year: 1996
  ident: 10.1016/j.agwat.2020.106040_bib0010
  article-title: Evapotranspiration measurements and modeling for three wetland systems in South Florida
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1996.tb04044.x
– volume: 544
  start-page: 407
  year: 2017
  ident: 10.1016/j.agwat.2020.106040_bib0410
  article-title: Pan evaporation modeling using six different heuristic computing methods in different climates of China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.059
– volume: 50
  start-page: 355
  year: 1990
  ident: 10.1016/j.agwat.2020.106040_bib0315
  article-title: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/BF00120530
– volume: 29
  start-page: 3195
  year: 2015
  ident: 10.1016/j.agwat.2020.106040_bib0420
  article-title: Support-vector-Machine-Based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0990-2
– volume: 2
  start-page: 1
  year: 1950
  ident: 10.1016/j.agwat.2020.106040_bib0015
  article-title: Die Methoden Zur Bestimmung Der Verdunstung der natürlichen erdoberfläche
  publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B
  doi: 10.1007/BF02242718
– volume: 18
  start-page: 1
  year: 1970
  ident: 10.1016/j.agwat.2020.106040_bib0215
  article-title: Verdunstungsstudien am neusiedler see
  publication-title: Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B
  doi: 10.1007/BF02245865
– volume: 492
  start-page: 24
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0175
  article-title: Effect of climate change on reference evapotranspiration and aridity index in arid region of China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.04.011
– volume: 139
  start-page: 103
  year: 2017
  ident: 10.1016/j.agwat.2020.106040_bib0240
  article-title: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.05.002
– volume: 14
  start-page: 1
  year: 2019
  ident: 10.1016/j.agwat.2020.106040_bib0345
  article-title: Evaluation of methods for estimating atmospheric emissivity in Mato-Grossense Cerrado
  publication-title: Ambient. e Agua - An Interdiscip. J. Appl. Sci.
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0115
  article-title: Surface albedo in different land-use and cover types in Amazon forest region. Ambient. E Agua - an Interdiscip
  publication-title: J. Appl. Sci.
– volume: 28
  start-page: 5465
  year: 2014
  ident: 10.1016/j.agwat.2020.106040_bib0330
  article-title: Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0813-x
– year: 1966
  ident: 10.1016/j.agwat.2020.106040_bib0430
– volume: 193
  start-page: 120
  year: 1948
  ident: 10.1016/j.agwat.2020.106040_bib0265
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 139
  start-page: 9
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0385
  article-title: Simple ET0 forms of Penman’s equation without wind and/or humidity data. II: comparisons with reduced Set-FAO and other methodologies
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000502
– volume: 133
  start-page: 83
  year: 2007
  ident: 10.1016/j.agwat.2020.106040_bib0445
  article-title: Estimating evapotranspiration using artificial neural network and minimum climatological data
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:2(83)
– volume: 572
  start-page: 556
  year: 2019
  ident: 10.1016/j.agwat.2020.106040_bib0125
  article-title: Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – a new approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.028
– volume: 566
  start-page: 264
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0450
  article-title: Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.021
– volume: 561
  start-page: 737
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0335
  article-title: Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.042
– start-page: 97
  year: 2011
  ident: 10.1016/j.agwat.2020.106040_bib0395
  article-title: Flux dynamics in the cerrado and cerrado – Forest transition of Brazil
– volume: 22
  start-page: 331
  year: 2009
  ident: 10.1016/j.agwat.2020.106040_bib0040
  article-title: Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications
  publication-title: Atmosfera
– volume: 166
  start-page: 113
  year: 2010
  ident: 10.1016/j.agwat.2020.106040_bib0310
  article-title: Land cover mapping of the tropical savanna region in Brazil
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-009-0988-4
– volume: 12
  start-page: 13
  year: 1961
  ident: 10.1016/j.agwat.2020.106040_bib0380
  article-title: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date
  publication-title: Ann. Agron.
– year: 1972
  ident: 10.1016/j.agwat.2020.106040_bib0230
– volume: 7
  start-page: 275
  year: 2003
  ident: 10.1016/j.agwat.2020.106040_bib0245
  article-title: Comparação entre métodos de estimativa da evapotranspiração de referência (ETo) na região Norte Fluminense
  publication-title: RJ. Rev. Bras. Eng. Agrícola e Ambient.
  doi: 10.1590/S1415-43662003000200015
– volume: 58
  start-page: 116
  year: 2015
  ident: 10.1016/j.agwat.2020.106040_bib0050
  article-title: Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2015.01.017
– volume: 635
  start-page: 259
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0255
  article-title: Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.356
– volume: 20
  start-page: 233
  year: 2008
  ident: 10.1016/j.agwat.2020.106040_bib0065
  article-title: Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand
  publication-title: Brazilian J. Plant Physiol.
  doi: 10.1590/S1677-04202008000300007
– volume: 441
  start-page: 129
  year: 2017
  ident: 10.1016/j.agwat.2020.106040_bib0120
  article-title: Spatiotemporal variation of reference evapotranspiration during 1954–2013 in Southwest China
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2017.01.023
– volume: 95
  start-page: 707
  year: 2008
  ident: 10.1016/j.agwat.2020.106040_bib0185
  article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data
  publication-title: Application Tunisia. Agric. Water Manag.
  doi: 10.1016/j.agwat.2008.01.009
– volume: 25
  start-page: 579
  year: 2008
  ident: 10.1016/j.agwat.2020.106040_bib0060
  article-title: Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2007.11.008
– volume: 329
  start-page: 620
  year: 2006
  ident: 10.1016/j.agwat.2020.106040_bib0145
  article-title: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.03.027
– volume: 187
  start-page: 16
  year: 2017
  ident: 10.1016/j.agwat.2020.106040_bib0135
  article-title: Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: the role of protected areas in the maintenance of native vegetation
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.11.010
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0285
  article-title: Temporal patterns of energy balance for a brazilian tropical savanna under contrasting seasonal conditions
  publication-title: Int. J. Atmos. Sci.
– volume: 5
  start-page: 309
  year: 2017
  ident: 10.1016/j.agwat.2020.106040_bib0070
  article-title: Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2017.07.002
– volume: 2
  start-page: 209
  year: 1996
  ident: 10.1016/j.agwat.2020.106040_bib0150
  article-title: The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.1996.tb00073.x
– volume: 11
  start-page: 277
  year: 1957
  ident: 10.1016/j.agwat.2020.106040_bib0220
  article-title: Testing the Penman formula by means of lysimeters
  publication-title: J. Inst. Water Eng.
– start-page: 12
  year: 1961
  ident: 10.1016/j.agwat.2020.106040_bib0305
  article-title: Computation of the autumn soil moisture using a universal relationship for a large area
  publication-title: Proc. Ukr. Hydrometeorol. Res. Inst.
– volume: 22
  start-page: 711
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0030
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– volume: 570
  start-page: 265
  year: 2019
  ident: 10.1016/j.agwat.2020.106040_bib0340
  article-title: Modeling reference evapotranspiration in island environments: assessing the practical implications
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.068
– volume: 97
  start-page: 635
  year: 2010
  ident: 10.1016/j.agwat.2020.106040_bib0320
  article-title: Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2009.12.001
– volume: 60
  start-page: 157
  year: 2003
  ident: 10.1016/j.agwat.2020.106040_bib0020
  article-title: New empirical formula for hourly estimations of reference evapotranspiration
  publication-title: Agric. Water Manag.
  doi: 10.1016/S0378-3774(02)00172-5
– volume: 7
  start-page: 263
  year: 2003
  ident: 10.1016/j.agwat.2020.106040_bib0280
  article-title: Ajuste do modelo Chistiansen-Hargreaves para estimativa da evapotranspiração do feijão no cerrado
  publication-title: Rev. Bras. Eng. Agrícola e Ambient.
  doi: 10.1590/S1415-43662003000200013
– year: 1977
  ident: 10.1016/j.agwat.2020.106040_bib0105
– volume: 18
  start-page: 0980
  year: 1975
  ident: 10.1016/j.agwat.2020.106040_bib0160
  article-title: Moisture availability and crop production
  publication-title: Trans. ASAE
  doi: 10.13031/2013.36722
– volume: 102
  start-page: 113
  year: 2000
  ident: 10.1016/j.agwat.2020.106040_bib0035
  article-title: Estimating daytime latent heat flux and evapotranspiration in Jamaica
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(00)00105-2
– volume: 44
  start-page: 1
  year: 2008
  ident: 10.1016/j.agwat.2020.106040_bib0400
  article-title: Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005526
– volume: 118
  start-page: 377
  year: 2014
  ident: 10.1016/j.agwat.2020.106040_bib0005
  article-title: Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-013-1070-2
– volume: 145
  start-page: 22
  year: 2007
  ident: 10.1016/j.agwat.2020.106040_bib0075
  article-title: Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2007.04.012
– volume: 32
  year: 2005
  ident: 10.1016/j.agwat.2020.106040_bib0180
  article-title: Climatic variability and vegetation vulnerability in Amazônia
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL024981
– volume: 50
  start-page: 7100
  year: 2014
  ident: 10.1016/j.agwat.2020.106040_bib0260
  article-title: Trends in water balance components across the Brazilian Cerrado
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR015202
– volume: 43
  start-page: 231
  year: 1988
  ident: 10.1016/j.agwat.2020.106040_bib0235
  article-title: An eddy correlation technique with extended applicability to non-simple terrain
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/BF00128405
– volume: 106
  start-page: 85
  year: 1980
  ident: 10.1016/j.agwat.2020.106040_bib0415
  article-title: Correction of flux measurements for density effects due to heat and water vapour transfer
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49710644707
– volume: 10
  start-page: 33
  year: 2018
  ident: 10.1016/j.agwat.2020.106040_bib0365
  article-title: Reference evapotranspiration in so Paulo State: empirical methods and machine learning techniques
  publication-title: Int. J. Water Resour. Environ. Eng.
  doi: 10.5897/IJWREE2018.0772
– year: 1998
  ident: 10.1016/j.agwat.2020.106040_bib0250
– volume: 399
  start-page: 422
  year: 2011
  ident: 10.1016/j.agwat.2020.106040_bib0095
  article-title: Trends in reference crop evapotranspiration over Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.021
– volume: 528
  start-page: 312
  year: 2015
  ident: 10.1016/j.agwat.2020.106040_bib0205
  article-title: Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.052
– volume: 31
  start-page: 107
  year: 2013
  ident: 10.1016/j.agwat.2020.106040_bib0360
  article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-011-0295-z
SSID ssj0004047
Score 2.469391
Snippet •25 different ETo methods were evaluated for the Cerrado condition.•Radiation-based methods are applicable in the Cerrado region when Penman-Monteith model...
The Brazilian savanna, locally known as Cerrado, native vegetation has been replaced by an agro-pastoral land cover over the last few decades, which has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106040
SubjectTerms air temperature
algorithms
artificial intelligence
cerrado
climate
Comparative analysis cerrado
Eddy covariance
empirical research
equations
evapotranspiration
Genetic algorithm
hydrologic cycle
indigenous species
land cover
Limited data
Reference evapotranspiration
savannas
solar radiation
water resources
Title Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna
URI https://dx.doi.org/10.1016/j.agwat.2020.106040
https://www.proquest.com/docview/2388770007
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 20221130
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: ACRLP
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 20221130
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIKHN
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AKRWK
  dateStart: 19761201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iFz2In_hNBI_WbZuYtMdlUVZFLyp4C5M0KxXtLu6q4MHf7kzarijiwWNDUsokmXmTvrxh7AAU7mY_EJFPnYtkanVE1zcj5ZLEZxgSCkfnkJdXqn8rz--O72ZYr70LQ7TKxvfXPj1466al01izMyrLznUsNGZXGBFzgVlBRpf4pNRUxeDo44vmIeNQZIw6R9S7VR4KHC-4fwMiVKbUomI6Afk9Ov3w0yH4nC6xxQY18m79YctsxlcrbKF7_9woZ_hV9tT70vHmMNXb5MMBD9VuHn3BoSq4fxqVQRaETyuMcP8Ko-EkyJyX9YrgdWXpMUdMy4FjSv1e0oEIHwNC7wrW2O3pyU2vHzW1FCInhJpEBWYeEqGTSFSh0wwgx0ieFh7yY5dIm-d2gHvTCwuZExnEorA5IgfQahDHzoNYZ7PVsPIbjCea6FKxtDbNJWR5hphHK6stWJJ3t5ssbW1oXCM0TvUuHk3LKHswwfCGDG9qw2-yw-mgUa2z8Xd31U6O-bZcDEaCvwfut1NpcCPR3xGo_PBlbBC7ZFoTZtr678u32Tw91cSeHTY7eX7xu4hZJnYvLMo9Ntc9u-hffQJoVuyo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYYHGAHtA0QMNg8iSOhSZza8RFVVOXnhVbqzXp2XBQEaUXLkHbY3773nKSIaeKwq2NH0bP93vecz99j7Agk7mY_EZFPnYuy1KqIrm9G0iWJzzEkFI7OIa9v5GCUXYy74xXWa-_CEK2y8f21Tw_eumnpNNbszMqycxsLhdkVRkQtMCvI9Qe2lnVTRRnYye9XnkcWhypj1Dui7q30UCB5wd0LEKMypRYZ0xHIv8PTX446RJ_-J7bZwEZ-Wn_ZZ7biqy_s4-ndUyOd4bfYY-9VyJvDUnCTTyc8lLt58AWHquD-cVYGXRC-LDHC_U-YTRdB57yslwSvS0vPOYJaDhxz6l8lnYjwOSD2rmCbjfpnw94gaoopRE4IuYgKTD0yxE4ikYVKcwCNoTwtPOiuSzKrtZ3g5vTCQu5EDrEorEboAEpO4th5EDtstZpWfpfxRBFfKs6sTXUGuc4R9ChplQVL-u52j6WtDY1rlMap4MWDaSll9yYY3pDhTW34PXa8HDSrhTbe7y7byTFv1ovBUPD-wB_tVBrcSfR7BCo_fZ4bBC-5UgSa9v_35d_Z-mB4fWWuzm8uv7INelKzfA7Y6uLp2R8igFnYb2GB_gHsue49
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+assessment+of+modelled+and+empirical+reference+evapotranspiration+methods+for+a+brazilian+savanna&rft.jtitle=Agricultural+water+management&rft.au=Valle+J%C3%BAnior%2C+Luiz+C.G.&rft.au=Ventura%2C+Thiago+M.&rft.au=Gomes%2C+Raphael+S.R.&rft.au=de+S.+Nogueira%2C+Jos%C3%A9&rft.date=2020-04-01&rft.issn=0378-3774&rft.volume=232&rft.spage=106040&rft_id=info:doi/10.1016%2Fj.agwat.2020.106040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agwat_2020_106040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon