Interactive image segmentation using probabilistic hypergraphs

This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations among image pixels. The probabilistic hypergraph provides us a means to pose image segmentation as a machine learning problem. In particular, we...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 43; no. 5; pp. 1863 - 1873
Main Authors Ding, Lei, Yilmaz, Alper
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2009.11.025

Cover

Abstract This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations among image pixels. The probabilistic hypergraph provides us a means to pose image segmentation as a machine learning problem. In particular, we assume that a small set of pixels, which are referred to as seed pixels, are labeled as the object and background. The seed pixels are used to estimate the labels of the unlabeled pixels by learning on a hypergraph via minimizing a quadratic smoothness term formed by a hypergraph Laplacian matrix subject to the known label constraints. We derive a natural probabilistic interpretation of this smoothness term, and provide a detailed discussion on the relation of our method to other hypergraph and graph based learning methods. We also present a front-to-end image segmentation system based on the proposed method, which is shown to achieve promising quantitative and qualitative results on the commonly used GrabCut dataset.
AbstractList This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations among image pixels. The probabilistic hypergraph provides us a means to pose image segmentation as a machine learning problem. In particular, we assume that a small set of pixels, which are referred to as seed pixels, are labeled as the object and background. The seed pixels are used to estimate the labels of the unlabeled pixels by learning on a hypergraph via minimizing a quadratic smoothness term formed by a hypergraph Laplacian matrix subject to the known label constraints. We derive a natural probabilistic interpretation of this smoothness term, and provide a detailed discussion on the relation of our method to other hypergraph and graph based learning methods. We also present a front-to-end image segmentation system based on the proposed method, which is shown to achieve promising quantitative and qualitative results on the commonly used GrabCut dataset.
Author Yilmaz, Alper
Ding, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Ding
  fullname: Ding, Lei
  email: dinglei@cse.ohio-state.edu
  organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
– sequence: 2
  givenname: Alper
  surname: Yilmaz
  fullname: Yilmaz, Alper
  organization: Photogrammetric Computer Vision Laboratory, The Ohio State University, Columbus, OH 43210, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22612555$$DView record in Pascal Francis
BookMark eNqFkD1PwzAQhi1UJNrCP2DIwphwdj7NUAlVfFSqxAKz5Tjn1FXqRLap1H9PqsDCAMvdcPe8unsWZGZ7i4TcUkgo0OJ-nwwyqL5NGABPKE2A5RdkTqsyjXOasRmZA6Q0ThmkV2Th_R6AluNgTlYbG9BJFcwRI3OQLUYe2wPaIIPpbfTpjW2jwfW1rE1nfDAq2p0GdK2Tw85fk0stO483331JPp6f3tev8fbtZbN-3MYqTYsw1lxzDiWyDJluiqzgkGFdVbKWrAbKaQ4Vb2pdQq04b0ADrzWvUq6aoskhXZK7KXeQXslOO2mV8WJw48nuJBgrKMvzfNx7mPaU6713qIUy0yfBSdMJCuJsTOzFZEycjQlKxWhshLNf8E_-P9hqwnAUcDTohFcGrcLGOFRBNL35O-ALHeOKdQ
CODEN PTNRA8
CitedBy_id crossref_primary_10_1109_TPAMI_2014_2303095
crossref_primary_10_1007_s41109_022_00483_x
crossref_primary_10_1109_TIP_2010_2053940
crossref_primary_10_1016_j_patcog_2012_01_005
crossref_primary_10_1016_j_cviu_2013_10_012
crossref_primary_10_1109_TNNLS_2019_2935184
crossref_primary_10_1109_TIP_2011_2181398
crossref_primary_10_1016_j_patcog_2016_05_025
crossref_primary_10_1016_j_physrep_2020_05_004
crossref_primary_10_1109_TCSS_2023_3324144
crossref_primary_10_1016_j_patcog_2011_03_010
crossref_primary_10_3390_s24051423
crossref_primary_10_1016_j_patcog_2012_04_017
crossref_primary_10_9708_jksci_2010_15_10_071
crossref_primary_10_46300_9106_2022_16_131
crossref_primary_10_1016_j_eswa_2019_01_031
crossref_primary_10_1007_s10115_015_0833_8
crossref_primary_10_1080_15325008_2024_2328232
crossref_primary_10_2478_cait_2023_0031
crossref_primary_10_1016_j_compeleceng_2015_09_013
Cites_doi 10.1007/s11263-006-7934-5
10.1145/218380.218442
10.1142/S0218001401001337
10.1109/ICMLA.2008.17
10.1109/TPAMI.2004.60
10.1006/gmip.1997.0437
10.1007/s11263-008-0202-0
10.1137/1.9781611972764.53
10.1145/1273496.1273615
10.1016/j.imavis.2004.05.011
10.1016/S0031-3203(00)00149-7
10.1145/1015330.1015429
10.1016/S0031-3203(02)00057-2
10.21236/ADA439577
10.1023/B:MACH.0000033120.25363.1e
10.1007/11744047_21
10.1109/ICCV.2003.1238308
10.1109/34.868688
10.1007/BF00133570
10.1109/CVPR.2008.4587419
10.1007/978-3-540-24670-1_33
10.1007/11552499_58
10.1109/21.362951
10.1145/1143844.1143847
10.1007/11744085_38
10.1145/1143844.1143922
10.1145/1015706.1015720
10.1090/cbms/092
10.1109/TPAMI.2006.233
10.1109/34.1000236
10.7551/mitpress/7503.003.0205
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.patcog.2009.11.025
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 1873
ExternalDocumentID 22612555
10_1016_j_patcog_2009_11_025
S0031320309004440
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-c35f9907e24e2fd646904eb88aba2b01915089dbf70bc99d0f09bf9839cd6d503
IEDL.DBID AIKHN
ISSN 0031-3203
IngestDate Mon Jul 21 09:15:08 EDT 2025
Wed Oct 01 03:16:59 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Image segmentation
Interactive segmentation
Hypergraphs
Semi-supervised learning
Hypergraph
Probabilistic interpretation
Image processing
Probabilistic approach
Background
Man machine dialogue
Laplacian
Interactive system
Supervised learning
User interface
Graph method
Quadratic form
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-c35f9907e24e2fd646904eb88aba2b01915089dbf70bc99d0f09bf9839cd6d503
PageCount 11
ParticipantIDs pascalfrancis_primary_22612555
crossref_citationtrail_10_1016_j_patcog_2009_11_025
crossref_primary_10_1016_j_patcog_2009_11_025
elsevier_sciencedirect_doi_10_1016_j_patcog_2009_11_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References J. McAuley, T. Caetano, A. Smola, M. Franz, Learning high-order MRF priors of color images, in: International Conference on Machine Learning, 2006, pp. 617–624.
Fairchild (bib37) 1998
A. Cavallaro, E.D. Gelasca, T. Ebrahimi, Objective evaluation of segmentation quality using spatio-temporal context, in: International Conference on Image Processing, 2002, pp. 301–304.
Forsyth, Ponce (bib1) 2002
Meyer (bib39) 2001; 15
Belkin, Niyogi (bib17) 2004; 56
A. Bretto, L. Gillibert, Hypergraph-based image representation, in: IAPR-TC-15 Workshop on Graph-Based Representations in Pattern Recognition, Lecture Notes in Computer Science, vol. 3434, Springer, Berlin, 2005, pp. 1–11.
Boykov, Kolmogorov (bib34) 2004; 26
Lee-Kwang, Lee (bib31) 1995; 25
Bretto, Azema, Cherifi, Laget (bib20) 1997; 59
F.R.K. Chung, Spectral Graph Theory, in: Regional Conference Series in Mathematics, vol. 92, 1997.
G. Wachman, R. Khardon, Learning from interpretations: a rooted kernel for ordered hypergraphs, in: International Conference on Machine Learning, 2007, pp. 943–950.
X. Lan, S. Roth, D. Huttenlocher, M.J. Black, Efficient belief propagation with learned higher-order Markov random fields, in: European Conference on Computer Vision, 2006, pp. 269–282.
E. Nowak, F. Jurie, B. Triggs, Sampling strategies for bag-of-features image classification, in: European Conference on Computer Vision, 2006, pp. 490–503.
Boykov, Funka-Lea (bib6) 2006; 70
A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: International Conference on Machine Learning, 2001, pp. 19–26.
Shi, Malik (bib5) 2000; 22
Zhang (bib8) 2006
Cheng, Jiang, Sun, Wang (bib7) 2001; 34
A. Hanbury, How do superpixels affect image segmentation? in: Iberoamerican Congress on Pattern Recognition, Lecture Notes in Computer Science, vol. 5197, Springer, Berlin, 2008, pp. 178–186.
X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with label propagation, Technical Report CMU-CALD-02-107, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2002.
D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: International Conference on Computer Vision, 2001, pp. 416–423.
Belkin, Niyogi, Sindhwani (bib18) 2006; 7
O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, F. Segonne, Segmentation by transduction, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
Navon, Miller, Averbuch (bib3) 2005; 23
Grady (bib12) 2006; 28
Rue, Held (bib36) 2005
E.N. Mortensen, W.A. Barrett, Intelligent scissors for image composition, in: Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH, 1995, pp. 191–198.
Pearl (bib35) 1988
V. Raykar, R. Duraiswami, Fast optimal bandwidth selection for kernel density estimation, in: SIAM International Conference on Data Mining, 2006, pp. 524–528.
A. Blake, C. Rother, M. Brown, P. Perez, P. Torr, Interactive image segmentation using an adaptive GMMRF model, in: European Conference on Computer Vision, 2006, pp. 428–441.
X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning, 2003, pp. 912–919.
B.C. Russell, A.A. Efros, J. Sivic, W.T. Freeman, A. Zisserman, Using multiple segmentations to discover objects and their extent in image collections, in: IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1605–1614.
S. Rital, H. Cherifi, S. Miguet, Neighborhood hypergraph partitioning for image segmentation, in: International Conference on Computer Vision Theory and Applications, 2006, pp. 331–337.
S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in: International Conference on Machine Learning, 2006, pp. 17–24.
C. Rother, V. Kolmogorov, A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, in: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2004, pp. 309–314.
Osher, Paragios (bib4) 2003
Berge (bib19) 1989
Hein, Audibert, von Luxburg (bib30) 2007; 8
L. Ding, A. Yilmaz, Image segmentation as learning on hypergraphs, in: International Conference on Machine Learning and Applications, 2008, pp. 247–252.
P. Kohli, L. Ladicky, P.H.S. Torr, Robust higher order potentials for enforcing label consistency, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 302–324.
B. Settles, Active learning literature survey, Technical Report 1648, Computer Sciences Department, University of Wisconsin, Madison, WI, 2009.
N. Selvakkumaran, G. Karypis, Multi-objective hypergraph partitioning algorithms for cut and maximum subdomain degree minimization, in: IEEE/ACM International Conference on Computer Aided Design, 2003, pp. 726–733.
Bonnet, Cutrona, Herbin (bib2) 2002; 35
A. Blum, J. Lafferty, M. Rwebangira, R. Reddy, Semi-supervised learning using randomized mincuts, in: International Conference on Machine Learning, 2004, pp. 13–20.
D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: clustering, in: Annual Conference on Neural Information Processing Systems, 2006, pp. 1601–1608.
X. Ren, J. Malik, Learning a classification model for segmentation, in: International Conference on Computer Vision, 2003, pp. 10–17.
Comaniciu, Meer (bib25) 2002; 24
Kass, Witkin, Terzopoulos (bib10) 1987; 1
Berge (10.1016/j.patcog.2009.11.025_bib19) 1989
10.1016/j.patcog.2009.11.025_bib38
10.1016/j.patcog.2009.11.025_bib33
Grady (10.1016/j.patcog.2009.11.025_bib12) 2006; 28
10.1016/j.patcog.2009.11.025_bib32
Pearl (10.1016/j.patcog.2009.11.025_bib35) 1988
Belkin (10.1016/j.patcog.2009.11.025_bib17) 2004; 56
Lee-Kwang (10.1016/j.patcog.2009.11.025_bib31) 1995; 25
Belkin (10.1016/j.patcog.2009.11.025_bib18) 2006; 7
Bonnet (10.1016/j.patcog.2009.11.025_bib2) 2002; 35
Navon (10.1016/j.patcog.2009.11.025_bib3) 2005; 23
10.1016/j.patcog.2009.11.025_bib26
10.1016/j.patcog.2009.11.025_bib27
10.1016/j.patcog.2009.11.025_bib24
10.1016/j.patcog.2009.11.025_bib22
10.1016/j.patcog.2009.11.025_bib23
Meyer (10.1016/j.patcog.2009.11.025_bib39) 2001; 15
10.1016/j.patcog.2009.11.025_bib21
Cheng (10.1016/j.patcog.2009.11.025_bib7) 2001; 34
Fairchild (10.1016/j.patcog.2009.11.025_bib37) 1998
10.1016/j.patcog.2009.11.025_bib28
10.1016/j.patcog.2009.11.025_bib29
Hein (10.1016/j.patcog.2009.11.025_bib30) 2007; 8
10.1016/j.patcog.2009.11.025_bib9
Zhang (10.1016/j.patcog.2009.11.025_bib8) 2006
Shi (10.1016/j.patcog.2009.11.025_bib5) 2000; 22
10.1016/j.patcog.2009.11.025_bib15
10.1016/j.patcog.2009.11.025_bib16
10.1016/j.patcog.2009.11.025_bib13
10.1016/j.patcog.2009.11.025_bib14
Osher (10.1016/j.patcog.2009.11.025_bib4) 2003
Kass (10.1016/j.patcog.2009.11.025_bib10) 1987; 1
10.1016/j.patcog.2009.11.025_bib11
Bretto (10.1016/j.patcog.2009.11.025_bib20) 1997; 59
Forsyth (10.1016/j.patcog.2009.11.025_bib1) 2002
Boykov (10.1016/j.patcog.2009.11.025_bib34) 2004; 26
Boykov (10.1016/j.patcog.2009.11.025_bib6) 2006; 70
10.1016/j.patcog.2009.11.025_bib48
10.1016/j.patcog.2009.11.025_bib49
10.1016/j.patcog.2009.11.025_bib46
10.1016/j.patcog.2009.11.025_bib47
10.1016/j.patcog.2009.11.025_bib44
10.1016/j.patcog.2009.11.025_bib45
10.1016/j.patcog.2009.11.025_bib42
10.1016/j.patcog.2009.11.025_bib43
Comaniciu (10.1016/j.patcog.2009.11.025_bib25) 2002; 24
Rue (10.1016/j.patcog.2009.11.025_bib36) 2005
10.1016/j.patcog.2009.11.025_bib40
10.1016/j.patcog.2009.11.025_bib41
References_xml – reference: B. Settles, Active learning literature survey, Technical Report 1648, Computer Sciences Department, University of Wisconsin, Madison, WI, 2009.
– reference: C. Rother, V. Kolmogorov, A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, in: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2004, pp. 309–314.
– reference: A. Cavallaro, E.D. Gelasca, T. Ebrahimi, Objective evaluation of segmentation quality using spatio-temporal context, in: International Conference on Image Processing, 2002, pp. 301–304.
– volume: 1
  start-page: 321
  year: 1987
  end-page: 331
  ident: bib10
  article-title: Snakes: active contour models
  publication-title: International Journal of Computer Vision
– reference: N. Selvakkumaran, G. Karypis, Multi-objective hypergraph partitioning algorithms for cut and maximum subdomain degree minimization, in: IEEE/ACM International Conference on Computer Aided Design, 2003, pp. 726–733.
– year: 1998
  ident: bib37
  article-title: Color Appearance Models
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: bib25
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 34
  start-page: 2259
  year: 2001
  end-page: 2281
  ident: bib7
  article-title: Color image segmentation: advances and prospects
  publication-title: Pattern Recognition
– year: 2005
  ident: bib36
  article-title: Gaussian Markov Random Fields: Theory and Applications
– volume: 28
  start-page: 1768
  year: 2006
  end-page: 1783
  ident: bib12
  article-title: Random walks for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in: International Conference on Machine Learning, 2006, pp. 17–24.
– volume: 35
  start-page: 2319
  year: 2002
  end-page: 2322
  ident: bib2
  article-title: A ‘no-threshold’ histogram-based image segmentation method
  publication-title: Pattern Recognition
– reference: L. Ding, A. Yilmaz, Image segmentation as learning on hypergraphs, in: International Conference on Machine Learning and Applications, 2008, pp. 247–252.
– reference: J. McAuley, T. Caetano, A. Smola, M. Franz, Learning high-order MRF priors of color images, in: International Conference on Machine Learning, 2006, pp. 617–624.
– reference: X. Ren, J. Malik, Learning a classification model for segmentation, in: International Conference on Computer Vision, 2003, pp. 10–17.
– reference: A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: International Conference on Machine Learning, 2001, pp. 19–26.
– volume: 56
  start-page: 209
  year: 2004
  end-page: 239
  ident: bib17
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Machine Learning
– reference: O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, F. Segonne, Segmentation by transduction, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
– volume: 8
  start-page: 1325
  year: 2007
  end-page: 1368
  ident: bib30
  article-title: Graph Laplacians and their convergence on random neighborhood graphs
  publication-title: Journal of Machine Learning Research
– reference: A. Hanbury, How do superpixels affect image segmentation? in: Iberoamerican Congress on Pattern Recognition, Lecture Notes in Computer Science, vol. 5197, Springer, Berlin, 2008, pp. 178–186.
– reference: E. Nowak, F. Jurie, B. Triggs, Sampling strategies for bag-of-features image classification, in: European Conference on Computer Vision, 2006, pp. 490–503.
– year: 1989
  ident: bib19
  article-title: Hypergraphs
– reference: X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning, 2003, pp. 912–919.
– reference: D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: International Conference on Computer Vision, 2001, pp. 416–423.
– reference: X. Lan, S. Roth, D. Huttenlocher, M.J. Black, Efficient belief propagation with learned higher-order Markov random fields, in: European Conference on Computer Vision, 2006, pp. 269–282.
– year: 2006
  ident: bib8
  article-title: Advances in Image and Video Segmentation
– reference: A. Bretto, L. Gillibert, Hypergraph-based image representation, in: IAPR-TC-15 Workshop on Graph-Based Representations in Pattern Recognition, Lecture Notes in Computer Science, vol. 3434, Springer, Berlin, 2005, pp. 1–11.
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: bib18
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib5
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 25
  start-page: 196
  year: 1995
  end-page: 201
  ident: bib31
  article-title: Fuzzy hypergraph and fuzzy partition
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– year: 2003
  ident: bib4
  article-title: Geometric Level Set Methods in Imaging, Vision, and Graphics
– reference: G. Wachman, R. Khardon, Learning from interpretations: a rooted kernel for ordered hypergraphs, in: International Conference on Machine Learning, 2007, pp. 943–950.
– volume: 26
  start-page: 1124
  year: 2004
  end-page: 1137
  ident: bib34
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: V. Raykar, R. Duraiswami, Fast optimal bandwidth selection for kernel density estimation, in: SIAM International Conference on Data Mining, 2006, pp. 524–528.
– volume: 15
  start-page: 1089
  year: 2001
  end-page: 1118
  ident: bib39
  article-title: An overview of morphological segmentation
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– volume: 59
  start-page: 265
  year: 1997
  end-page: 277
  ident: bib20
  article-title: Combinatorics and image processing
  publication-title: CVGIP: Graphical Model and Image Processing
– volume: 70
  start-page: 109
  year: 2006
  end-page: 131
  ident: bib6
  article-title: Graph cuts and efficient n-d image segmentation
  publication-title: International Journal of Computer Vision
– reference: B.C. Russell, A.A. Efros, J. Sivic, W.T. Freeman, A. Zisserman, Using multiple segmentations to discover objects and their extent in image collections, in: IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1605–1614.
– year: 2002
  ident: bib1
  article-title: Computer Vision: A Modern Approach
– reference: X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with label propagation, Technical Report CMU-CALD-02-107, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2002.
– reference: E.N. Mortensen, W.A. Barrett, Intelligent scissors for image composition, in: Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH, 1995, pp. 191–198.
– reference: S. Rital, H. Cherifi, S. Miguet, Neighborhood hypergraph partitioning for image segmentation, in: International Conference on Computer Vision Theory and Applications, 2006, pp. 331–337.
– reference: A. Blake, C. Rother, M. Brown, P. Perez, P. Torr, Interactive image segmentation using an adaptive GMMRF model, in: European Conference on Computer Vision, 2006, pp. 428–441.
– reference: P. Kohli, L. Ladicky, P.H.S. Torr, Robust higher order potentials for enforcing label consistency, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 302–324.
– volume: 23
  start-page: 69
  year: 2005
  end-page: 85
  ident: bib3
  article-title: Color image segmentation based on adaptive local thresholds
  publication-title: Image and Vision Computing
– reference: D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: clustering, in: Annual Conference on Neural Information Processing Systems, 2006, pp. 1601–1608.
– reference: A. Blum, J. Lafferty, M. Rwebangira, R. Reddy, Semi-supervised learning using randomized mincuts, in: International Conference on Machine Learning, 2004, pp. 13–20.
– year: 1988
  ident: bib35
  article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
– reference: F.R.K. Chung, Spectral Graph Theory, in: Regional Conference Series in Mathematics, vol. 92, 1997.
– ident: 10.1016/j.patcog.2009.11.025_bib9
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  ident: 10.1016/j.patcog.2009.11.025_bib6
  article-title: Graph cuts and efficient n-d image segmentation
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-7934-5
– ident: 10.1016/j.patcog.2009.11.025_bib11
  doi: 10.1145/218380.218442
– ident: 10.1016/j.patcog.2009.11.025_bib40
– ident: 10.1016/j.patcog.2009.11.025_bib38
– volume: 15
  start-page: 1089
  issue: 7
  year: 2001
  ident: 10.1016/j.patcog.2009.11.025_bib39
  article-title: An overview of morphological segmentation
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001401001337
– year: 1998
  ident: 10.1016/j.patcog.2009.11.025_bib37
– ident: 10.1016/j.patcog.2009.11.025_bib24
  doi: 10.1109/ICMLA.2008.17
– volume: 26
  start-page: 1124
  issue: 9
  year: 2004
  ident: 10.1016/j.patcog.2009.11.025_bib34
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.60
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.patcog.2009.11.025_bib18
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: Journal of Machine Learning Research
– volume: 59
  start-page: 265
  issue: 5
  year: 1997
  ident: 10.1016/j.patcog.2009.11.025_bib20
  article-title: Combinatorics and image processing
  publication-title: CVGIP: Graphical Model and Image Processing
  doi: 10.1006/gmip.1997.0437
– ident: 10.1016/j.patcog.2009.11.025_bib41
  doi: 10.1007/s11263-008-0202-0
– year: 2002
  ident: 10.1016/j.patcog.2009.11.025_bib1
– ident: 10.1016/j.patcog.2009.11.025_bib42
  doi: 10.1137/1.9781611972764.53
– year: 2006
  ident: 10.1016/j.patcog.2009.11.025_bib8
– ident: 10.1016/j.patcog.2009.11.025_bib27
  doi: 10.1145/1273496.1273615
– volume: 23
  start-page: 69
  issue: 1
  year: 2005
  ident: 10.1016/j.patcog.2009.11.025_bib3
  article-title: Color image segmentation based on adaptive local thresholds
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2004.05.011
– volume: 34
  start-page: 2259
  year: 2001
  ident: 10.1016/j.patcog.2009.11.025_bib7
  article-title: Color image segmentation: advances and prospects
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(00)00149-7
– ident: 10.1016/j.patcog.2009.11.025_bib15
  doi: 10.1145/1015330.1015429
– ident: 10.1016/j.patcog.2009.11.025_bib16
– ident: 10.1016/j.patcog.2009.11.025_bib47
– volume: 35
  start-page: 2319
  issue: 10
  year: 2002
  ident: 10.1016/j.patcog.2009.11.025_bib2
  article-title: A ‘no-threshold’ histogram-based image segmentation method
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00057-2
– ident: 10.1016/j.patcog.2009.11.025_bib22
  doi: 10.21236/ADA439577
– year: 2003
  ident: 10.1016/j.patcog.2009.11.025_bib4
– volume: 56
  start-page: 209
  issue: 1–3
  year: 2004
  ident: 10.1016/j.patcog.2009.11.025_bib17
  article-title: Semi-supervised learning on Riemannian manifolds
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000033120.25363.1e
– ident: 10.1016/j.patcog.2009.11.025_bib32
  doi: 10.1007/11744047_21
– ident: 10.1016/j.patcog.2009.11.025_bib23
  doi: 10.1109/ICCV.2003.1238308
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.patcog.2009.11.025_bib5
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– volume: 1
  start-page: 321
  issue: 4
  year: 1987
  ident: 10.1016/j.patcog.2009.11.025_bib10
  article-title: Snakes: active contour models
  publication-title: International Journal of Computer Vision
  doi: 10.1007/BF00133570
– ident: 10.1016/j.patcog.2009.11.025_bib13
  doi: 10.1109/CVPR.2008.4587419
– ident: 10.1016/j.patcog.2009.11.025_bib48
  doi: 10.1007/978-3-540-24670-1_33
– ident: 10.1016/j.patcog.2009.11.025_bib21
  doi: 10.1007/11552499_58
– volume: 8
  start-page: 1325
  year: 2007
  ident: 10.1016/j.patcog.2009.11.025_bib30
  article-title: Graph Laplacians and their convergence on random neighborhood graphs
  publication-title: Journal of Machine Learning Research
– year: 2005
  ident: 10.1016/j.patcog.2009.11.025_bib36
– volume: 25
  start-page: 196
  issue: 1
  year: 1995
  ident: 10.1016/j.patcog.2009.11.025_bib31
  article-title: Fuzzy hypergraph and fuzzy partition
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/21.362951
– ident: 10.1016/j.patcog.2009.11.025_bib28
  doi: 10.1145/1143844.1143847
– year: 1988
  ident: 10.1016/j.patcog.2009.11.025_bib35
– year: 1989
  ident: 10.1016/j.patcog.2009.11.025_bib19
– ident: 10.1016/j.patcog.2009.11.025_bib44
  doi: 10.1007/11744085_38
– ident: 10.1016/j.patcog.2009.11.025_bib33
  doi: 10.1145/1143844.1143922
– ident: 10.1016/j.patcog.2009.11.025_bib46
  doi: 10.1145/1015706.1015720
– ident: 10.1016/j.patcog.2009.11.025_bib45
– ident: 10.1016/j.patcog.2009.11.025_bib49
– ident: 10.1016/j.patcog.2009.11.025_bib43
  doi: 10.1090/cbms/092
– ident: 10.1016/j.patcog.2009.11.025_bib14
– volume: 28
  start-page: 1768
  issue: 11
  year: 2006
  ident: 10.1016/j.patcog.2009.11.025_bib12
  article-title: Random walks for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.233
– ident: 10.1016/j.patcog.2009.11.025_bib29
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  ident: 10.1016/j.patcog.2009.11.025_bib25
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.1000236
– ident: 10.1016/j.patcog.2009.11.025_bib26
  doi: 10.7551/mitpress/7503.003.0205
SSID ssj0017142
Score 2.1857748
Snippet This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1863
SubjectTerms Applied sciences
Exact sciences and technology
Hypergraphs
Image processing
Image segmentation
Information, signal and communications theory
Interactive segmentation
Semi-supervised learning
Signal processing
Telecommunications and information theory
Title Interactive image segmentation using probabilistic hypergraphs
URI https://dx.doi.org/10.1016/j.patcog.2009.11.025
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qexHEt1gfJQeva_PYPPYilGKpij1Z6C1kX7Vi09DWq7_dmWRTLAgFLzmE7CZ82cx8k535hpA7aZingepSE2pDmZdwKrhW1BVRxn3DlPaxwPl1FA3H7HkSThqkX9fCYFqltf2VTS-ttT3TtWh2i9kMa3xRdhC3CErRM4jbW-B_kqRJWr2nl-Fos5kQe6wSDQ88igPqCroyzasAi7eYVsKVKOeJPbP_9lAHRbYC3EzV8OKXFxock0NLH51e9YQnpKHzU3JUt2Zw7Jd6Rh7KP31Zacyc2RyMhrPS07ktNModTHefOthNplTYRbFm5x1C0mUpYL06J-PB41t_SG2rBCqDIFrDMTTgV2LtMwBXRRj0Mi2SJBOZL4DGoew7V8LErpCcK9e4XBgO7EiqSIVucEGa-SLXl8SBCCqJFZMamYaWGcQfPOIaeIGnJUzVJkENTyqtjji2s_hM64Sxj7QCFVtccggxUgC1TehmVFHpaOy4Pq6RT7fWQwqmfsfIztaL2tzOR7W0MAyv_j31Ndmvkwdc74Y018svfQucZC06ZO_-2-vYlfcD9GPh4g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPSiIb7E-ag5e1-a1SfYiiFiqtj210FvIbnZrxaalrVd_uzObTbEgFLzkEHY3YbKZ-SaZ-T5C7qQOPQVQl2qmNA29hFPBVU5dEWXc12GufGxw7vWjzjB8HbFRjTxVvTBYVml9f-nTjbe2Z1rWmq35ZII9vkg7iL8IDOkZ5O07IfNjzMDuv9d1HijwXVKGBx7F4VX_nCnymoO_m41L2kok80TF7L_j0_48W4LVdCl38SsGtY_IgQWPzmN5f8ekpooTclgJMzj2PT0lD-Y7X2ZcmTOZgstwlmo8tW1GhYPF7mMHtWQMvy5SNTvvkJAuDH318owM28-Dpw61QglUBkG0giPTEFVi5Ydg2jzClDdUIkkykfkCQBySvvNc6NgVkvPc1S4XmgM2knmUMzc4J_ViVqgL4kD-lMR5KBXiDCUzyD54xBWgAk9JWKpBgso8qbQs4ihm8ZlW5WIfaWlUFLjkkGCkYNQGoetZ85JFY8v4uLJ8urEbUnD0W2Y2Nx7U-nI-cqUxxi7_vfQt2e0Met20-9J_uyJ7VRmB612T-mrxpW4AnaxE0-y-H9TB4qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+image+segmentation+using+probabilistic+hypergraphs&rft.jtitle=Pattern+recognition&rft.au=Ding%2C+Lei&rft.au=Yilmaz%2C+Alper&rft.date=2010-05-01&rft.issn=0031-3203&rft.volume=43&rft.issue=5&rft.spage=1863&rft.epage=1873&rft_id=info:doi/10.1016%2Fj.patcog.2009.11.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2009_11_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon