Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making
•Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to report TSW, ETc, and IT.•Sensor choice impacts these metrics largely based on soil type and calibration.•Across all sensors and metrics, es...
Saved in:
Published in | Agricultural water management Vol. 243; p. 106454 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3774 1873-2283 |
DOI | 10.1016/j.agwat.2020.106454 |
Cover
Abstract | •Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to report TSW, ETc, and IT.•Sensor choice impacts these metrics largely based on soil type and calibration.•Across all sensors and metrics, estimation improved 54 % after site-specific calibration.•Quantified uncertainty in TSW, ETc, and IT associated with all sensors’ use.
Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and growers/advisers) rely on these sensors for estimating critical agricultural water management decisions and information such as total soil water in the crop root zone (TSW), crop evapotranspiration (ETc) and predicting irrigation triggers (IT), i.e., when TSW is equal to or lower than readily available water. There is a lack of translation of errors in sensor-reported soil moisture (θv) into TSW, ETc, and IT, which is critical to farm-level decision-making as well as research assessments. Nine soil moisture sensors (based on principles of time-domain reflectometry, capacitance and electrical resistance) were investigated in field conditions for silt loam and loamy sand soils under two installation orientations (vertical and horizontal) during two growing seasons (2017 and 2018). Accurate representation of TSW, ETc, and IT was found to be a function of sensor-type, soil-type as well as calibration-type [factory calibration (F.C.) vs. site-specific calibration (S.S.C.)]. Sensor installation orientation did not affect sensor accuracy. Uncertainties in estimation of TSW, ETc and IT were quantified under each condition of use, and sensors were comparatively ranked for effective selection. It was found that all sensors underestimated ETc in silt loam soil. The deviation of sensor-measured ETc from true ETc ranged from −14 to −31 %, which implies that the choice of sensor under a given soil type impacts the quantification of consumptive use of the soil-vegetation system being monitored. Sensors showed both overstimation and underestimation of ETc in loamy sand soil with deviations of sensor-estimated ETc from true ETc ranging from 14 to −61 %. The S.S.C. resulted in 45 and 17 % improvement in TSW and ETc in silt loam soil, respectively, and 42, 80 and 86 % improvement observed in TSW, IT and ETc in loamy sand soil, respectively. The research findings showed that suitability of soil moisture sensors can differ when different target metrics are used as criteria. These findings emphasize the need for evaluating soil moisture sensors based on practical and application-oriented criteria, in addition to reliance on θv accuracy. To the best of authors’ knowledge, this research is the first to translate traditional θv accuracy assessments into practical and application-oriented criteria and use them to evaluate sensors for these specific applications. Sensor rankings and uncertainty associated with their use presented here will allow diverse users to effectively identify sensors for targeted applications in water management decision-making and research. |
---|---|
AbstractList | Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and growers/advisers) rely on these sensors for estimating critical agricultural water management decisions and information such as total soil water in the crop root zone (TSW), crop evapotranspiration (ETc) and predicting irrigation triggers (IT), i.e., when TSW is equal to or lower than readily available water. There is a lack of translation of errors in sensor-reported soil moisture (θᵥ) into TSW, ETc, and IT, which is critical to farm-level decision-making as well as research assessments. Nine soil moisture sensors (based on principles of time-domain reflectometry, capacitance and electrical resistance) were investigated in field conditions for silt loam and loamy sand soils under two installation orientations (vertical and horizontal) during two growing seasons (2017 and 2018). Accurate representation of TSW, ETc, and IT was found to be a function of sensor-type, soil-type as well as calibration-type [factory calibration (F.C.) vs. site-specific calibration (S.S.C.)]. Sensor installation orientation did not affect sensor accuracy. Uncertainties in estimation of TSW, ETc and IT were quantified under each condition of use, and sensors were comparatively ranked for effective selection. It was found that all sensors underestimated ETc in silt loam soil. The deviation of sensor-measured ETc from true ETc ranged from −14 to −31 %, which implies that the choice of sensor under a given soil type impacts the quantification of consumptive use of the soil-vegetation system being monitored. Sensors showed both overstimation and underestimation of ETc in loamy sand soil with deviations of sensor-estimated ETc from true ETc ranging from 14 to −61 %. The S.S.C. resulted in 45 and 17 % improvement in TSW and ETc in silt loam soil, respectively, and 42, 80 and 86 % improvement observed in TSW, IT and ETc in loamy sand soil, respectively. The research findings showed that suitability of soil moisture sensors can differ when different target metrics are used as criteria. These findings emphasize the need for evaluating soil moisture sensors based on practical and application-oriented criteria, in addition to reliance on θᵥ accuracy. To the best of authors’ knowledge, this research is the first to translate traditional θᵥ accuracy assessments into practical and application-oriented criteria and use them to evaluate sensors for these specific applications. Sensor rankings and uncertainty associated with their use presented here will allow diverse users to effectively identify sensors for targeted applications in water management decision-making and research. •Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to report TSW, ETc, and IT.•Sensor choice impacts these metrics largely based on soil type and calibration.•Across all sensors and metrics, estimation improved 54 % after site-specific calibration.•Quantified uncertainty in TSW, ETc, and IT associated with all sensors’ use. Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and growers/advisers) rely on these sensors for estimating critical agricultural water management decisions and information such as total soil water in the crop root zone (TSW), crop evapotranspiration (ETc) and predicting irrigation triggers (IT), i.e., when TSW is equal to or lower than readily available water. There is a lack of translation of errors in sensor-reported soil moisture (θv) into TSW, ETc, and IT, which is critical to farm-level decision-making as well as research assessments. Nine soil moisture sensors (based on principles of time-domain reflectometry, capacitance and electrical resistance) were investigated in field conditions for silt loam and loamy sand soils under two installation orientations (vertical and horizontal) during two growing seasons (2017 and 2018). Accurate representation of TSW, ETc, and IT was found to be a function of sensor-type, soil-type as well as calibration-type [factory calibration (F.C.) vs. site-specific calibration (S.S.C.)]. Sensor installation orientation did not affect sensor accuracy. Uncertainties in estimation of TSW, ETc and IT were quantified under each condition of use, and sensors were comparatively ranked for effective selection. It was found that all sensors underestimated ETc in silt loam soil. The deviation of sensor-measured ETc from true ETc ranged from −14 to −31 %, which implies that the choice of sensor under a given soil type impacts the quantification of consumptive use of the soil-vegetation system being monitored. Sensors showed both overstimation and underestimation of ETc in loamy sand soil with deviations of sensor-estimated ETc from true ETc ranging from 14 to −61 %. The S.S.C. resulted in 45 and 17 % improvement in TSW and ETc in silt loam soil, respectively, and 42, 80 and 86 % improvement observed in TSW, IT and ETc in loamy sand soil, respectively. The research findings showed that suitability of soil moisture sensors can differ when different target metrics are used as criteria. These findings emphasize the need for evaluating soil moisture sensors based on practical and application-oriented criteria, in addition to reliance on θv accuracy. To the best of authors’ knowledge, this research is the first to translate traditional θv accuracy assessments into practical and application-oriented criteria and use them to evaluate sensors for these specific applications. Sensor rankings and uncertainty associated with their use presented here will allow diverse users to effectively identify sensors for targeted applications in water management decision-making and research. |
ArticleNumber | 106454 |
Author | Sharma, Kiran Irmak, Suat Kukal, Meetpal S. |
Author_xml | – sequence: 1 givenname: Kiran surname: Sharma fullname: Sharma, Kiran organization: Lindsay Corporation, Omaha, Nebraska, USA (former Graduate Student in the Irmak Research Laboratory under the supervision of Professor Suat Irmak) – sequence: 2 givenname: Suat surname: Irmak fullname: Irmak, Suat email: sirmak2@unl.edu organization: University of Nebraska-Lincoln, Lincoln, Nebraska, 68583, USA – sequence: 3 givenname: Meetpal S. surname: Kukal fullname: Kukal, Meetpal S. organization: University of Nebraska-Lincoln, Lincoln, Nebraska, 68583, USA |
BookMark | eNqFkLFOHDEURa0IpCyQL0jjMkVm45nnHc8WFAiFgISUFFBbHs_z6m1m7cH2EvEF_Ha8DKJIERrbsu7x8z0n7MgHj4x9rsWyFnX7bbs0mz8mLxvRHG5auZIf2KLuFFRN08ERWwhQXQVKyY_sJKWtEEIKqRbs-VcMk9mYTMHz4HgKNPJdoJT3EXlCn8hv-N5bjNmQz0-8LIFjyrR7g3LIZpzR8guMXzk-minkaHyaKM454wdOMdLrrAEtpXKoduZ3GXHGjp0ZE3563U_Z_dX3u8vr6vbnj5vLi9vKArS5sq4XnYDeqRa6emVaaZ1TrpP92loE1Q9KCddIGIbWmEFCX1tYSwC3Lh6MhFP2ZX53iuFhX2roHSWL42g8hn3SzUpJqBvZdSUKc9TGkFJEp6dYSscnXQt90K63-kW7PmjXs_ZCrf-hLOWXykUHje-w5zOLxcAjYdTJEhb3A0W0WQ-B_sv_BYBdpbg |
CitedBy_id | crossref_primary_10_3390_s22197450 crossref_primary_10_2478_agriceng_2021_0009 crossref_primary_10_1016_j_agwat_2025_109372 crossref_primary_10_1002_agg2_20110 crossref_primary_10_1016_j_advwatres_2021_103982 crossref_primary_10_1061_JIDEDH_IRENG_9949 crossref_primary_10_1007_s00271_024_00945_3 crossref_primary_10_3390_rs14122902 crossref_primary_10_1016_j_scienta_2025_114020 crossref_primary_10_3390_s21165387 crossref_primary_10_1016_j_atech_2024_100673 crossref_primary_10_3390_agriculture15030308 crossref_primary_10_3390_s25051568 crossref_primary_10_3390_w13152111 crossref_primary_10_1016_j_scitotenv_2025_178974 crossref_primary_10_1002_ird_2735 |
Cites_doi | 10.1520/JAI100595 10.1016/j.agwat.2019.105840 10.2136/vzj2004.0138 10.13031/aea.12908 10.1016/j.agwat.2011.09.007 10.3390/s18113786 10.13031/2013.20035 10.1016/j.jhydrol.2006.09.004 10.13031/2013.32066 10.3390/s91109398 10.1002/ird.95 10.1080/03650340.2017.1393528 10.13031/2013.6848 10.13031/2013.18458 10.1029/WR016i003p00574 10.1016/j.agwat.2011.12.002 10.1097/01.ss.0000075285.87447.86 10.1016/j.agwat.2009.03.022 10.2136/sssaj1995.03615995005900040001x 10.1016/j.jhydrol.2004.01.008 10.1061/(ASCE)IR.1943-4774.0000559 10.1016/j.jag.2015.09.004 10.1016/j.jhydrol.2012.01.041 10.13031/aea.13448 10.2134/jpa1992.0237 10.2136/sssaj2001.652311x 10.13031/2013.32600 10.1016/j.measurement.2014.04.007 10.2136/sssaj2000.6461940x 10.2136/sssaj2000.641311x 10.2136/vzj2017.12.0214 10.1029/1998WR900008 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.agwat.2020.106454 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2283 |
ExternalDocumentID | 10_1016_j_agwat_2020_106454 S0378377420310829 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HVGLF HZ~ R2- SEP SEW VH1 WUQ XPP ZMT ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c336t-cfb0803bf763815a64cff7f84b9cce37bd770f243dd6aad43b1c39433f9283a43 |
IEDL.DBID | .~1 |
ISSN | 0378-3774 |
IngestDate | Sun Sep 28 07:03:54 EDT 2025 Wed Oct 01 05:08:44 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Irrigation Soil moisture Time-domain reflectometry Evapotranspiration Electrical resistance Capacitance Sensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-cfb0803bf763815a64cff7f84b9cce37bd770f243dd6aad43b1c39433f9283a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2574312488 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2574312488 crossref_primary_10_1016_j_agwat_2020_106454 crossref_citationtrail_10_1016_j_agwat_2020_106454 elsevier_sciencedirect_doi_10_1016_j_agwat_2020_106454 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural water management |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Caldwell, Bongiovanni, Cosh, Halley, Young (bib0025) 2018; 17 Fares, Alva (bib0075) 2000; 64 Irmak (bib0110) 2019; 3045 Or, Wraith (bib0180) 1999; 35 Evett, Schwartz, Casanova, Heng (bib0070) 2012; 104 Monteith, Unsworth (bib0175) 2007 Brocca, Morbidelli, Melone, Moramarco (bib0015) 2007; 333 Chen, Marek, Marek, Heflin, Porter, Moorhead, Schwartz, Brauer (bib0035) 2020; 36 Walker, Willgoose, Kalma (bib0225) 2004; 293 Irmak, Specht, Odhiambo, Rees, Cassman (bib0130) 2014; 57 Payero, Tarkalson, Irmak, Davison, Petersen (bib0190) 2009; 96 Bhat, Singh (bib0010) 2007; 4 Champagne, Rowlandson, Berg, Burns, L’Heureux, Tetlock (bib0030) 2016; 45 Mittelbach, Lehner, Seneviratne (bib0165) 2012; 430 Monteith (bib0170) 1965; 19 Quinones, Ruelle, Nemeth (bib0200) 2003; 52 Evett, Steiner (bib0060) 1995; 59 Heng, Cayci, Kutuk, Arrillaga, Moutonnet (bib0080) 2002 Hilhorst, Dirksen, Kampers, Feddes (bib0085) 2001; 65 Evett (bib0055) 2008 Djaman, Irmak (bib0050) 2012; 139 Irmak (bib0090) 2010; 53 Kukal, Irmak (bib0150) 2020; 227 (bib0145) 2016 Su, Singh, Baghini (bib0205) 2014; 54 Jabro, Leib, Jabro (bib0135) 2005; 21 Leib, Jabro, Matthews (bib0160) 2003; 168 Irmak, Rees, Zoubek, VanDeWalle, Rathje, DeBuhr, Leininger, Siekman, Schneider, Christiansen (bib0125) 2010; 26 Topp, Davis, Annan (bib0215) 1980; 16 Irmak (bib0095) 2015; 141 Irmak, Haman (bib0115) 2001; 17 Baumhardt, Lascano, Evett (bib0005) 2000; 64 Irmak, Irmak (bib0120) 2005; 21 Datta, Taghvaeian, Ochsner, Moriasi, Gowda, Steiner (bib0045) 2018; 18 Evett, Laurent, Cepuder, Hignett (bib0065) 2002 Plauborg, Iversen, Lærke (bib0195) 2005; 4 Chow, Xing, Rees, Meng, Monteith, Stevens (bib0040) 2009; 9 Sun, Young (bib0210) 2001 Irmak (bib0105) 2019 Jabro, Stevens, Iversen (bib0140) 2018; 64 Kukal, Irmak, Sharma (bib0155) 2020; 12 Irmak (bib0100) 2015; 141 Paige, Keefer (bib0185) 2008; 44 Varble, Chávez (bib0220) 2011; 101 Bryant, Benson, Kiniry, Williams, Lacewell (bib0020) 1992; 5 Zhu, Irmak, Jhala, Vuran, Diotto (bib0230) 2019; 35 Irmak (10.1016/j.agwat.2020.106454_bib0110) 2019; 3045 Or (10.1016/j.agwat.2020.106454_bib0180) 1999; 35 Irmak (10.1016/j.agwat.2020.106454_bib0090) 2010; 53 Djaman (10.1016/j.agwat.2020.106454_bib0050) 2012; 139 Paige (10.1016/j.agwat.2020.106454_bib0185) 2008; 44 Champagne (10.1016/j.agwat.2020.106454_bib0030) 2016; 45 Fares (10.1016/j.agwat.2020.106454_bib0075) 2000; 64 Zhu (10.1016/j.agwat.2020.106454_bib0230) 2019; 35 Chen (10.1016/j.agwat.2020.106454_bib0035) 2020; 36 Irmak (10.1016/j.agwat.2020.106454_bib0120) 2005; 21 Jabro (10.1016/j.agwat.2020.106454_bib0135) 2005; 21 Baumhardt (10.1016/j.agwat.2020.106454_bib0005) 2000; 64 Chow (10.1016/j.agwat.2020.106454_bib0040) 2009; 9 Irmak (10.1016/j.agwat.2020.106454_bib0095) 2015; 141 Kukal (10.1016/j.agwat.2020.106454_bib0150) 2020; 227 Evett (10.1016/j.agwat.2020.106454_bib0070) 2012; 104 Jabro (10.1016/j.agwat.2020.106454_bib0140) 2018; 64 Irmak (10.1016/j.agwat.2020.106454_bib0125) 2010; 26 Irmak (10.1016/j.agwat.2020.106454_bib0130) 2014; 57 (10.1016/j.agwat.2020.106454_bib0145) 2016 Monteith (10.1016/j.agwat.2020.106454_bib0175) 2007 Topp (10.1016/j.agwat.2020.106454_bib0215) 1980; 16 Walker (10.1016/j.agwat.2020.106454_bib0225) 2004; 293 Datta (10.1016/j.agwat.2020.106454_bib0045) 2018; 18 Heng (10.1016/j.agwat.2020.106454_bib0080) 2002 Hilhorst (10.1016/j.agwat.2020.106454_bib0085) 2001; 65 Caldwell (10.1016/j.agwat.2020.106454_bib0025) 2018; 17 Evett (10.1016/j.agwat.2020.106454_bib0055) 2008 Quinones (10.1016/j.agwat.2020.106454_bib0200) 2003; 52 Evett (10.1016/j.agwat.2020.106454_bib0060) 1995; 59 Brocca (10.1016/j.agwat.2020.106454_bib0015) 2007; 333 Irmak (10.1016/j.agwat.2020.106454_bib0100) 2015; 141 Evett (10.1016/j.agwat.2020.106454_bib0065) 2002 Sun (10.1016/j.agwat.2020.106454_bib0210) 2001 Plauborg (10.1016/j.agwat.2020.106454_bib0195) 2005; 4 Varble (10.1016/j.agwat.2020.106454_bib0220) 2011; 101 Bhat (10.1016/j.agwat.2020.106454_bib0010) 2007; 4 Irmak (10.1016/j.agwat.2020.106454_bib0115) 2001; 17 Leib (10.1016/j.agwat.2020.106454_bib0160) 2003; 168 Irmak (10.1016/j.agwat.2020.106454_bib0105) 2019 Payero (10.1016/j.agwat.2020.106454_bib0190) 2009; 96 Kukal (10.1016/j.agwat.2020.106454_bib0155) 2020; 12 Mittelbach (10.1016/j.agwat.2020.106454_bib0165) 2012; 430 Monteith (10.1016/j.agwat.2020.106454_bib0170) 1965; 19 Bryant (10.1016/j.agwat.2020.106454_bib0020) 1992; 5 Su (10.1016/j.agwat.2020.106454_bib0205) 2014; 54 |
References_xml | – year: 2016 ident: bib0145 publication-title: Evaporation, Evapotranspiration, and Irrigation Water Requirements. Task Committee on Revision of Manual 70 – volume: 65 start-page: 311 year: 2001 end-page: 314 ident: bib0085 article-title: Dielectric relaxation of bound water versus soil matric pressure publication-title: Soil Sci. Soc. Am. J. – volume: 141 start-page: 1 year: 2015 end-page: 11 ident: bib0100 article-title: Inter-annual variation in long-term center pivot-irrigated maize evapotranspiration (ET) and various water productivity response indices: part II. Irrigation water use efficiency (IWUE), crop WUE, evapotranspiration WUE, irrigation-evapotranspiration use efficiency, and precipitation use efficiency publication-title: J. Irrig. Drainage Eng. ASCE – volume: 21 start-page: 393 year: 2005 end-page: 399 ident: bib0135 article-title: Estimating soil water content using site-specific calibration of capacitance measurements from Sentek EnviroSCAN systems publication-title: Appl. Eng. Agric. – volume: 19 start-page: 205 year: 1965 end-page: 234 ident: bib0170 article-title: Evaporation and environment publication-title: Symp. Soc. Exp. Biol. – volume: 45 start-page: 143 year: 2016 end-page: 154 ident: bib0030 article-title: Satellite surface soil moisture from SMOS and Aquarius: assessment for applications in agricultural landscapes publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 start-page: 371 year: 1999 end-page: 383 ident: bib0180 article-title: Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model publication-title: Water Resour. Res. – volume: 141 start-page: 1 year: 2015 end-page: 17 ident: bib0095 article-title: Inter-annual variation in long-term center pivot-irrigated maize evapotranspiration (ET) and various water productivity response indices: part I. Grain yield, actual and basal ET, irrigation-yield production functions, ET-yield production functions, and yield response factors publication-title: J. Irrig. Drainage Eng. ASCE – volume: 52 start-page: 203 year: 2003 end-page: 217 ident: bib0200 article-title: Comparison of three calibration procedures for TDR soil moisture sensors. Irrigation and Drainage publication-title: The J. Int. Commission Irrig. Drain. – start-page: 5 year: 2001 end-page: 7 ident: bib0210 article-title: Saline clayey soil moisture measurement using time domain reflectometry publication-title: Proceedings of the TDR 2001 Symposium, Evanston – volume: 36 start-page: 39 year: 2020 end-page: 54 ident: bib0035 article-title: Factory-calibrated soil water sensor performance using multiple installation orientations and depths publication-title: Appl. Eng. Agric. – volume: 3045 start-page: 8 year: 2019 ident: bib0110 publication-title: Perspectives and Considerations for Soil Moisture Sensing Technologies and Soil Water Content- and Soil Matric Potential-Based Irrigation Trigger Values – volume: 4 start-page: 1037 year: 2005 end-page: 1047 ident: bib0195 article-title: In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils publication-title: Vadose Zone J. – volume: 4 start-page: 1 year: 2007 end-page: 17 ident: bib0010 article-title: A generalized relationship for estimating dielectric constant of soils publication-title: J. ASTM International – volume: 139 start-page: 433 year: 2012 end-page: 446 ident: bib0050 article-title: Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions publication-title: J. Irrig. Drainage Eng. – volume: 104 start-page: 1 year: 2012 end-page: 9 ident: bib0070 article-title: Soil water sensing for water balance, ET and WUE publication-title: Agric. Water Manage – volume: 59 start-page: 961 year: 1995 end-page: 968 ident: bib0060 article-title: Precision of neutron scattering and capacitance type soil water content gauges from field calibration publication-title: Soil Sci. Soc. Am. J. – start-page: 18 year: 2019 ident: bib0105 article-title: Soil-water Potential and Soil-water Content Concepts and Measurement Methods. Extension Circular, EC3046 – volume: 17 start-page: 787 year: 2001 end-page: 795 ident: bib0115 article-title: Performance of the Watermark granular matrix sensor in sandy soils publication-title: Appl. Eng. Agric. – volume: 168 start-page: 396 year: 2003 end-page: 408 ident: bib0160 article-title: Field evaluation and performance comparison of soil moisture sensors publication-title: Soil Sci. – volume: 26 start-page: 599 year: 2010 end-page: 613 ident: bib0125 article-title: Nebraska agricultural water management demonstration network (NAWMDN): integrating research and Extension/Outreach publication-title: Appl. Eng. Agric. – volume: 64 start-page: 930 year: 2018 end-page: 938 ident: bib0140 article-title: Field performance of three real-time moisture sensors in sandy loam and clay loam soils publication-title: Arch. Agron. Soil Sci. – volume: 227 start-page: 105840 year: 2020 ident: bib0150 article-title: Characterization of water use and efficiency dynamics across four C publication-title: Agric. Water Manage. – volume: 64 start-page: 311 year: 2000 end-page: 318 ident: bib0075 article-title: Soil water components based on capacitance probes in a sandy soil publication-title: Soil Sci. Soc. Am. J. – volume: 293 start-page: 85 year: 2004 end-page: 99 ident: bib0225 article-title: In situ measurement of soil moisture: a comparison of techniques publication-title: J. Hydrology – volume: 17 start-page: 170214 year: 2018 ident: bib0025 article-title: Field and laboratory evaluation of the CS655 soil water content sensor publication-title: Vadose Zone J. – volume: 21 start-page: 999 year: 2005 end-page: 1008 ident: bib0120 article-title: Performance of frequency-domain, capacitance, and psuedo-transit time-based soil water content probes in four coarse-textured soils publication-title: Appl. Eng. Agric. – volume: 53 start-page: 1097 year: 2010 end-page: 1115 ident: bib0090 article-title: Nebraska water and energy flux measurement, modeling, and research network (NEBFLUX) publication-title: Trans. ASABE – volume: 12 start-page: 1 year: 2020 end-page: 20 ident: bib0155 article-title: Development and application of a performance and operational feasibility guide to facilitate adoption of soil moisture sensors publication-title: Sustainability – start-page: 14 year: 2002 end-page: 21 ident: bib0065 article-title: Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents publication-title: In 17th World Congress of Soil Science – volume: 44 start-page: 121 year: 2008 end-page: 135 ident: bib0185 article-title: Comparison of field performance of multiple soil moisture sensors in a Semi‐Arid rangeland publication-title: JAWRA – volume: 96 start-page: 1387 year: 2009 end-page: 1397 ident: bib0190 article-title: Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass publication-title: Agric. Water Manage – start-page: 14 year: 2002 end-page: 21 ident: bib0080 article-title: Comparison of soil moisture sensors between neutron probe, diviner 2000 and TDR under tomato crops publication-title: In Proc. 17th World Congress of Soil Sci. – volume: 101 start-page: 93 year: 2011 end-page: 106 ident: bib0220 article-title: Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado publication-title: Agric. Water Manage. – volume: 5 start-page: 237 year: 1992 end-page: 242 ident: bib0020 article-title: Simulating corn yield response to irrigation timings: validation of the EPIC model publication-title: J. Prod. Agric – volume: 9 start-page: 9398 year: 2009 end-page: 9413 ident: bib0040 article-title: Field performance of nine soil water content sensors on a sandy loam soil in New Brunswick, maritime region, Canada publication-title: Sensors – volume: 430 start-page: 39 year: 2012 end-page: 49 ident: bib0165 article-title: Comparison of four soil moisture sensor types under field conditions in Switzerland publication-title: J. Hydrol. – volume: 64 start-page: 1940 year: 2000 end-page: 1946 ident: bib0005 article-title: Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes publication-title: Soil Sci. Soc. Am. J. – volume: 18 start-page: 3786 year: 2018 ident: bib0045 article-title: Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma publication-title: Sensors – year: 2007 ident: bib0175 article-title: Principles of Environmental Physics – volume: 35 start-page: 117 year: 2019 end-page: 134 ident: bib0230 article-title: Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effect in fine- and coarse-textured soils publication-title: Appl. Eng. Agric. – volume: 54 start-page: 92 year: 2014 end-page: 105 ident: bib0205 article-title: A critical review of soil moisture measurement publication-title: Measurement – volume: 333 start-page: 356 year: 2007 end-page: 373 ident: bib0015 article-title: Soil moisture spatial variability in experimental areas of central Italy publication-title: J. Hydrol. – volume: 16 start-page: 574 year: 1980 end-page: 582 ident: bib0215 article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines publication-title: Water Resour. Res. – start-page: 39 year: 2008 end-page: 54 ident: bib0055 article-title: Neutron moisture meters publication-title: Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology – volume: 57 start-page: 729 year: 2014 end-page: 748 ident: bib0130 article-title: Soybean yield, evapotranspiration, water productivity, and soil water extraction response to subsurface drip irrigation and fertigation publication-title: Trans. ASABE – volume: 4 start-page: 1 issue: 7 year: 2007 ident: 10.1016/j.agwat.2020.106454_bib0010 article-title: A generalized relationship for estimating dielectric constant of soils publication-title: J. ASTM International doi: 10.1520/JAI100595 – start-page: 14 year: 2002 ident: 10.1016/j.agwat.2020.106454_bib0080 article-title: Comparison of soil moisture sensors between neutron probe, diviner 2000 and TDR under tomato crops publication-title: In Proc. 17th World Congress of Soil Sci. – start-page: 18 year: 2019 ident: 10.1016/j.agwat.2020.106454_bib0105 – volume: 57 start-page: 729 year: 2014 ident: 10.1016/j.agwat.2020.106454_bib0130 article-title: Soybean yield, evapotranspiration, water productivity, and soil water extraction response to subsurface drip irrigation and fertigation publication-title: Trans. ASABE – volume: 227 start-page: 105840 year: 2020 ident: 10.1016/j.agwat.2020.106454_bib0150 article-title: Characterization of water use and efficiency dynamics across four C3 and C4 row crops under optimal growth conditions publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2019.105840 – volume: 4 start-page: 1037 year: 2005 ident: 10.1016/j.agwat.2020.106454_bib0195 article-title: In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0138 – volume: 35 start-page: 117 issue: 2 year: 2019 ident: 10.1016/j.agwat.2020.106454_bib0230 article-title: Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effect in fine- and coarse-textured soils publication-title: Appl. Eng. Agric. doi: 10.13031/aea.12908 – volume: 101 start-page: 93 year: 2011 ident: 10.1016/j.agwat.2020.106454_bib0220 article-title: Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2011.09.007 – volume: 18 start-page: 3786 issue: 11 year: 2018 ident: 10.1016/j.agwat.2020.106454_bib0045 article-title: Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma publication-title: Sensors doi: 10.3390/s18113786 – volume: 21 start-page: 999 issue: 6 year: 2005 ident: 10.1016/j.agwat.2020.106454_bib0120 article-title: Performance of frequency-domain, capacitance, and psuedo-transit time-based soil water content probes in four coarse-textured soils publication-title: Appl. Eng. Agric. doi: 10.13031/2013.20035 – volume: 333 start-page: 356 issue: 2-4 year: 2007 ident: 10.1016/j.agwat.2020.106454_bib0015 article-title: Soil moisture spatial variability in experimental areas of central Italy publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.09.004 – volume: 26 start-page: 599 issue: 4 year: 2010 ident: 10.1016/j.agwat.2020.106454_bib0125 article-title: Nebraska agricultural water management demonstration network (NAWMDN): integrating research and Extension/Outreach publication-title: Appl. Eng. Agric. doi: 10.13031/2013.32066 – start-page: 39 year: 2008 ident: 10.1016/j.agwat.2020.106454_bib0055 article-title: Neutron moisture meters – volume: 9 start-page: 9398 year: 2009 ident: 10.1016/j.agwat.2020.106454_bib0040 article-title: Field performance of nine soil water content sensors on a sandy loam soil in New Brunswick, maritime region, Canada publication-title: Sensors doi: 10.3390/s91109398 – volume: 12 start-page: 1 issue: 321 year: 2020 ident: 10.1016/j.agwat.2020.106454_bib0155 article-title: Development and application of a performance and operational feasibility guide to facilitate adoption of soil moisture sensors publication-title: Sustainability – volume: 52 start-page: 203 issue: 3 year: 2003 ident: 10.1016/j.agwat.2020.106454_bib0200 article-title: Comparison of three calibration procedures for TDR soil moisture sensors. Irrigation and Drainage publication-title: The J. Int. Commission Irrig. Drain. doi: 10.1002/ird.95 – volume: 141 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.agwat.2020.106454_bib0100 publication-title: J. Irrig. Drainage Eng. ASCE – volume: 64 start-page: 930 year: 2018 ident: 10.1016/j.agwat.2020.106454_bib0140 article-title: Field performance of three real-time moisture sensors in sandy loam and clay loam soils publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2017.1393528 – volume: 17 start-page: 787 issue: 6 year: 2001 ident: 10.1016/j.agwat.2020.106454_bib0115 article-title: Performance of the Watermark granular matrix sensor in sandy soils publication-title: Appl. Eng. Agric. doi: 10.13031/2013.6848 – volume: 3045 start-page: 8 year: 2019 ident: 10.1016/j.agwat.2020.106454_bib0110 – volume: 21 start-page: 393 issue: 3 year: 2005 ident: 10.1016/j.agwat.2020.106454_bib0135 article-title: Estimating soil water content using site-specific calibration of capacitance measurements from Sentek EnviroSCAN systems publication-title: Appl. Eng. Agric. doi: 10.13031/2013.18458 – volume: 16 start-page: 574 issue: 3 year: 1980 ident: 10.1016/j.agwat.2020.106454_bib0215 article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines publication-title: Water Resour. Res. doi: 10.1029/WR016i003p00574 – volume: 104 start-page: 1 year: 2012 ident: 10.1016/j.agwat.2020.106454_bib0070 article-title: Soil water sensing for water balance, ET and WUE publication-title: Agric. Water Manage doi: 10.1016/j.agwat.2011.12.002 – year: 2016 ident: 10.1016/j.agwat.2020.106454_bib0145 – volume: 168 start-page: 396 year: 2003 ident: 10.1016/j.agwat.2020.106454_bib0160 article-title: Field evaluation and performance comparison of soil moisture sensors publication-title: Soil Sci. doi: 10.1097/01.ss.0000075285.87447.86 – volume: 44 start-page: 121 year: 2008 ident: 10.1016/j.agwat.2020.106454_bib0185 article-title: Comparison of field performance of multiple soil moisture sensors in a Semi‐Arid rangeland publication-title: JAWRA – volume: 96 start-page: 1387 year: 2009 ident: 10.1016/j.agwat.2020.106454_bib0190 article-title: Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass publication-title: Agric. Water Manage doi: 10.1016/j.agwat.2009.03.022 – volume: 59 start-page: 961 issue: 4 year: 1995 ident: 10.1016/j.agwat.2020.106454_bib0060 article-title: Precision of neutron scattering and capacitance type soil water content gauges from field calibration publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900040001x – volume: 293 start-page: 85 year: 2004 ident: 10.1016/j.agwat.2020.106454_bib0225 article-title: In situ measurement of soil moisture: a comparison of techniques publication-title: J. Hydrology doi: 10.1016/j.jhydrol.2004.01.008 – volume: 139 start-page: 433 year: 2012 ident: 10.1016/j.agwat.2020.106454_bib0050 article-title: Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions publication-title: J. Irrig. Drainage Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000559 – volume: 19 start-page: 205 year: 1965 ident: 10.1016/j.agwat.2020.106454_bib0170 article-title: Evaporation and environment publication-title: Symp. Soc. Exp. Biol. – volume: 45 start-page: 143 year: 2016 ident: 10.1016/j.agwat.2020.106454_bib0030 article-title: Satellite surface soil moisture from SMOS and Aquarius: assessment for applications in agricultural landscapes publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.09.004 – volume: 141 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.agwat.2020.106454_bib0095 publication-title: J. Irrig. Drainage Eng. ASCE – volume: 430 start-page: 39 year: 2012 ident: 10.1016/j.agwat.2020.106454_bib0165 article-title: Comparison of four soil moisture sensor types under field conditions in Switzerland publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.01.041 – year: 2007 ident: 10.1016/j.agwat.2020.106454_bib0175 – volume: 36 start-page: 39 issue: 1 year: 2020 ident: 10.1016/j.agwat.2020.106454_bib0035 article-title: Factory-calibrated soil water sensor performance using multiple installation orientations and depths publication-title: Appl. Eng. Agric. doi: 10.13031/aea.13448 – start-page: 14 year: 2002 ident: 10.1016/j.agwat.2020.106454_bib0065 article-title: Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents publication-title: In 17th World Congress of Soil Science – volume: 5 start-page: 237 year: 1992 ident: 10.1016/j.agwat.2020.106454_bib0020 article-title: Simulating corn yield response to irrigation timings: validation of the EPIC model publication-title: J. Prod. Agric doi: 10.2134/jpa1992.0237 – volume: 65 start-page: 311 issue: 2 year: 2001 ident: 10.1016/j.agwat.2020.106454_bib0085 article-title: Dielectric relaxation of bound water versus soil matric pressure publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652311x – volume: 53 start-page: 1097 issue: 4 year: 2010 ident: 10.1016/j.agwat.2020.106454_bib0090 article-title: Nebraska water and energy flux measurement, modeling, and research network (NEBFLUX) publication-title: Trans. ASABE doi: 10.13031/2013.32600 – volume: 54 start-page: 92 year: 2014 ident: 10.1016/j.agwat.2020.106454_bib0205 article-title: A critical review of soil moisture measurement publication-title: Measurement doi: 10.1016/j.measurement.2014.04.007 – start-page: 5 year: 2001 ident: 10.1016/j.agwat.2020.106454_bib0210 article-title: Saline clayey soil moisture measurement using time domain reflectometry – volume: 64 start-page: 1940 year: 2000 ident: 10.1016/j.agwat.2020.106454_bib0005 article-title: Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6461940x – volume: 64 start-page: 311 year: 2000 ident: 10.1016/j.agwat.2020.106454_bib0075 article-title: Soil water components based on capacitance probes in a sandy soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.641311x – volume: 17 start-page: 170214 issue: 1 year: 2018 ident: 10.1016/j.agwat.2020.106454_bib0025 article-title: Field and laboratory evaluation of the CS655 soil water content sensor publication-title: Vadose Zone J. doi: 10.2136/vzj2017.12.0214 – volume: 35 start-page: 371 issue: 2 year: 1999 ident: 10.1016/j.agwat.2020.106454_bib0180 article-title: Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model publication-title: Water Resour. Res. doi: 10.1029/1998WR900008 |
SSID | ssj0004047 |
Score | 2.455238 |
Snippet | •Accurate reporting of total soil water (TSW) and crop ETc and irrigation triggers (IT) essential.•Evaluated 9 SM sensors in silt loam & loamy sand soils to... Soil moisture sensors are subject to uncertainty (inaccuracy) in measuring soil water status, that hinders various applications. User groups (researchers and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106454 |
SubjectTerms | Capacitance decision making Electrical resistance Evapotranspiration Irrigation loamy sand soils rhizosphere Sensors silt loam soils Soil moisture soil water Time-domain reflectometry uncertainty water management |
Title | Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making |
URI | https://dx.doi.org/10.1016/j.agwat.2020.106454 https://www.proquest.com/docview/2574312488 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2283 dateEnd: 20221130 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: ACRLP dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2283 dateEnd: 20221130 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AIKHN dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2283 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AKRWK dateStart: 19761201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wuETxat9uk7fa4iMuqKIIK3kKeS8Vtl25VvHj1bztJU0VBD156SDNtyCTzaL98g9Ch7HFjUp7A_iZhQHVmgkyROKCRAPenqcwcHcPlVTK6o-f38f0cOmnPwlhYpbf9jU131tq3dP1sdqd53r0JSQrZFaR2lt2yH9lDfJb9C9b08dsXzIOGrsiY7RzY3i3zkMN48fELt4DKyLZYbqvfvNMPO-2cz3AFLfuoEQ-aga2iOV2soaXBuPLMGXodvV9XkP-O3UTj0uBZmT_iSQlahNt4ZnHqxRiDF2swAPUrhkuJLcnG5FOoLiEWb0RhyLo6wvqZT8vaMaDnzWLBvFA4r6rcv0v5Kj3BxBW22kB3w9Pbk1HgqywEkpCkDqQREDUSYcDS9HsxT6gE7Zk-FZmUmqRCpWloIkqUSjhXlIieJBklxGQQmnBKNtF8URZ6C2HK476SKuYU0rSUGx6JNAspJypVEEeJbRS1s8ukpyC3lTAeWYs1e2BOJcyqhDUq2UZHn0LThoHj7-5Jqzb2bSEx8BF_Cx60Smawxex_E17o8mnGwKpBmBWBqdv578N30WJkwTDu280emq-rJ70P0UwtOm65dtDC4OxidPUB_e34FA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByQKUPQYHiShyJNhs7yea4QqClwKoSIHGz_FwFsckqG4r4Bf3bHTsOqJXKoZccHE9ieexvZpLxNwCHaiSszUWG-5vGETOFjQpN04glEs2fYarwdAyXs2x6w77fprdrcNyfhXFplQH7O0z3aB1ahmE2h8uyHF7FNMfoCkM7x245Too3sM5SxOQBrE_Ozqezl-ORsa8z5vpHTqAnH_JpXmL-KFxOZeJaHL3VvwzUX1Dt7c_pe9gMjiOZdGPbgjVTfYCNybwJ5BnmI_z60WAIPPdzTWpLVnV5TxY1KhJvk5VLVa_mBA1ZlwbQPhG81MTxbCyehdoa3fFOFIdsmiNifopl3XoS9LJbL0RUmpRNU4Z36VCoJ1r42laf4Ob05Pp4GoVCC5GiNGsjZSU6jlRaBJvxKBUZU6hAO2ayUMrQXOo8j23CqNaZEJpROVK0YJTaAr0TwehnGFR1ZbaBMJGOtdKpYBip5cKKROZFzATVuUZXSu5A0s8uV4GF3BXDuOd9utkd9yrhTiW8U8kOHD0LLTsSjte7Z73a-B9riaOZeF3wW69kjrvM_ToRlakfVhyBDT2tBNHuy_8-_ADeTq8vL_jF2ex8F94lLjfGf8rZg0HbPJh9dG5a-TUs3t9jAPq_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagation+of+soil+moisture+sensing+uncertainty+into+estimation+of+total+soil+water%2C+evapotranspiration+and+irrigation+decision-making&rft.jtitle=Agricultural+water+management&rft.au=Sharma%2C+Kiran&rft.au=Irmak%2C+Suat&rft.au=Kukal%2C+Meetpal+S&rft.date=2021-01-01&rft.issn=0378-3774&rft.volume=243+p.106454-&rft_id=info:doi/10.1016%2Fj.agwat.2020.106454&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |