Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making

•Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to report TSW, ETc, and IT.•Sensor choice impacts these metrics largely based on soil type and calibration.•Across all sensors and metrics, es...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 243; p. 106454
Main Authors Sharma, Kiran, Irmak, Suat, Kukal, Meetpal S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text
ISSN0378-3774
1873-2283
DOI10.1016/j.agwat.2020.106454

Cover

Abstract •Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to report TSW, ETc, and IT.•Sensor choice impacts these metrics largely based on soil type and calibration.•Across all sensors and metrics, estimation improved 54 % after site-specific calibration.•Quantified uncertainty in TSW, ETc, and IT associated with all sensors’ use. Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and growers/advisers) rely on these sensors for estimating critical agricultural water management decisions and information such as total soil water in the crop root zone (TSW), crop evapotranspiration (ETc) and predicting irrigation triggers (IT), i.e., when TSW is equal to or lower than readily available water. There is a lack of translation of errors in sensor-reported soil moisture (θv) into TSW, ETc, and IT, which is critical to farm-level decision-making as well as research assessments. Nine soil moisture sensors (based on principles of time-domain reflectometry, capacitance and electrical resistance) were investigated in field conditions for silt loam and loamy sand soils under two installation orientations (vertical and horizontal) during two growing seasons (2017 and 2018). Accurate representation of TSW, ETc, and IT was found to be a function of sensor-type, soil-type as well as calibration-type [factory calibration (F.C.) vs. site-specific calibration (S.S.C.)]. Sensor installation orientation did not affect sensor accuracy. Uncertainties in estimation of TSW, ETc and IT were quantified under each condition of use, and sensors were comparatively ranked for effective selection. It was found that all sensors underestimated ETc in silt loam soil. The deviation of sensor-measured ETc from true ETc ranged from −14 to −31 %, which implies that the choice of sensor under a given soil type impacts the quantification of consumptive use of the soil-vegetation system being monitored. Sensors showed both overstimation and underestimation of ETc in loamy sand soil with deviations of sensor-estimated ETc from true ETc ranging from 14 to −61 %. The S.S.C. resulted in 45 and 17 % improvement in TSW and ETc in silt loam soil, respectively, and 42, 80 and 86 % improvement observed in TSW, IT and ETc in loamy sand soil, respectively. The research findings showed that suitability of soil moisture sensors can differ when different target metrics are used as criteria. These findings emphasize the need for evaluating soil moisture sensors based on practical and application-oriented criteria, in addition to reliance on θv accuracy. To the best of authors’ knowledge, this research is the first to translate traditional θv accuracy assessments into practical and application-oriented criteria and use them to evaluate sensors for these specific applications. Sensor rankings and uncertainty associated with their use presented here will allow diverse users to effectively identify sensors for targeted applications in water management decision-making and research.
AbstractList Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and growers/advisers) rely on these sensors for estimating critical agricultural water management decisions and information such as total soil water in the crop root zone (TSW), crop evapotranspiration (ETc) and predicting irrigation triggers (IT), i.e., when TSW is equal to or lower than readily available water. There is a lack of translation of errors in sensor-reported soil moisture (θᵥ) into TSW, ETc, and IT, which is critical to farm-level decision-making as well as research assessments. Nine soil moisture sensors (based on principles of time-domain reflectometry, capacitance and electrical resistance) were investigated in field conditions for silt loam and loamy sand soils under two installation orientations (vertical and horizontal) during two growing seasons (2017 and 2018). Accurate representation of TSW, ETc, and IT was found to be a function of sensor-type, soil-type as well as calibration-type [factory calibration (F.C.) vs. site-specific calibration (S.S.C.)]. Sensor installation orientation did not affect sensor accuracy. Uncertainties in estimation of TSW, ETc and IT were quantified under each condition of use, and sensors were comparatively ranked for effective selection. It was found that all sensors underestimated ETc in silt loam soil. The deviation of sensor-measured ETc from true ETc ranged from −14 to −31 %, which implies that the choice of sensor under a given soil type impacts the quantification of consumptive use of the soil-vegetation system being monitored. Sensors showed both overstimation and underestimation of ETc in loamy sand soil with deviations of sensor-estimated ETc from true ETc ranging from 14 to −61 %. The S.S.C. resulted in 45 and 17 % improvement in TSW and ETc in silt loam soil, respectively, and 42, 80 and 86 % improvement observed in TSW, IT and ETc in loamy sand soil, respectively. The research findings showed that suitability of soil moisture sensors can differ when different target metrics are used as criteria. These findings emphasize the need for evaluating soil moisture sensors based on practical and application-oriented criteria, in addition to reliance on θᵥ accuracy. To the best of authors’ knowledge, this research is the first to translate traditional θᵥ accuracy assessments into practical and application-oriented criteria and use them to evaluate sensors for these specific applications. Sensor rankings and uncertainty associated with their use presented here will allow diverse users to effectively identify sensors for targeted applications in water management decision-making and research.
•Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to report TSW, ETc, and IT.•Sensor choice impacts these metrics largely based on soil type and calibration.•Across all sensors and metrics, estimation improved 54 % after site-specific calibration.•Quantified uncertainty in TSW, ETc, and IT associated with all sensors’ use. Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and growers/advisers) rely on these sensors for estimating critical agricultural water management decisions and information such as total soil water in the crop root zone (TSW), crop evapotranspiration (ETc) and predicting irrigation triggers (IT), i.e., when TSW is equal to or lower than readily available water. There is a lack of translation of errors in sensor-reported soil moisture (θv) into TSW, ETc, and IT, which is critical to farm-level decision-making as well as research assessments. Nine soil moisture sensors (based on principles of time-domain reflectometry, capacitance and electrical resistance) were investigated in field conditions for silt loam and loamy sand soils under two installation orientations (vertical and horizontal) during two growing seasons (2017 and 2018). Accurate representation of TSW, ETc, and IT was found to be a function of sensor-type, soil-type as well as calibration-type [factory calibration (F.C.) vs. site-specific calibration (S.S.C.)]. Sensor installation orientation did not affect sensor accuracy. Uncertainties in estimation of TSW, ETc and IT were quantified under each condition of use, and sensors were comparatively ranked for effective selection. It was found that all sensors underestimated ETc in silt loam soil. The deviation of sensor-measured ETc from true ETc ranged from −14 to −31 %, which implies that the choice of sensor under a given soil type impacts the quantification of consumptive use of the soil-vegetation system being monitored. Sensors showed both overstimation and underestimation of ETc in loamy sand soil with deviations of sensor-estimated ETc from true ETc ranging from 14 to −61 %. The S.S.C. resulted in 45 and 17 % improvement in TSW and ETc in silt loam soil, respectively, and 42, 80 and 86 % improvement observed in TSW, IT and ETc in loamy sand soil, respectively. The research findings showed that suitability of soil moisture sensors can differ when different target metrics are used as criteria. These findings emphasize the need for evaluating soil moisture sensors based on practical and application-oriented criteria, in addition to reliance on θv accuracy. To the best of authors’ knowledge, this research is the first to translate traditional θv accuracy assessments into practical and application-oriented criteria and use them to evaluate sensors for these specific applications. Sensor rankings and uncertainty associated with their use presented here will allow diverse users to effectively identify sensors for targeted applications in water management decision-making and research.
ArticleNumber 106454
Author Sharma, Kiran
Irmak, Suat
Kukal, Meetpal S.
Author_xml – sequence: 1
  givenname: Kiran
  surname: Sharma
  fullname: Sharma, Kiran
  organization: Lindsay Corporation, Omaha, Nebraska, USA (former Graduate Student in the Irmak Research Laboratory under the supervision of Professor Suat Irmak)
– sequence: 2
  givenname: Suat
  surname: Irmak
  fullname: Irmak, Suat
  email: sirmak2@unl.edu
  organization: University of Nebraska-Lincoln, Lincoln, Nebraska, 68583, USA
– sequence: 3
  givenname: Meetpal S.
  surname: Kukal
  fullname: Kukal, Meetpal S.
  organization: University of Nebraska-Lincoln, Lincoln, Nebraska, 68583, USA
BookMark eNqFkLFOHDEURa0IpCyQL0jjMkVm45nnHc8WFAiFgISUFFBbHs_z6m1m7cH2EvEF_Ha8DKJIERrbsu7x8z0n7MgHj4x9rsWyFnX7bbs0mz8mLxvRHG5auZIf2KLuFFRN08ERWwhQXQVKyY_sJKWtEEIKqRbs-VcMk9mYTMHz4HgKNPJdoJT3EXlCn8hv-N5bjNmQz0-8LIFjyrR7g3LIZpzR8guMXzk-minkaHyaKM454wdOMdLrrAEtpXKoduZ3GXHGjp0ZE3563U_Z_dX3u8vr6vbnj5vLi9vKArS5sq4XnYDeqRa6emVaaZ1TrpP92loE1Q9KCddIGIbWmEFCX1tYSwC3Lh6MhFP2ZX53iuFhX2roHSWL42g8hn3SzUpJqBvZdSUKc9TGkFJEp6dYSscnXQt90K63-kW7PmjXs_ZCrf-hLOWXykUHje-w5zOLxcAjYdTJEhb3A0W0WQ-B_sv_BYBdpbg
CitedBy_id crossref_primary_10_3390_s22197450
crossref_primary_10_2478_agriceng_2021_0009
crossref_primary_10_1016_j_agwat_2025_109372
crossref_primary_10_1002_agg2_20110
crossref_primary_10_1016_j_advwatres_2021_103982
crossref_primary_10_1061_JIDEDH_IRENG_9949
crossref_primary_10_1007_s00271_024_00945_3
crossref_primary_10_3390_rs14122902
crossref_primary_10_1016_j_scienta_2025_114020
crossref_primary_10_3390_s21165387
crossref_primary_10_1016_j_atech_2024_100673
crossref_primary_10_3390_agriculture15030308
crossref_primary_10_3390_s25051568
crossref_primary_10_3390_w13152111
crossref_primary_10_1016_j_scitotenv_2025_178974
crossref_primary_10_1002_ird_2735
Cites_doi 10.1520/JAI100595
10.1016/j.agwat.2019.105840
10.2136/vzj2004.0138
10.13031/aea.12908
10.1016/j.agwat.2011.09.007
10.3390/s18113786
10.13031/2013.20035
10.1016/j.jhydrol.2006.09.004
10.13031/2013.32066
10.3390/s91109398
10.1002/ird.95
10.1080/03650340.2017.1393528
10.13031/2013.6848
10.13031/2013.18458
10.1029/WR016i003p00574
10.1016/j.agwat.2011.12.002
10.1097/01.ss.0000075285.87447.86
10.1016/j.agwat.2009.03.022
10.2136/sssaj1995.03615995005900040001x
10.1016/j.jhydrol.2004.01.008
10.1061/(ASCE)IR.1943-4774.0000559
10.1016/j.jag.2015.09.004
10.1016/j.jhydrol.2012.01.041
10.13031/aea.13448
10.2134/jpa1992.0237
10.2136/sssaj2001.652311x
10.13031/2013.32600
10.1016/j.measurement.2014.04.007
10.2136/sssaj2000.6461940x
10.2136/sssaj2000.641311x
10.2136/vzj2017.12.0214
10.1029/1998WR900008
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agwat.2020.106454
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID 10_1016_j_agwat_2020_106454
S0378377420310829
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
VH1
WUQ
XPP
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-c336t-cfb0803bf763815a64cff7f84b9cce37bd770f243dd6aad43b1c39433f9283a43
IEDL.DBID .~1
ISSN 0378-3774
IngestDate Sun Sep 28 07:03:54 EDT 2025
Wed Oct 01 05:08:44 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Irrigation
Soil moisture
Time-domain reflectometry
Evapotranspiration
Electrical resistance
Capacitance
Sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-cfb0803bf763815a64cff7f84b9cce37bd770f243dd6aad43b1c39433f9283a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2574312488
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574312488
crossref_primary_10_1016_j_agwat_2020_106454
crossref_citationtrail_10_1016_j_agwat_2020_106454
elsevier_sciencedirect_doi_10_1016_j_agwat_2020_106454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Caldwell, Bongiovanni, Cosh, Halley, Young (bib0025) 2018; 17
Fares, Alva (bib0075) 2000; 64
Irmak (bib0110) 2019; 3045
Or, Wraith (bib0180) 1999; 35
Evett, Schwartz, Casanova, Heng (bib0070) 2012; 104
Monteith, Unsworth (bib0175) 2007
Brocca, Morbidelli, Melone, Moramarco (bib0015) 2007; 333
Chen, Marek, Marek, Heflin, Porter, Moorhead, Schwartz, Brauer (bib0035) 2020; 36
Walker, Willgoose, Kalma (bib0225) 2004; 293
Irmak, Specht, Odhiambo, Rees, Cassman (bib0130) 2014; 57
Payero, Tarkalson, Irmak, Davison, Petersen (bib0190) 2009; 96
Bhat, Singh (bib0010) 2007; 4
Champagne, Rowlandson, Berg, Burns, L’Heureux, Tetlock (bib0030) 2016; 45
Mittelbach, Lehner, Seneviratne (bib0165) 2012; 430
Monteith (bib0170) 1965; 19
Quinones, Ruelle, Nemeth (bib0200) 2003; 52
Evett, Steiner (bib0060) 1995; 59
Heng, Cayci, Kutuk, Arrillaga, Moutonnet (bib0080) 2002
Hilhorst, Dirksen, Kampers, Feddes (bib0085) 2001; 65
Evett (bib0055) 2008
Djaman, Irmak (bib0050) 2012; 139
Irmak (bib0090) 2010; 53
Kukal, Irmak (bib0150) 2020; 227
(bib0145) 2016
Su, Singh, Baghini (bib0205) 2014; 54
Jabro, Leib, Jabro (bib0135) 2005; 21
Leib, Jabro, Matthews (bib0160) 2003; 168
Irmak, Rees, Zoubek, VanDeWalle, Rathje, DeBuhr, Leininger, Siekman, Schneider, Christiansen (bib0125) 2010; 26
Topp, Davis, Annan (bib0215) 1980; 16
Irmak (bib0095) 2015; 141
Irmak, Haman (bib0115) 2001; 17
Baumhardt, Lascano, Evett (bib0005) 2000; 64
Irmak, Irmak (bib0120) 2005; 21
Datta, Taghvaeian, Ochsner, Moriasi, Gowda, Steiner (bib0045) 2018; 18
Evett, Laurent, Cepuder, Hignett (bib0065) 2002
Plauborg, Iversen, Lærke (bib0195) 2005; 4
Chow, Xing, Rees, Meng, Monteith, Stevens (bib0040) 2009; 9
Sun, Young (bib0210) 2001
Irmak (bib0105) 2019
Jabro, Stevens, Iversen (bib0140) 2018; 64
Kukal, Irmak, Sharma (bib0155) 2020; 12
Irmak (bib0100) 2015; 141
Paige, Keefer (bib0185) 2008; 44
Varble, Chávez (bib0220) 2011; 101
Bryant, Benson, Kiniry, Williams, Lacewell (bib0020) 1992; 5
Zhu, Irmak, Jhala, Vuran, Diotto (bib0230) 2019; 35
Irmak (10.1016/j.agwat.2020.106454_bib0110) 2019; 3045
Or (10.1016/j.agwat.2020.106454_bib0180) 1999; 35
Irmak (10.1016/j.agwat.2020.106454_bib0090) 2010; 53
Djaman (10.1016/j.agwat.2020.106454_bib0050) 2012; 139
Paige (10.1016/j.agwat.2020.106454_bib0185) 2008; 44
Champagne (10.1016/j.agwat.2020.106454_bib0030) 2016; 45
Fares (10.1016/j.agwat.2020.106454_bib0075) 2000; 64
Zhu (10.1016/j.agwat.2020.106454_bib0230) 2019; 35
Chen (10.1016/j.agwat.2020.106454_bib0035) 2020; 36
Irmak (10.1016/j.agwat.2020.106454_bib0120) 2005; 21
Jabro (10.1016/j.agwat.2020.106454_bib0135) 2005; 21
Baumhardt (10.1016/j.agwat.2020.106454_bib0005) 2000; 64
Chow (10.1016/j.agwat.2020.106454_bib0040) 2009; 9
Irmak (10.1016/j.agwat.2020.106454_bib0095) 2015; 141
Kukal (10.1016/j.agwat.2020.106454_bib0150) 2020; 227
Evett (10.1016/j.agwat.2020.106454_bib0070) 2012; 104
Jabro (10.1016/j.agwat.2020.106454_bib0140) 2018; 64
Irmak (10.1016/j.agwat.2020.106454_bib0125) 2010; 26
Irmak (10.1016/j.agwat.2020.106454_bib0130) 2014; 57
(10.1016/j.agwat.2020.106454_bib0145) 2016
Monteith (10.1016/j.agwat.2020.106454_bib0175) 2007
Topp (10.1016/j.agwat.2020.106454_bib0215) 1980; 16
Walker (10.1016/j.agwat.2020.106454_bib0225) 2004; 293
Datta (10.1016/j.agwat.2020.106454_bib0045) 2018; 18
Heng (10.1016/j.agwat.2020.106454_bib0080) 2002
Hilhorst (10.1016/j.agwat.2020.106454_bib0085) 2001; 65
Caldwell (10.1016/j.agwat.2020.106454_bib0025) 2018; 17
Evett (10.1016/j.agwat.2020.106454_bib0055) 2008
Quinones (10.1016/j.agwat.2020.106454_bib0200) 2003; 52
Evett (10.1016/j.agwat.2020.106454_bib0060) 1995; 59
Brocca (10.1016/j.agwat.2020.106454_bib0015) 2007; 333
Irmak (10.1016/j.agwat.2020.106454_bib0100) 2015; 141
Evett (10.1016/j.agwat.2020.106454_bib0065) 2002
Sun (10.1016/j.agwat.2020.106454_bib0210) 2001
Plauborg (10.1016/j.agwat.2020.106454_bib0195) 2005; 4
Varble (10.1016/j.agwat.2020.106454_bib0220) 2011; 101
Bhat (10.1016/j.agwat.2020.106454_bib0010) 2007; 4
Irmak (10.1016/j.agwat.2020.106454_bib0115) 2001; 17
Leib (10.1016/j.agwat.2020.106454_bib0160) 2003; 168
Irmak (10.1016/j.agwat.2020.106454_bib0105) 2019
Payero (10.1016/j.agwat.2020.106454_bib0190) 2009; 96
Kukal (10.1016/j.agwat.2020.106454_bib0155) 2020; 12
Mittelbach (10.1016/j.agwat.2020.106454_bib0165) 2012; 430
Monteith (10.1016/j.agwat.2020.106454_bib0170) 1965; 19
Bryant (10.1016/j.agwat.2020.106454_bib0020) 1992; 5
Su (10.1016/j.agwat.2020.106454_bib0205) 2014; 54
References_xml – year: 2016
  ident: bib0145
  publication-title: Evaporation, Evapotranspiration, and Irrigation Water Requirements. Task Committee on Revision of Manual 70
– volume: 65
  start-page: 311
  year: 2001
  end-page: 314
  ident: bib0085
  article-title: Dielectric relaxation of bound water versus soil matric pressure
  publication-title: Soil Sci. Soc. Am. J.
– volume: 141
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0100
  article-title: Inter-annual variation in long-term center pivot-irrigated maize evapotranspiration (ET) and various water productivity response indices: part II. Irrigation water use efficiency (IWUE), crop WUE, evapotranspiration WUE, irrigation-evapotranspiration use efficiency, and precipitation use efficiency
  publication-title: J. Irrig. Drainage Eng. ASCE
– volume: 21
  start-page: 393
  year: 2005
  end-page: 399
  ident: bib0135
  article-title: Estimating soil water content using site-specific calibration of capacitance measurements from Sentek EnviroSCAN systems
  publication-title: Appl. Eng. Agric.
– volume: 19
  start-page: 205
  year: 1965
  end-page: 234
  ident: bib0170
  article-title: Evaporation and environment
  publication-title: Symp. Soc. Exp. Biol.
– volume: 45
  start-page: 143
  year: 2016
  end-page: 154
  ident: bib0030
  article-title: Satellite surface soil moisture from SMOS and Aquarius: assessment for applications in agricultural landscapes
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 371
  year: 1999
  end-page: 383
  ident: bib0180
  article-title: Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model
  publication-title: Water Resour. Res.
– volume: 141
  start-page: 1
  year: 2015
  end-page: 17
  ident: bib0095
  article-title: Inter-annual variation in long-term center pivot-irrigated maize evapotranspiration (ET) and various water productivity response indices: part I. Grain yield, actual and basal ET, irrigation-yield production functions, ET-yield production functions, and yield response factors
  publication-title: J. Irrig. Drainage Eng. ASCE
– volume: 52
  start-page: 203
  year: 2003
  end-page: 217
  ident: bib0200
  article-title: Comparison of three calibration procedures for TDR soil moisture sensors. Irrigation and Drainage
  publication-title: The J. Int. Commission Irrig. Drain.
– start-page: 5
  year: 2001
  end-page: 7
  ident: bib0210
  article-title: Saline clayey soil moisture measurement using time domain reflectometry
  publication-title: Proceedings of the TDR 2001 Symposium, Evanston
– volume: 36
  start-page: 39
  year: 2020
  end-page: 54
  ident: bib0035
  article-title: Factory-calibrated soil water sensor performance using multiple installation orientations and depths
  publication-title: Appl. Eng. Agric.
– volume: 3045
  start-page: 8
  year: 2019
  ident: bib0110
  publication-title: Perspectives and Considerations for Soil Moisture Sensing Technologies and Soil Water Content- and Soil Matric Potential-Based Irrigation Trigger Values
– volume: 4
  start-page: 1037
  year: 2005
  end-page: 1047
  ident: bib0195
  article-title: In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils
  publication-title: Vadose Zone J.
– volume: 4
  start-page: 1
  year: 2007
  end-page: 17
  ident: bib0010
  article-title: A generalized relationship for estimating dielectric constant of soils
  publication-title: J. ASTM International
– volume: 139
  start-page: 433
  year: 2012
  end-page: 446
  ident: bib0050
  article-title: Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions
  publication-title: J. Irrig. Drainage Eng.
– volume: 104
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0070
  article-title: Soil water sensing for water balance, ET and WUE
  publication-title: Agric. Water Manage
– volume: 59
  start-page: 961
  year: 1995
  end-page: 968
  ident: bib0060
  article-title: Precision of neutron scattering and capacitance type soil water content gauges from field calibration
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 18
  year: 2019
  ident: bib0105
  article-title: Soil-water Potential and Soil-water Content Concepts and Measurement Methods. Extension Circular, EC3046
– volume: 17
  start-page: 787
  year: 2001
  end-page: 795
  ident: bib0115
  article-title: Performance of the Watermark granular matrix sensor in sandy soils
  publication-title: Appl. Eng. Agric.
– volume: 168
  start-page: 396
  year: 2003
  end-page: 408
  ident: bib0160
  article-title: Field evaluation and performance comparison of soil moisture sensors
  publication-title: Soil Sci.
– volume: 26
  start-page: 599
  year: 2010
  end-page: 613
  ident: bib0125
  article-title: Nebraska agricultural water management demonstration network (NAWMDN): integrating research and Extension/Outreach
  publication-title: Appl. Eng. Agric.
– volume: 64
  start-page: 930
  year: 2018
  end-page: 938
  ident: bib0140
  article-title: Field performance of three real-time moisture sensors in sandy loam and clay loam soils
  publication-title: Arch. Agron. Soil Sci.
– volume: 227
  start-page: 105840
  year: 2020
  ident: bib0150
  article-title: Characterization of water use and efficiency dynamics across four C
  publication-title: Agric. Water Manage.
– volume: 64
  start-page: 311
  year: 2000
  end-page: 318
  ident: bib0075
  article-title: Soil water components based on capacitance probes in a sandy soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 293
  start-page: 85
  year: 2004
  end-page: 99
  ident: bib0225
  article-title: In situ measurement of soil moisture: a comparison of techniques
  publication-title: J. Hydrology
– volume: 17
  start-page: 170214
  year: 2018
  ident: bib0025
  article-title: Field and laboratory evaluation of the CS655 soil water content sensor
  publication-title: Vadose Zone J.
– volume: 21
  start-page: 999
  year: 2005
  end-page: 1008
  ident: bib0120
  article-title: Performance of frequency-domain, capacitance, and psuedo-transit time-based soil water content probes in four coarse-textured soils
  publication-title: Appl. Eng. Agric.
– volume: 53
  start-page: 1097
  year: 2010
  end-page: 1115
  ident: bib0090
  article-title: Nebraska water and energy flux measurement, modeling, and research network (NEBFLUX)
  publication-title: Trans. ASABE
– volume: 12
  start-page: 1
  year: 2020
  end-page: 20
  ident: bib0155
  article-title: Development and application of a performance and operational feasibility guide to facilitate adoption of soil moisture sensors
  publication-title: Sustainability
– start-page: 14
  year: 2002
  end-page: 21
  ident: bib0065
  article-title: Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents
  publication-title: In 17th World Congress of Soil Science
– volume: 44
  start-page: 121
  year: 2008
  end-page: 135
  ident: bib0185
  article-title: Comparison of field performance of multiple soil moisture sensors in a Semi‐Arid rangeland
  publication-title: JAWRA
– volume: 96
  start-page: 1387
  year: 2009
  end-page: 1397
  ident: bib0190
  article-title: Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass
  publication-title: Agric. Water Manage
– start-page: 14
  year: 2002
  end-page: 21
  ident: bib0080
  article-title: Comparison of soil moisture sensors between neutron probe, diviner 2000 and TDR under tomato crops
  publication-title: In Proc. 17th World Congress of Soil Sci.
– volume: 101
  start-page: 93
  year: 2011
  end-page: 106
  ident: bib0220
  article-title: Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado
  publication-title: Agric. Water Manage.
– volume: 5
  start-page: 237
  year: 1992
  end-page: 242
  ident: bib0020
  article-title: Simulating corn yield response to irrigation timings: validation of the EPIC model
  publication-title: J. Prod. Agric
– volume: 9
  start-page: 9398
  year: 2009
  end-page: 9413
  ident: bib0040
  article-title: Field performance of nine soil water content sensors on a sandy loam soil in New Brunswick, maritime region, Canada
  publication-title: Sensors
– volume: 430
  start-page: 39
  year: 2012
  end-page: 49
  ident: bib0165
  article-title: Comparison of four soil moisture sensor types under field conditions in Switzerland
  publication-title: J. Hydrol.
– volume: 64
  start-page: 1940
  year: 2000
  end-page: 1946
  ident: bib0005
  article-title: Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 18
  start-page: 3786
  year: 2018
  ident: bib0045
  article-title: Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma
  publication-title: Sensors
– year: 2007
  ident: bib0175
  article-title: Principles of Environmental Physics
– volume: 35
  start-page: 117
  year: 2019
  end-page: 134
  ident: bib0230
  article-title: Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effect in fine- and coarse-textured soils
  publication-title: Appl. Eng. Agric.
– volume: 54
  start-page: 92
  year: 2014
  end-page: 105
  ident: bib0205
  article-title: A critical review of soil moisture measurement
  publication-title: Measurement
– volume: 333
  start-page: 356
  year: 2007
  end-page: 373
  ident: bib0015
  article-title: Soil moisture spatial variability in experimental areas of central Italy
  publication-title: J. Hydrol.
– volume: 16
  start-page: 574
  year: 1980
  end-page: 582
  ident: bib0215
  article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines
  publication-title: Water Resour. Res.
– start-page: 39
  year: 2008
  end-page: 54
  ident: bib0055
  article-title: Neutron moisture meters
  publication-title: Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology
– volume: 57
  start-page: 729
  year: 2014
  end-page: 748
  ident: bib0130
  article-title: Soybean yield, evapotranspiration, water productivity, and soil water extraction response to subsurface drip irrigation and fertigation
  publication-title: Trans. ASABE
– volume: 4
  start-page: 1
  issue: 7
  year: 2007
  ident: 10.1016/j.agwat.2020.106454_bib0010
  article-title: A generalized relationship for estimating dielectric constant of soils
  publication-title: J. ASTM International
  doi: 10.1520/JAI100595
– start-page: 14
  year: 2002
  ident: 10.1016/j.agwat.2020.106454_bib0080
  article-title: Comparison of soil moisture sensors between neutron probe, diviner 2000 and TDR under tomato crops
  publication-title: In Proc. 17th World Congress of Soil Sci.
– start-page: 18
  year: 2019
  ident: 10.1016/j.agwat.2020.106454_bib0105
– volume: 57
  start-page: 729
  year: 2014
  ident: 10.1016/j.agwat.2020.106454_bib0130
  article-title: Soybean yield, evapotranspiration, water productivity, and soil water extraction response to subsurface drip irrigation and fertigation
  publication-title: Trans. ASABE
– volume: 227
  start-page: 105840
  year: 2020
  ident: 10.1016/j.agwat.2020.106454_bib0150
  article-title: Characterization of water use and efficiency dynamics across four C3 and C4 row crops under optimal growth conditions
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2019.105840
– volume: 4
  start-page: 1037
  year: 2005
  ident: 10.1016/j.agwat.2020.106454_bib0195
  article-title: In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.0138
– volume: 35
  start-page: 117
  issue: 2
  year: 2019
  ident: 10.1016/j.agwat.2020.106454_bib0230
  article-title: Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effect in fine- and coarse-textured soils
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.12908
– volume: 101
  start-page: 93
  year: 2011
  ident: 10.1016/j.agwat.2020.106454_bib0220
  article-title: Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2011.09.007
– volume: 18
  start-page: 3786
  issue: 11
  year: 2018
  ident: 10.1016/j.agwat.2020.106454_bib0045
  article-title: Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma
  publication-title: Sensors
  doi: 10.3390/s18113786
– volume: 21
  start-page: 999
  issue: 6
  year: 2005
  ident: 10.1016/j.agwat.2020.106454_bib0120
  article-title: Performance of frequency-domain, capacitance, and psuedo-transit time-based soil water content probes in four coarse-textured soils
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.20035
– volume: 333
  start-page: 356
  issue: 2-4
  year: 2007
  ident: 10.1016/j.agwat.2020.106454_bib0015
  article-title: Soil moisture spatial variability in experimental areas of central Italy
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.09.004
– volume: 26
  start-page: 599
  issue: 4
  year: 2010
  ident: 10.1016/j.agwat.2020.106454_bib0125
  article-title: Nebraska agricultural water management demonstration network (NAWMDN): integrating research and Extension/Outreach
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.32066
– start-page: 39
  year: 2008
  ident: 10.1016/j.agwat.2020.106454_bib0055
  article-title: Neutron moisture meters
– volume: 9
  start-page: 9398
  year: 2009
  ident: 10.1016/j.agwat.2020.106454_bib0040
  article-title: Field performance of nine soil water content sensors on a sandy loam soil in New Brunswick, maritime region, Canada
  publication-title: Sensors
  doi: 10.3390/s91109398
– volume: 12
  start-page: 1
  issue: 321
  year: 2020
  ident: 10.1016/j.agwat.2020.106454_bib0155
  article-title: Development and application of a performance and operational feasibility guide to facilitate adoption of soil moisture sensors
  publication-title: Sustainability
– volume: 52
  start-page: 203
  issue: 3
  year: 2003
  ident: 10.1016/j.agwat.2020.106454_bib0200
  article-title: Comparison of three calibration procedures for TDR soil moisture sensors. Irrigation and Drainage
  publication-title: The J. Int. Commission Irrig. Drain.
  doi: 10.1002/ird.95
– volume: 141
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.agwat.2020.106454_bib0100
  publication-title: J. Irrig. Drainage Eng. ASCE
– volume: 64
  start-page: 930
  year: 2018
  ident: 10.1016/j.agwat.2020.106454_bib0140
  article-title: Field performance of three real-time moisture sensors in sandy loam and clay loam soils
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2017.1393528
– volume: 17
  start-page: 787
  issue: 6
  year: 2001
  ident: 10.1016/j.agwat.2020.106454_bib0115
  article-title: Performance of the Watermark granular matrix sensor in sandy soils
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.6848
– volume: 3045
  start-page: 8
  year: 2019
  ident: 10.1016/j.agwat.2020.106454_bib0110
– volume: 21
  start-page: 393
  issue: 3
  year: 2005
  ident: 10.1016/j.agwat.2020.106454_bib0135
  article-title: Estimating soil water content using site-specific calibration of capacitance measurements from Sentek EnviroSCAN systems
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.18458
– volume: 16
  start-page: 574
  issue: 3
  year: 1980
  ident: 10.1016/j.agwat.2020.106454_bib0215
  article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines
  publication-title: Water Resour. Res.
  doi: 10.1029/WR016i003p00574
– volume: 104
  start-page: 1
  year: 2012
  ident: 10.1016/j.agwat.2020.106454_bib0070
  article-title: Soil water sensing for water balance, ET and WUE
  publication-title: Agric. Water Manage
  doi: 10.1016/j.agwat.2011.12.002
– year: 2016
  ident: 10.1016/j.agwat.2020.106454_bib0145
– volume: 168
  start-page: 396
  year: 2003
  ident: 10.1016/j.agwat.2020.106454_bib0160
  article-title: Field evaluation and performance comparison of soil moisture sensors
  publication-title: Soil Sci.
  doi: 10.1097/01.ss.0000075285.87447.86
– volume: 44
  start-page: 121
  year: 2008
  ident: 10.1016/j.agwat.2020.106454_bib0185
  article-title: Comparison of field performance of multiple soil moisture sensors in a Semi‐Arid rangeland
  publication-title: JAWRA
– volume: 96
  start-page: 1387
  year: 2009
  ident: 10.1016/j.agwat.2020.106454_bib0190
  article-title: Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass
  publication-title: Agric. Water Manage
  doi: 10.1016/j.agwat.2009.03.022
– volume: 59
  start-page: 961
  issue: 4
  year: 1995
  ident: 10.1016/j.agwat.2020.106454_bib0060
  article-title: Precision of neutron scattering and capacitance type soil water content gauges from field calibration
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900040001x
– volume: 293
  start-page: 85
  year: 2004
  ident: 10.1016/j.agwat.2020.106454_bib0225
  article-title: In situ measurement of soil moisture: a comparison of techniques
  publication-title: J. Hydrology
  doi: 10.1016/j.jhydrol.2004.01.008
– volume: 139
  start-page: 433
  year: 2012
  ident: 10.1016/j.agwat.2020.106454_bib0050
  article-title: Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions
  publication-title: J. Irrig. Drainage Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000559
– volume: 19
  start-page: 205
  year: 1965
  ident: 10.1016/j.agwat.2020.106454_bib0170
  article-title: Evaporation and environment
  publication-title: Symp. Soc. Exp. Biol.
– volume: 45
  start-page: 143
  year: 2016
  ident: 10.1016/j.agwat.2020.106454_bib0030
  article-title: Satellite surface soil moisture from SMOS and Aquarius: assessment for applications in agricultural landscapes
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2015.09.004
– volume: 141
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.agwat.2020.106454_bib0095
  publication-title: J. Irrig. Drainage Eng. ASCE
– volume: 430
  start-page: 39
  year: 2012
  ident: 10.1016/j.agwat.2020.106454_bib0165
  article-title: Comparison of four soil moisture sensor types under field conditions in Switzerland
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.041
– year: 2007
  ident: 10.1016/j.agwat.2020.106454_bib0175
– volume: 36
  start-page: 39
  issue: 1
  year: 2020
  ident: 10.1016/j.agwat.2020.106454_bib0035
  article-title: Factory-calibrated soil water sensor performance using multiple installation orientations and depths
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.13448
– start-page: 14
  year: 2002
  ident: 10.1016/j.agwat.2020.106454_bib0065
  article-title: Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents
  publication-title: In 17th World Congress of Soil Science
– volume: 5
  start-page: 237
  year: 1992
  ident: 10.1016/j.agwat.2020.106454_bib0020
  article-title: Simulating corn yield response to irrigation timings: validation of the EPIC model
  publication-title: J. Prod. Agric
  doi: 10.2134/jpa1992.0237
– volume: 65
  start-page: 311
  issue: 2
  year: 2001
  ident: 10.1016/j.agwat.2020.106454_bib0085
  article-title: Dielectric relaxation of bound water versus soil matric pressure
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652311x
– volume: 53
  start-page: 1097
  issue: 4
  year: 2010
  ident: 10.1016/j.agwat.2020.106454_bib0090
  article-title: Nebraska water and energy flux measurement, modeling, and research network (NEBFLUX)
  publication-title: Trans. ASABE
  doi: 10.13031/2013.32600
– volume: 54
  start-page: 92
  year: 2014
  ident: 10.1016/j.agwat.2020.106454_bib0205
  article-title: A critical review of soil moisture measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.007
– start-page: 5
  year: 2001
  ident: 10.1016/j.agwat.2020.106454_bib0210
  article-title: Saline clayey soil moisture measurement using time domain reflectometry
– volume: 64
  start-page: 1940
  year: 2000
  ident: 10.1016/j.agwat.2020.106454_bib0005
  article-title: Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6461940x
– volume: 64
  start-page: 311
  year: 2000
  ident: 10.1016/j.agwat.2020.106454_bib0075
  article-title: Soil water components based on capacitance probes in a sandy soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.641311x
– volume: 17
  start-page: 170214
  issue: 1
  year: 2018
  ident: 10.1016/j.agwat.2020.106454_bib0025
  article-title: Field and laboratory evaluation of the CS655 soil water content sensor
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2017.12.0214
– volume: 35
  start-page: 371
  issue: 2
  year: 1999
  ident: 10.1016/j.agwat.2020.106454_bib0180
  article-title: Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900008
SSID ssj0004047
Score 2.455238
Snippet •Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to...
Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106454
SubjectTerms Capacitance
decision making
Electrical resistance
Evapotranspiration
Irrigation
loamy sand soils
rhizosphere
Sensors
silt loam soils
Soil moisture
soil water
Time-domain reflectometry
uncertainty
water management
Title Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making
URI https://dx.doi.org/10.1016/j.agwat.2020.106454
https://www.proquest.com/docview/2574312488
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 20221130
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: ACRLP
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 20221130
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIKHN
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AKRWK
  dateStart: 19761201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuETxat9uk7fa4iMuqKIIK3kKeS8Vtl25VvHj1bztJU0VBD156SDNtyCTzaL98g9Ch7HFjUp7A_iZhQHVmgkyROKCRAPenqcwcHcPlVTK6o-f38f0cOmnPwlhYpbf9jU131tq3dP1sdqd53r0JSQrZFaR2lt2yH9lDfJb9C9b08dsXzIOGrsiY7RzY3i3zkMN48fELt4DKyLZYbqvfvNMPO-2cz3AFLfuoEQ-aga2iOV2soaXBuPLMGXodvV9XkP-O3UTj0uBZmT_iSQlahNt4ZnHqxRiDF2swAPUrhkuJLcnG5FOoLiEWb0RhyLo6wvqZT8vaMaDnzWLBvFA4r6rcv0v5Kj3BxBW22kB3w9Pbk1HgqywEkpCkDqQREDUSYcDS9HsxT6gE7Zk-FZmUmqRCpWloIkqUSjhXlIieJBklxGQQmnBKNtF8URZ6C2HK476SKuYU0rSUGx6JNAspJypVEEeJbRS1s8ukpyC3lTAeWYs1e2BOJcyqhDUq2UZHn0LThoHj7-5Jqzb2bSEx8BF_Cx60Smawxex_E17o8mnGwKpBmBWBqdv578N30WJkwTDu280emq-rJ70P0UwtOm65dtDC4OxidPUB_e34FA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByQKUPQYHiShyJNhs7yea4QqClwKoSIHGz_FwFsckqG4r4Bf3bHTsOqJXKoZccHE9ieexvZpLxNwCHaiSszUWG-5vGETOFjQpN04glEs2fYarwdAyXs2x6w77fprdrcNyfhXFplQH7O0z3aB1ahmE2h8uyHF7FNMfoCkM7x245Too3sM5SxOQBrE_Ozqezl-ORsa8z5vpHTqAnH_JpXmL-KFxOZeJaHL3VvwzUX1Dt7c_pe9gMjiOZdGPbgjVTfYCNybwJ5BnmI_z60WAIPPdzTWpLVnV5TxY1KhJvk5VLVa_mBA1ZlwbQPhG81MTxbCyehdoa3fFOFIdsmiNifopl3XoS9LJbL0RUmpRNU4Z36VCoJ1r42laf4Ob05Pp4GoVCC5GiNGsjZSU6jlRaBJvxKBUZU6hAO2ayUMrQXOo8j23CqNaZEJpROVK0YJTaAr0TwehnGFR1ZbaBMJGOtdKpYBip5cKKROZFzATVuUZXSu5A0s8uV4GF3BXDuOd9utkd9yrhTiW8U8kOHD0LLTsSjte7Z73a-B9riaOZeF3wW69kjrvM_ToRlakfVhyBDT2tBNHuy_8-_ADeTq8vL_jF2ex8F94lLjfGf8rZg0HbPJh9dG5a-TUs3t9jAPq_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagation+of+soil+moisture+sensing+uncertainty+into+estimation+of+total+soil+water%2C+evapotranspiration+and+irrigation+decision-making&rft.jtitle=Agricultural+water+management&rft.au=Sharma%2C+Kiran&rft.au=Irmak%2C+Suat&rft.au=Kukal%2C+Meetpal+S&rft.date=2021-01-01&rft.issn=0378-3774&rft.volume=243+p.106454-&rft_id=info:doi/10.1016%2Fj.agwat.2020.106454&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon