Experimental Solution for Estimating Pedestrian Locations from UAV Imagery

This research describes an experimental solution used for estimating the positions of pedestrians from video recordings. Additionally, clustering algorithms were utilized to interpret the data. The system employs the You Only Look Once (YOLO) algorithm for object detection. The detection algorithm i...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 19; p. 9485
Main Authors Kainz, Ondrej, Gera, Marek, Michalko, Miroslav, Jakab, František
Format Journal Article
LanguageEnglish
Published MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app12199485

Cover

Abstract This research describes an experimental solution used for estimating the positions of pedestrians from video recordings. Additionally, clustering algorithms were utilized to interpret the data. The system employs the You Only Look Once (YOLO) algorithm for object detection. The detection algorithm is applied to video recordings provided by an unmanned aerial vehicle (UAV). An experimental method for calculating the pedestrian’s geolocation is proposed. The output of the calculation, i.e., the data file, can be visualized on a map and analyzed using cluster analyses, including K-means, DBSCAN, and OPTICS algorithms. The experimental software solution can be deployed on a UAV or other computing devices. Further testing was performed to evaluate the suitability of the selected algorithms and to identify optimal use cases. This solution can successfully detect groups of pedestrians from video recordings and it provides tools for subsequent cluster analyses.
AbstractList This research describes an experimental solution used for estimating the positions of pedestrians from video recordings. Additionally, clustering algorithms were utilized to interpret the data. The system employs the You Only Look Once (YOLO) algorithm for object detection. The detection algorithm is applied to video recordings provided by an unmanned aerial vehicle (UAV). An experimental method for calculating the pedestrian’s geolocation is proposed. The output of the calculation, i.e., the data file, can be visualized on a map and analyzed using cluster analyses, including K-means, DBSCAN, and OPTICS algorithms. The experimental software solution can be deployed on a UAV or other computing devices. Further testing was performed to evaluate the suitability of the selected algorithms and to identify optimal use cases. This solution can successfully detect groups of pedestrians from video recordings and it provides tools for subsequent cluster analyses.
Author Michalko, Miroslav
Gera, Marek
Jakab, František
Kainz, Ondrej
Author_xml – sequence: 1
  givenname: Ondrej
  surname: Kainz
  fullname: Kainz, Ondrej
– sequence: 2
  givenname: Marek
  surname: Gera
  fullname: Gera, Marek
– sequence: 3
  givenname: Miroslav
  surname: Michalko
  fullname: Michalko, Miroslav
– sequence: 4
  givenname: František
  orcidid: 0000-0001-6773-4365
  surname: Jakab
  fullname: Jakab, František
BookMark eNp9kNFLwzAQxoMoOOee_Af6rtOkadrkcYypk4GCztdwTZOR0TYlydD993abyBD0Xu44vu93x3eBTlvXaoSuCL6lVOA76DqSEiEyzk7QIMVFPqYZKU6P5nM0CmGN-xKEcoIH6Gn22WlvG91GqJNXV2-idW1inE9mIdoGom1XyYuudIjeQpssnIKdJCTGuyZZTt6TeQMr7beX6MxAHfTouw_R8n72Nn0cL54f5tPJYqwozeNY6bxgKtMMYxCkIkaUVCtdZhqnmBZEQMWVTktNUlpiXhDMGC5EbymLqmIZHaL5gVs5WMuufx78Vjqwcr9wfiXBR6tqLTlNDQeWKSZMZqqCi5RlvISU5ZWhwvSsmwNr03aw_YC6_gESLHexyqNYezk5yJV3IXhtpLJxH0f0YOs_PNe_PP9d-AL3Toqs
CitedBy_id crossref_primary_10_3390_drones7030190
crossref_primary_10_3390_su15118979
crossref_primary_10_3390_s23020665
crossref_primary_10_1016_j_ophoto_2024_100069
Cites_doi 10.1109/ICCV.2017.322
10.3390/drones6050109
10.1007/s42979-020-00125-y
10.3390/rs14040874
10.3390/s21062180
10.3390/rs14020295
10.3390/app12073627
10.3390/drones5030058
10.1109/CVPR.2014.81
10.1109/TMM.2020.3019688
10.3390/ijgi10050284
10.3390/aerospace9040198
10.1007/s12652-021-03570-6
10.1007/978-3-319-46448-0_2
10.3390/s22093502
10.1109/CVPR.2016.91
10.3390/s20247299
10.3390/s22072455
10.3390/electronics11071151
10.3390/s18072244
10.3390/s22020464
10.3390/drones6030076
10.3390/rs13163095
10.3390/rs14061434
10.3390/rs14133143
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3390/app12199485
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_832f8a54c59f4fd7892548ba256df39f
10.3390/app12199485
10_3390_app12199485
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c336t-ce675c4e500a91d1f9b3eceb4e0203719ad8ce2be123b08710550795c4b7dd543
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Fri Oct 03 12:46:27 EDT 2025
Sun Oct 26 04:16:37 EDT 2025
Thu Oct 16 04:37:26 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-ce675c4e500a91d1f9b3eceb4e0203719ad8ce2be123b08710550795c4b7dd543
ORCID 0000-0001-6773-4365
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2076-3417/12/19/9485/pdf?version=1664264774
ParticipantIDs doaj_primary_oai_doaj_org_article_832f8a54c59f4fd7892548ba256df39f
unpaywall_primary_10_3390_app12199485
crossref_citationtrail_10_3390_app12199485
crossref_primary_10_3390_app12199485
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
ref_12
ref_11
ref_10
ref_19
ref_18
ref_17
ref_16
ref_15
ref_25
ref_24
ref_23
ref_22
ref_20
Hung (ref_21) 2020; 1
ref_1
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
Nawaz (ref_3) 2021; 23
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_18
  doi: 10.1109/ICCV.2017.322
– ident: ref_9
– ident: ref_1
  doi: 10.3390/drones6050109
– volume: 1
  start-page: 116
  year: 2020
  ident: ref_21
  article-title: Faster R-CNN Deep Learning Model for Pedestrian Detection from Drone Images
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00125-y
– ident: ref_19
  doi: 10.3390/rs14040874
– ident: ref_16
– ident: ref_12
  doi: 10.3390/s21062180
– ident: ref_22
  doi: 10.3390/rs14020295
– ident: ref_11
  doi: 10.3390/app12073627
– ident: ref_2
  doi: 10.3390/drones5030058
– ident: ref_14
  doi: 10.1109/CVPR.2014.81
– volume: 23
  start-page: 2902
  year: 2021
  ident: ref_3
  article-title: Saliency Detection Using Deep Features and Affinity-Based Robust Background Subtraction
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3019688
– ident: ref_29
  doi: 10.3390/ijgi10050284
– ident: ref_28
  doi: 10.3390/aerospace9040198
– ident: ref_4
  doi: 10.1007/s12652-021-03570-6
– ident: ref_23
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_20
  doi: 10.3390/s22093502
– ident: ref_8
  doi: 10.1109/CVPR.2016.91
– ident: ref_5
  doi: 10.3390/s20247299
– ident: ref_6
  doi: 10.3390/s22072455
– ident: ref_27
– ident: ref_26
  doi: 10.3390/electronics11071151
– ident: ref_7
  doi: 10.3390/s18072244
– ident: ref_10
  doi: 10.3390/s22020464
– ident: ref_13
  doi: 10.3390/drones6030076
– ident: ref_15
– ident: ref_24
  doi: 10.3390/rs13163095
– ident: ref_17
  doi: 10.3390/rs14061434
– ident: ref_25
  doi: 10.3390/rs14133143
SSID ssj0000913810
Score 2.2694325
Snippet This research describes an experimental solution used for estimating the positions of pedestrians from video recordings. Additionally, clustering algorithms...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 9485
SubjectTerms ASP.NET
clustering
DBSCAN
object detection
OPTICS
Python
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEICD9KI9iK2K9UUOFVRY3Dz2kWOVllpUPFjpbcnTS90WbZH-ezO727IH0YvXJUvCTJKZSTLfINR1iitKlQtiFuuApyQOZGppwBhLrI0T7-NDNvLjUzwc89EkmtRKfcGbsBIPXAruxs84l8qI60g47kySCh_SpEp6U20cEw523zAVtWCq2IMFAXRVmZDHfFwP98GEAggXqibXTFBB6m-i7WU-l6svOZ3WzMtgD-1WfiHuleNpoS2bt1GzRgtso1a1Dj_xZQWLvtpHo34N0Y_Xh1zYu6K471cv-KP5G362xhYFOnL8MKsO6TBkluBx7xXfvwPIYnWAxoP-y90wqOojBJqxeBFoL8tIcxuFoRTEECcUs9oqbuF6MSFCmlRbqqy3Tir0kVEI8DLhf1GJMRFnh6iRz3J7hLBhhEiqAY4KALlYJZIrCe4XjazfBTroei2yTFfwcKhhMc18EAHyzWry7aDupvG8ZGb83OwWZL9pAqDr4oNXf1apP_tL_R10sdHcb50d_0dnJ2iHQvZD8ZbvFDUWH0t75n2ShTovpt833zTc9w
  priority: 102
  providerName: Directory of Open Access Journals
Title Experimental Solution for Estimating Pedestrian Locations from UAV Imagery
URI https://www.mdpi.com/2076-3417/12/19/9485/pdf?version=1664264774
https://doaj.org/article/832f8a54c59f4fd7892548ba256df39f
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB80edA-qK0W40fYhwoqXJP9uL27J0klpRYNQYzUp2O_rojxEmqi1L_emcsmHCIi-HrMcgszO_Ob2Z3fABxVVlkhbJVoqV2icq4TkweRSCmzEHSGGJ-6kd9N9NlMnV-kF60ufnpWian458ZJC0yyE3Sz2YCLAS8GxGQyWPrq1fdYS-JaU0RHCHMTujpFNN6B7mwyHX2imXLb1Zu2PInZPd0Kc0F0uDQ7uRWIGr7-Pbi1rpfm-oeZz1tB5vQumO32Nm9LvhyvV_bY_fyNufF_9n8P7kQEykYbk9mHG6E-gL0WL-EB7McT_409j7TUL-7D-bg1DIBty2kMQS8bo58g5FtfsmnwoRkFUrO3i1gOZNTDwmajj-zNV6LMuH4As9Pxh9dnSZzEkDgp9SpxqLXUqZAOh6bgnleFlcEFqwJdZGa8MD53QdiAcdAOMQcbEk1agUts5n2q5CF06kUdHgLzknMjHNGwElWdtplR1hDQE2lAf9ODl1u1lC7SlNO0jHmJ6QrpsGzpsAdHO-Hlhp3jz2InpN-dCFFqNx8WV5dlPKElurYqN6lyaVGpymd5gblzbg1iQl_JourBs511_O1nj_5R7jHcFtRK0TwMfAKd1dU6PEWAs7J96J6MJ9P3_aZA0I8W_QsoTvWf
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB80fdA-WFsVo1X2oYIK12Q_bu_uqURJqUVLH4zUp2M_ixgvoSZK_es7c9mEQ0QEX49ZbmFmZ34zu_MbgINolRXCxkxL7TJVcp2ZMohMSlmEoAvE-NSN_OFMn0zU6UV-0enip2eVmIp_aZ20wCQ7QzdbDLgY8GpATCaDuY9HP1ItiWtNER0hzG3Y0jmi8R5sTc7OR59pptx69aotT2J2T7fCXBAdLs1O7gSilq9_G-4sm7m5_mmm006QOd4Bs97e6m3J18Plwh66X78xN_7P_u_DvYRA2WhlMrtwKzR7sN3hJdyD3XTiv7OXiZb61QM4HXeGAbB1OY0h6GVj9BOEfJtLdh58aEeBNOz9LJUDGfWwsMnoE3v3jSgzrh_C5Hj88e1JliYxZE5Kvcgcai13KuTDoam457GyMrhgVaCLzIJXxpcuCBswDtoh5mBDokmrcIktvM-VfAS9ZtaEx8C85NwIRzSsRFWnbWGUNQT0RB7Q3_Th9VottUs05TQtY1pjukI6rDs67MPBRni-Yuf4s9gb0u9GhCi12w-zq8s6ndAaXVssTa5cXkUVfVFWmDuX1iAm9FFWsQ8vNtbxt589-Ue5p3BXUCtF-zBwH3qLq2V4hgBnYZ8nG74BznXzEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Solution+for+Estimating+Pedestrian+Locations+from+UAV+Imagery&rft.jtitle=Applied+sciences&rft.au=Ondrej+Kainz&rft.au=Marek+Gera&rft.au=Miroslav+Michalko&rft.au=Franti%C5%A1ek+Jakab&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=19&rft.spage=9485&rft_id=info:doi/10.3390%2Fapp12199485&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_832f8a54c59f4fd7892548ba256df39f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon