Interactive image segmentation using probabilistic hypergraphs
This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations among image pixels. The probabilistic hypergraph provides us a means to pose image segmentation as a machine learning problem. In particular, we...
Saved in:
| Published in | Pattern recognition Vol. 43; no. 5; pp. 1863 - 1873 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.05.2010
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-3203 1873-5142 |
| DOI | 10.1016/j.patcog.2009.11.025 |
Cover
| Abstract | This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations among image pixels. The probabilistic hypergraph provides us a means to pose image segmentation as a machine learning problem. In particular, we assume that a small set of pixels, which are referred to as seed pixels, are labeled as the object and background. The seed pixels are used to estimate the labels of the unlabeled pixels by learning on a hypergraph via minimizing a quadratic smoothness term formed by a hypergraph Laplacian matrix subject to the known label constraints. We derive a natural probabilistic interpretation of this smoothness term, and provide a detailed discussion on the relation of our method to other hypergraph and graph based learning methods. We also present a front-to-end image segmentation system based on the proposed method, which is shown to achieve promising quantitative and qualitative results on the commonly used GrabCut dataset. |
|---|---|
| AbstractList | This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations among image pixels. The probabilistic hypergraph provides us a means to pose image segmentation as a machine learning problem. In particular, we assume that a small set of pixels, which are referred to as seed pixels, are labeled as the object and background. The seed pixels are used to estimate the labels of the unlabeled pixels by learning on a hypergraph via minimizing a quadratic smoothness term formed by a hypergraph Laplacian matrix subject to the known label constraints. We derive a natural probabilistic interpretation of this smoothness term, and provide a detailed discussion on the relation of our method to other hypergraph and graph based learning methods. We also present a front-to-end image segmentation system based on the proposed method, which is shown to achieve promising quantitative and qualitative results on the commonly used GrabCut dataset. |
| Author | Yilmaz, Alper Ding, Lei |
| Author_xml | – sequence: 1 givenname: Lei surname: Ding fullname: Ding, Lei email: dinglei@cse.ohio-state.edu organization: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA – sequence: 2 givenname: Alper surname: Yilmaz fullname: Yilmaz, Alper organization: Photogrammetric Computer Vision Laboratory, The Ohio State University, Columbus, OH 43210, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22612555$$DView record in Pascal Francis |
| BookMark | eNqFkD1PwzAQhi1UJNrCP2DIwphwdj7NUAlVfFSqxAKz5Tjn1FXqRLap1H9PqsDCAMvdcPe8unsWZGZ7i4TcUkgo0OJ-nwwyqL5NGABPKE2A5RdkTqsyjXOasRmZA6Q0ThmkV2Th_R6AluNgTlYbG9BJFcwRI3OQLUYe2wPaIIPpbfTpjW2jwfW1rE1nfDAq2p0GdK2Tw85fk0stO483331JPp6f3tev8fbtZbN-3MYqTYsw1lxzDiWyDJluiqzgkGFdVbKWrAbKaQ4Vb2pdQq04b0ADrzWvUq6aoskhXZK7KXeQXslOO2mV8WJw48nuJBgrKMvzfNx7mPaU6713qIUy0yfBSdMJCuJsTOzFZEycjQlKxWhshLNf8E_-P9hqwnAUcDTohFcGrcLGOFRBNL35O-ALHeOKdQ |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1109_TPAMI_2014_2303095 crossref_primary_10_1007_s41109_022_00483_x crossref_primary_10_1109_TIP_2010_2053940 crossref_primary_10_1016_j_patcog_2012_01_005 crossref_primary_10_1016_j_cviu_2013_10_012 crossref_primary_10_1109_TNNLS_2019_2935184 crossref_primary_10_1109_TIP_2011_2181398 crossref_primary_10_1016_j_patcog_2016_05_025 crossref_primary_10_1016_j_physrep_2020_05_004 crossref_primary_10_1109_TCSS_2023_3324144 crossref_primary_10_1016_j_patcog_2011_03_010 crossref_primary_10_3390_s24051423 crossref_primary_10_1016_j_patcog_2012_04_017 crossref_primary_10_9708_jksci_2010_15_10_071 crossref_primary_10_46300_9106_2022_16_131 crossref_primary_10_1016_j_eswa_2019_01_031 crossref_primary_10_1007_s10115_015_0833_8 crossref_primary_10_1080_15325008_2024_2328232 crossref_primary_10_2478_cait_2023_0031 crossref_primary_10_1016_j_compeleceng_2015_09_013 |
| Cites_doi | 10.1007/s11263-006-7934-5 10.1145/218380.218442 10.1142/S0218001401001337 10.1109/ICMLA.2008.17 10.1109/TPAMI.2004.60 10.1006/gmip.1997.0437 10.1007/s11263-008-0202-0 10.1137/1.9781611972764.53 10.1145/1273496.1273615 10.1016/j.imavis.2004.05.011 10.1016/S0031-3203(00)00149-7 10.1145/1015330.1015429 10.1016/S0031-3203(02)00057-2 10.21236/ADA439577 10.1023/B:MACH.0000033120.25363.1e 10.1007/11744047_21 10.1109/ICCV.2003.1238308 10.1109/34.868688 10.1007/BF00133570 10.1109/CVPR.2008.4587419 10.1007/978-3-540-24670-1_33 10.1007/11552499_58 10.1109/21.362951 10.1145/1143844.1143847 10.1007/11744085_38 10.1145/1143844.1143922 10.1145/1015706.1015720 10.1090/cbms/092 10.1109/TPAMI.2006.233 10.1109/34.1000236 10.7551/mitpress/7503.003.0205 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1016/j.patcog.2009.11.025 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 1873 |
| ExternalDocumentID | 22612555 10_1016_j_patcog_2009_11_025 S0031320309004440 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c336t-c35f9907e24e2fd646904eb88aba2b01915089dbf70bc99d0f09bf9839cd6d503 |
| IEDL.DBID | AIKHN |
| ISSN | 0031-3203 |
| IngestDate | Mon Jul 21 09:15:08 EDT 2025 Wed Oct 01 03:16:59 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Fri Feb 23 02:33:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Image segmentation Interactive segmentation Hypergraphs Semi-supervised learning Hypergraph Probabilistic interpretation Image processing Probabilistic approach Background Man machine dialogue Laplacian Interactive system Supervised learning User interface Graph method Quadratic form |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-c35f9907e24e2fd646904eb88aba2b01915089dbf70bc99d0f09bf9839cd6d503 |
| PageCount | 11 |
| ParticipantIDs | pascalfrancis_primary_22612555 crossref_citationtrail_10_1016_j_patcog_2009_11_025 crossref_primary_10_1016_j_patcog_2009_11_025 elsevier_sciencedirect_doi_10_1016_j_patcog_2009_11_025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-05-01 |
| PublicationDateYYYYMMDD | 2010-05-01 |
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2010 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | J. McAuley, T. Caetano, A. Smola, M. Franz, Learning high-order MRF priors of color images, in: International Conference on Machine Learning, 2006, pp. 617–624. Fairchild (bib37) 1998 A. Cavallaro, E.D. Gelasca, T. Ebrahimi, Objective evaluation of segmentation quality using spatio-temporal context, in: International Conference on Image Processing, 2002, pp. 301–304. Forsyth, Ponce (bib1) 2002 Meyer (bib39) 2001; 15 Belkin, Niyogi (bib17) 2004; 56 A. Bretto, L. Gillibert, Hypergraph-based image representation, in: IAPR-TC-15 Workshop on Graph-Based Representations in Pattern Recognition, Lecture Notes in Computer Science, vol. 3434, Springer, Berlin, 2005, pp. 1–11. Boykov, Kolmogorov (bib34) 2004; 26 Lee-Kwang, Lee (bib31) 1995; 25 Bretto, Azema, Cherifi, Laget (bib20) 1997; 59 F.R.K. Chung, Spectral Graph Theory, in: Regional Conference Series in Mathematics, vol. 92, 1997. G. Wachman, R. Khardon, Learning from interpretations: a rooted kernel for ordered hypergraphs, in: International Conference on Machine Learning, 2007, pp. 943–950. X. Lan, S. Roth, D. Huttenlocher, M.J. Black, Efficient belief propagation with learned higher-order Markov random fields, in: European Conference on Computer Vision, 2006, pp. 269–282. E. Nowak, F. Jurie, B. Triggs, Sampling strategies for bag-of-features image classification, in: European Conference on Computer Vision, 2006, pp. 490–503. Boykov, Funka-Lea (bib6) 2006; 70 A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: International Conference on Machine Learning, 2001, pp. 19–26. Shi, Malik (bib5) 2000; 22 Zhang (bib8) 2006 Cheng, Jiang, Sun, Wang (bib7) 2001; 34 A. Hanbury, How do superpixels affect image segmentation? in: Iberoamerican Congress on Pattern Recognition, Lecture Notes in Computer Science, vol. 5197, Springer, Berlin, 2008, pp. 178–186. X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with label propagation, Technical Report CMU-CALD-02-107, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2002. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: International Conference on Computer Vision, 2001, pp. 416–423. Belkin, Niyogi, Sindhwani (bib18) 2006; 7 O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, F. Segonne, Segmentation by transduction, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8. Navon, Miller, Averbuch (bib3) 2005; 23 Grady (bib12) 2006; 28 Rue, Held (bib36) 2005 E.N. Mortensen, W.A. Barrett, Intelligent scissors for image composition, in: Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH, 1995, pp. 191–198. Pearl (bib35) 1988 V. Raykar, R. Duraiswami, Fast optimal bandwidth selection for kernel density estimation, in: SIAM International Conference on Data Mining, 2006, pp. 524–528. A. Blake, C. Rother, M. Brown, P. Perez, P. Torr, Interactive image segmentation using an adaptive GMMRF model, in: European Conference on Computer Vision, 2006, pp. 428–441. X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning, 2003, pp. 912–919. B.C. Russell, A.A. Efros, J. Sivic, W.T. Freeman, A. Zisserman, Using multiple segmentations to discover objects and their extent in image collections, in: IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1605–1614. S. Rital, H. Cherifi, S. Miguet, Neighborhood hypergraph partitioning for image segmentation, in: International Conference on Computer Vision Theory and Applications, 2006, pp. 331–337. S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in: International Conference on Machine Learning, 2006, pp. 17–24. C. Rother, V. Kolmogorov, A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, in: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2004, pp. 309–314. Osher, Paragios (bib4) 2003 Berge (bib19) 1989 Hein, Audibert, von Luxburg (bib30) 2007; 8 L. Ding, A. Yilmaz, Image segmentation as learning on hypergraphs, in: International Conference on Machine Learning and Applications, 2008, pp. 247–252. P. Kohli, L. Ladicky, P.H.S. Torr, Robust higher order potentials for enforcing label consistency, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 302–324. B. Settles, Active learning literature survey, Technical Report 1648, Computer Sciences Department, University of Wisconsin, Madison, WI, 2009. N. Selvakkumaran, G. Karypis, Multi-objective hypergraph partitioning algorithms for cut and maximum subdomain degree minimization, in: IEEE/ACM International Conference on Computer Aided Design, 2003, pp. 726–733. Bonnet, Cutrona, Herbin (bib2) 2002; 35 A. Blum, J. Lafferty, M. Rwebangira, R. Reddy, Semi-supervised learning using randomized mincuts, in: International Conference on Machine Learning, 2004, pp. 13–20. D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: clustering, in: Annual Conference on Neural Information Processing Systems, 2006, pp. 1601–1608. X. Ren, J. Malik, Learning a classification model for segmentation, in: International Conference on Computer Vision, 2003, pp. 10–17. Comaniciu, Meer (bib25) 2002; 24 Kass, Witkin, Terzopoulos (bib10) 1987; 1 Berge (10.1016/j.patcog.2009.11.025_bib19) 1989 10.1016/j.patcog.2009.11.025_bib38 10.1016/j.patcog.2009.11.025_bib33 Grady (10.1016/j.patcog.2009.11.025_bib12) 2006; 28 10.1016/j.patcog.2009.11.025_bib32 Pearl (10.1016/j.patcog.2009.11.025_bib35) 1988 Belkin (10.1016/j.patcog.2009.11.025_bib17) 2004; 56 Lee-Kwang (10.1016/j.patcog.2009.11.025_bib31) 1995; 25 Belkin (10.1016/j.patcog.2009.11.025_bib18) 2006; 7 Bonnet (10.1016/j.patcog.2009.11.025_bib2) 2002; 35 Navon (10.1016/j.patcog.2009.11.025_bib3) 2005; 23 10.1016/j.patcog.2009.11.025_bib26 10.1016/j.patcog.2009.11.025_bib27 10.1016/j.patcog.2009.11.025_bib24 10.1016/j.patcog.2009.11.025_bib22 10.1016/j.patcog.2009.11.025_bib23 Meyer (10.1016/j.patcog.2009.11.025_bib39) 2001; 15 10.1016/j.patcog.2009.11.025_bib21 Cheng (10.1016/j.patcog.2009.11.025_bib7) 2001; 34 Fairchild (10.1016/j.patcog.2009.11.025_bib37) 1998 10.1016/j.patcog.2009.11.025_bib28 10.1016/j.patcog.2009.11.025_bib29 Hein (10.1016/j.patcog.2009.11.025_bib30) 2007; 8 10.1016/j.patcog.2009.11.025_bib9 Zhang (10.1016/j.patcog.2009.11.025_bib8) 2006 Shi (10.1016/j.patcog.2009.11.025_bib5) 2000; 22 10.1016/j.patcog.2009.11.025_bib15 10.1016/j.patcog.2009.11.025_bib16 10.1016/j.patcog.2009.11.025_bib13 10.1016/j.patcog.2009.11.025_bib14 Osher (10.1016/j.patcog.2009.11.025_bib4) 2003 Kass (10.1016/j.patcog.2009.11.025_bib10) 1987; 1 10.1016/j.patcog.2009.11.025_bib11 Bretto (10.1016/j.patcog.2009.11.025_bib20) 1997; 59 Forsyth (10.1016/j.patcog.2009.11.025_bib1) 2002 Boykov (10.1016/j.patcog.2009.11.025_bib34) 2004; 26 Boykov (10.1016/j.patcog.2009.11.025_bib6) 2006; 70 10.1016/j.patcog.2009.11.025_bib48 10.1016/j.patcog.2009.11.025_bib49 10.1016/j.patcog.2009.11.025_bib46 10.1016/j.patcog.2009.11.025_bib47 10.1016/j.patcog.2009.11.025_bib44 10.1016/j.patcog.2009.11.025_bib45 10.1016/j.patcog.2009.11.025_bib42 10.1016/j.patcog.2009.11.025_bib43 Comaniciu (10.1016/j.patcog.2009.11.025_bib25) 2002; 24 Rue (10.1016/j.patcog.2009.11.025_bib36) 2005 10.1016/j.patcog.2009.11.025_bib40 10.1016/j.patcog.2009.11.025_bib41 |
| References_xml | – reference: B. Settles, Active learning literature survey, Technical Report 1648, Computer Sciences Department, University of Wisconsin, Madison, WI, 2009. – reference: C. Rother, V. Kolmogorov, A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, in: Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2004, pp. 309–314. – reference: A. Cavallaro, E.D. Gelasca, T. Ebrahimi, Objective evaluation of segmentation quality using spatio-temporal context, in: International Conference on Image Processing, 2002, pp. 301–304. – volume: 1 start-page: 321 year: 1987 end-page: 331 ident: bib10 article-title: Snakes: active contour models publication-title: International Journal of Computer Vision – reference: N. Selvakkumaran, G. Karypis, Multi-objective hypergraph partitioning algorithms for cut and maximum subdomain degree minimization, in: IEEE/ACM International Conference on Computer Aided Design, 2003, pp. 726–733. – year: 1998 ident: bib37 article-title: Color Appearance Models – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: bib25 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 34 start-page: 2259 year: 2001 end-page: 2281 ident: bib7 article-title: Color image segmentation: advances and prospects publication-title: Pattern Recognition – year: 2005 ident: bib36 article-title: Gaussian Markov Random Fields: Theory and Applications – volume: 28 start-page: 1768 year: 2006 end-page: 1783 ident: bib12 article-title: Random walks for image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in: International Conference on Machine Learning, 2006, pp. 17–24. – volume: 35 start-page: 2319 year: 2002 end-page: 2322 ident: bib2 article-title: A ‘no-threshold’ histogram-based image segmentation method publication-title: Pattern Recognition – reference: L. Ding, A. Yilmaz, Image segmentation as learning on hypergraphs, in: International Conference on Machine Learning and Applications, 2008, pp. 247–252. – reference: J. McAuley, T. Caetano, A. Smola, M. Franz, Learning high-order MRF priors of color images, in: International Conference on Machine Learning, 2006, pp. 617–624. – reference: X. Ren, J. Malik, Learning a classification model for segmentation, in: International Conference on Computer Vision, 2003, pp. 10–17. – reference: A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: International Conference on Machine Learning, 2001, pp. 19–26. – volume: 56 start-page: 209 year: 2004 end-page: 239 ident: bib17 article-title: Semi-supervised learning on Riemannian manifolds publication-title: Machine Learning – reference: O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, F. Segonne, Segmentation by transduction, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8. – volume: 8 start-page: 1325 year: 2007 end-page: 1368 ident: bib30 article-title: Graph Laplacians and their convergence on random neighborhood graphs publication-title: Journal of Machine Learning Research – reference: A. Hanbury, How do superpixels affect image segmentation? in: Iberoamerican Congress on Pattern Recognition, Lecture Notes in Computer Science, vol. 5197, Springer, Berlin, 2008, pp. 178–186. – reference: E. Nowak, F. Jurie, B. Triggs, Sampling strategies for bag-of-features image classification, in: European Conference on Computer Vision, 2006, pp. 490–503. – year: 1989 ident: bib19 article-title: Hypergraphs – reference: X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning, 2003, pp. 912–919. – reference: D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: International Conference on Computer Vision, 2001, pp. 416–423. – reference: X. Lan, S. Roth, D. Huttenlocher, M.J. Black, Efficient belief propagation with learned higher-order Markov random fields, in: European Conference on Computer Vision, 2006, pp. 269–282. – year: 2006 ident: bib8 article-title: Advances in Image and Video Segmentation – reference: A. Bretto, L. Gillibert, Hypergraph-based image representation, in: IAPR-TC-15 Workshop on Graph-Based Representations in Pattern Recognition, Lecture Notes in Computer Science, vol. 3434, Springer, Berlin, 2005, pp. 1–11. – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: bib18 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: Journal of Machine Learning Research – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: bib5 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 25 start-page: 196 year: 1995 end-page: 201 ident: bib31 article-title: Fuzzy hypergraph and fuzzy partition publication-title: IEEE Transactions on Systems, Man and Cybernetics – year: 2003 ident: bib4 article-title: Geometric Level Set Methods in Imaging, Vision, and Graphics – reference: G. Wachman, R. Khardon, Learning from interpretations: a rooted kernel for ordered hypergraphs, in: International Conference on Machine Learning, 2007, pp. 943–950. – volume: 26 start-page: 1124 year: 2004 end-page: 1137 ident: bib34 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: V. Raykar, R. Duraiswami, Fast optimal bandwidth selection for kernel density estimation, in: SIAM International Conference on Data Mining, 2006, pp. 524–528. – volume: 15 start-page: 1089 year: 2001 end-page: 1118 ident: bib39 article-title: An overview of morphological segmentation publication-title: International Journal of Pattern Recognition and Artificial Intelligence – volume: 59 start-page: 265 year: 1997 end-page: 277 ident: bib20 article-title: Combinatorics and image processing publication-title: CVGIP: Graphical Model and Image Processing – volume: 70 start-page: 109 year: 2006 end-page: 131 ident: bib6 article-title: Graph cuts and efficient n-d image segmentation publication-title: International Journal of Computer Vision – reference: B.C. Russell, A.A. Efros, J. Sivic, W.T. Freeman, A. Zisserman, Using multiple segmentations to discover objects and their extent in image collections, in: IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1605–1614. – year: 2002 ident: bib1 article-title: Computer Vision: A Modern Approach – reference: X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with label propagation, Technical Report CMU-CALD-02-107, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2002. – reference: E.N. Mortensen, W.A. Barrett, Intelligent scissors for image composition, in: Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH, 1995, pp. 191–198. – reference: S. Rital, H. Cherifi, S. Miguet, Neighborhood hypergraph partitioning for image segmentation, in: International Conference on Computer Vision Theory and Applications, 2006, pp. 331–337. – reference: A. Blake, C. Rother, M. Brown, P. Perez, P. Torr, Interactive image segmentation using an adaptive GMMRF model, in: European Conference on Computer Vision, 2006, pp. 428–441. – reference: P. Kohli, L. Ladicky, P.H.S. Torr, Robust higher order potentials for enforcing label consistency, in: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 302–324. – volume: 23 start-page: 69 year: 2005 end-page: 85 ident: bib3 article-title: Color image segmentation based on adaptive local thresholds publication-title: Image and Vision Computing – reference: D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: clustering, in: Annual Conference on Neural Information Processing Systems, 2006, pp. 1601–1608. – reference: A. Blum, J. Lafferty, M. Rwebangira, R. Reddy, Semi-supervised learning using randomized mincuts, in: International Conference on Machine Learning, 2004, pp. 13–20. – year: 1988 ident: bib35 article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference – reference: F.R.K. Chung, Spectral Graph Theory, in: Regional Conference Series in Mathematics, vol. 92, 1997. – ident: 10.1016/j.patcog.2009.11.025_bib9 – volume: 70 start-page: 109 issue: 2 year: 2006 ident: 10.1016/j.patcog.2009.11.025_bib6 article-title: Graph cuts and efficient n-d image segmentation publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-7934-5 – ident: 10.1016/j.patcog.2009.11.025_bib11 doi: 10.1145/218380.218442 – ident: 10.1016/j.patcog.2009.11.025_bib40 – ident: 10.1016/j.patcog.2009.11.025_bib38 – volume: 15 start-page: 1089 issue: 7 year: 2001 ident: 10.1016/j.patcog.2009.11.025_bib39 article-title: An overview of morphological segmentation publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001401001337 – year: 1998 ident: 10.1016/j.patcog.2009.11.025_bib37 – ident: 10.1016/j.patcog.2009.11.025_bib24 doi: 10.1109/ICMLA.2008.17 – volume: 26 start-page: 1124 issue: 9 year: 2004 ident: 10.1016/j.patcog.2009.11.025_bib34 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.60 – volume: 7 start-page: 2399 year: 2006 ident: 10.1016/j.patcog.2009.11.025_bib18 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: Journal of Machine Learning Research – volume: 59 start-page: 265 issue: 5 year: 1997 ident: 10.1016/j.patcog.2009.11.025_bib20 article-title: Combinatorics and image processing publication-title: CVGIP: Graphical Model and Image Processing doi: 10.1006/gmip.1997.0437 – ident: 10.1016/j.patcog.2009.11.025_bib41 doi: 10.1007/s11263-008-0202-0 – year: 2002 ident: 10.1016/j.patcog.2009.11.025_bib1 – ident: 10.1016/j.patcog.2009.11.025_bib42 doi: 10.1137/1.9781611972764.53 – year: 2006 ident: 10.1016/j.patcog.2009.11.025_bib8 – ident: 10.1016/j.patcog.2009.11.025_bib27 doi: 10.1145/1273496.1273615 – volume: 23 start-page: 69 issue: 1 year: 2005 ident: 10.1016/j.patcog.2009.11.025_bib3 article-title: Color image segmentation based on adaptive local thresholds publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2004.05.011 – volume: 34 start-page: 2259 year: 2001 ident: 10.1016/j.patcog.2009.11.025_bib7 article-title: Color image segmentation: advances and prospects publication-title: Pattern Recognition doi: 10.1016/S0031-3203(00)00149-7 – ident: 10.1016/j.patcog.2009.11.025_bib15 doi: 10.1145/1015330.1015429 – ident: 10.1016/j.patcog.2009.11.025_bib16 – ident: 10.1016/j.patcog.2009.11.025_bib47 – volume: 35 start-page: 2319 issue: 10 year: 2002 ident: 10.1016/j.patcog.2009.11.025_bib2 article-title: A ‘no-threshold’ histogram-based image segmentation method publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00057-2 – ident: 10.1016/j.patcog.2009.11.025_bib22 doi: 10.21236/ADA439577 – year: 2003 ident: 10.1016/j.patcog.2009.11.025_bib4 – volume: 56 start-page: 209 issue: 1–3 year: 2004 ident: 10.1016/j.patcog.2009.11.025_bib17 article-title: Semi-supervised learning on Riemannian manifolds publication-title: Machine Learning doi: 10.1023/B:MACH.0000033120.25363.1e – ident: 10.1016/j.patcog.2009.11.025_bib32 doi: 10.1007/11744047_21 – ident: 10.1016/j.patcog.2009.11.025_bib23 doi: 10.1109/ICCV.2003.1238308 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 10.1016/j.patcog.2009.11.025_bib5 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – volume: 1 start-page: 321 issue: 4 year: 1987 ident: 10.1016/j.patcog.2009.11.025_bib10 article-title: Snakes: active contour models publication-title: International Journal of Computer Vision doi: 10.1007/BF00133570 – ident: 10.1016/j.patcog.2009.11.025_bib13 doi: 10.1109/CVPR.2008.4587419 – ident: 10.1016/j.patcog.2009.11.025_bib48 doi: 10.1007/978-3-540-24670-1_33 – ident: 10.1016/j.patcog.2009.11.025_bib21 doi: 10.1007/11552499_58 – volume: 8 start-page: 1325 year: 2007 ident: 10.1016/j.patcog.2009.11.025_bib30 article-title: Graph Laplacians and their convergence on random neighborhood graphs publication-title: Journal of Machine Learning Research – year: 2005 ident: 10.1016/j.patcog.2009.11.025_bib36 – volume: 25 start-page: 196 issue: 1 year: 1995 ident: 10.1016/j.patcog.2009.11.025_bib31 article-title: Fuzzy hypergraph and fuzzy partition publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/21.362951 – ident: 10.1016/j.patcog.2009.11.025_bib28 doi: 10.1145/1143844.1143847 – year: 1988 ident: 10.1016/j.patcog.2009.11.025_bib35 – year: 1989 ident: 10.1016/j.patcog.2009.11.025_bib19 – ident: 10.1016/j.patcog.2009.11.025_bib44 doi: 10.1007/11744085_38 – ident: 10.1016/j.patcog.2009.11.025_bib33 doi: 10.1145/1143844.1143922 – ident: 10.1016/j.patcog.2009.11.025_bib46 doi: 10.1145/1015706.1015720 – ident: 10.1016/j.patcog.2009.11.025_bib45 – ident: 10.1016/j.patcog.2009.11.025_bib49 – ident: 10.1016/j.patcog.2009.11.025_bib43 doi: 10.1090/cbms/092 – ident: 10.1016/j.patcog.2009.11.025_bib14 – volume: 28 start-page: 1768 issue: 11 year: 2006 ident: 10.1016/j.patcog.2009.11.025_bib12 article-title: Random walks for image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.233 – ident: 10.1016/j.patcog.2009.11.025_bib29 – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 10.1016/j.patcog.2009.11.025_bib25 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.1000236 – ident: 10.1016/j.patcog.2009.11.025_bib26 doi: 10.7551/mitpress/7503.003.0205 |
| SSID | ssj0017142 |
| Score | 2.1857748 |
| Snippet | This paper introduces a novel interactive framework for segmenting images using probabilistic hypergraphs which model the spatial and appearance relations... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1863 |
| SubjectTerms | Applied sciences Exact sciences and technology Hypergraphs Image processing Image segmentation Information, signal and communications theory Interactive segmentation Semi-supervised learning Signal processing Telecommunications and information theory |
| Title | Interactive image segmentation using probabilistic hypergraphs |
| URI | https://dx.doi.org/10.1016/j.patcog.2009.11.025 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qexHEt1gfJQeva_PYPPYilGKpij1Z6C1kX7Vi09DWq7_dmWRTLAgFLzmE7CZ82cx8k535hpA7aZingepSE2pDmZdwKrhW1BVRxn3DlPaxwPl1FA3H7HkSThqkX9fCYFqltf2VTS-ttT3TtWh2i9kMa3xRdhC3CErRM4jbW-B_kqRJWr2nl-Fos5kQe6wSDQ88igPqCroyzasAi7eYVsKVKOeJPbP_9lAHRbYC3EzV8OKXFxock0NLH51e9YQnpKHzU3JUt2Zw7Jd6Rh7KP31Zacyc2RyMhrPS07ktNModTHefOthNplTYRbFm5x1C0mUpYL06J-PB41t_SG2rBCqDIFrDMTTgV2LtMwBXRRj0Mi2SJBOZL4DGoew7V8LErpCcK9e4XBgO7EiqSIVucEGa-SLXl8SBCCqJFZMamYaWGcQfPOIaeIGnJUzVJkENTyqtjji2s_hM64Sxj7QCFVtccggxUgC1TehmVFHpaOy4Pq6RT7fWQwqmfsfIztaL2tzOR7W0MAyv_j31Ndmvkwdc74Y018svfQucZC06ZO_-2-vYlfcD9GPh4g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPSiIb7E-ag5e1-a1SfYiiFiqtj210FvIbnZrxaalrVd_uzObTbEgFLzkEHY3YbKZ-SaZ-T5C7qQOPQVQl2qmNA29hFPBVU5dEWXc12GufGxw7vWjzjB8HbFRjTxVvTBYVml9f-nTjbe2Z1rWmq35ZII9vkg7iL8IDOkZ5O07IfNjzMDuv9d1HijwXVKGBx7F4VX_nCnymoO_m41L2kok80TF7L_j0_48W4LVdCl38SsGtY_IgQWPzmN5f8ekpooTclgJMzj2PT0lD-Y7X2ZcmTOZgstwlmo8tW1GhYPF7mMHtWQMvy5SNTvvkJAuDH318owM28-Dpw61QglUBkG0giPTEFVi5Ydg2jzClDdUIkkykfkCQBySvvNc6NgVkvPc1S4XmgM2knmUMzc4J_ViVqgL4kD-lMR5KBXiDCUzyD54xBWgAk9JWKpBgso8qbQs4ihm8ZlW5WIfaWlUFLjkkGCkYNQGoetZ85JFY8v4uLJ8urEbUnD0W2Y2Nx7U-nI-cqUxxi7_vfQt2e0Met20-9J_uyJ7VRmB612T-mrxpW4AnaxE0-y-H9TB4qo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+image+segmentation+using+probabilistic+hypergraphs&rft.jtitle=Pattern+recognition&rft.au=Ding%2C+Lei&rft.au=Yilmaz%2C+Alper&rft.date=2010-05-01&rft.issn=0031-3203&rft.volume=43&rft.issue=5&rft.spage=1863&rft.epage=1873&rft_id=info:doi/10.1016%2Fj.patcog.2009.11.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2009_11_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |