Groupwise registration with global-local graph shrinkage in atlas construction

•A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational efficiency is achieved by maintaining the local distributions on the image manifold.•The accuracy of the resultant atlas is improved by captur...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 64; p. 101711
Main Authors Fu, Tianyu, Yang, Jian, Li, Qin, Ai, Danni, Song, Hong, Jiang, Yurong, Wang, Yongtian, Frangi, Alejandro F.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2020.101711

Cover

Abstract •A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational efficiency is achieved by maintaining the local distributions on the image manifold.•The accuracy of the resultant atlas is improved by capturing both global and local structural variations among images during graph shrinkage.•Compared with six state-of-the-art methods on synthetic and clinical datasets, results of the proposed method show a competitive performance. Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy. [Display omitted]
AbstractList Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy.Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy.
•A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational efficiency is achieved by maintaining the local distributions on the image manifold.•The accuracy of the resultant atlas is improved by capturing both global and local structural variations among images during graph shrinkage.•Compared with six state-of-the-art methods on synthetic and clinical datasets, results of the proposed method show a competitive performance. Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy. [Display omitted]
ArticleNumber 101711
Author Song, Hong
Fu, Tianyu
Ai, Danni
Yang, Jian
Frangi, Alejandro F.
Wang, Yongtian
Li, Qin
Jiang, Yurong
Author_xml – sequence: 1
  givenname: Tianyu
  surname: Fu
  fullname: Fu, Tianyu
  organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0003-1250-6319
  surname: Yang
  fullname: Yang, Jian
  email: jyang@bit.edu.cn
  organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Qin
  surname: Li
  fullname: Li, Qin
  organization: School of Life Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Danni
  surname: Ai
  fullname: Ai, Danni
  organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 5
  givenname: Hong
  surname: Song
  fullname: Song, Hong
  organization: School of Software, Beijing Institute of Technology, Beijing 100081, China
– sequence: 6
  givenname: Yurong
  surname: Jiang
  fullname: Jiang, Yurong
  organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 7
  givenname: Yongtian
  surname: Wang
  fullname: Wang, Yongtian
  organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 8
  givenname: Alejandro F.
  orcidid: 0000-0002-2675-528X
  surname: Frangi
  fullname: Frangi, Alejandro F.
  organization: Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg. Cardiovascular Sciences and Electrical Engineering Departments, KU Leuven, Leuven, Belgium
BookMark eNqFkLFOwzAQhi1UJNrCE7BkZEmxY8dJBgZUQUGqYIHZcuxL6uLGwU6oeHvSBjEwwHSn0_-d7r4ZmjSuAYQuCV4QTPj1drEDbeQiwclxkhFygqaEchLnLKGTn56kZ2gWwhZjnDGGp-hp5V3f7k2AyENtQudlZ1wT7U23iWrrSmlj65S0Ue1lu4nCxpvmTdYQmSaSnZUhUq4ZsF4duHN0Wkkb4OK7ztHr_d3L8iFeP68el7frWFHKu7gsoUp4pXTGMklyCUXOGC8gTRNdsJJpqTjTqWIpKRkfbqdKDrmyVFjrSnM6R1fj3ta79x5CJ3YmKLBWNuD6IBJGckIxK9IhWoxR5V0IHiqhTHd8cvjVWEGwODgUW3F0KA4OxehwYOkvtvVmJ_3nP9TNSMFg4MOAF0EZaNQQ9KA6oZ35k_8C8IaPlw
CitedBy_id crossref_primary_10_3788_AOS230742
crossref_primary_10_1016_j_eswa_2025_126619
crossref_primary_10_1109_JBHI_2020_3013126
Cites_doi 10.1016/j.media.2017.03.006
10.1016/j.neuroimage.2008.12.008
10.1140/epjb/e2008-00381-8
10.1109/34.121791
10.1016/j.cmpb.2018.04.024
10.1007/978-3-540-40899-4_19
10.1007/BF02187751
10.1016/0167-8655(84)90037-0
10.1016/j.neuroimage.2010.03.010
10.1016/j.media.2007.12.006
10.1016/0031-3203(76)90045-5
10.1016/j.acra.2014.10.001
10.1016/j.neuroimage.2004.07.068
10.1016/j.cmpb.2011.07.015
10.1109/TMI.2009.2013851
10.1016/j.media.2015.06.012
10.1007/s10958-007-0471-0
10.1109/TMI.2012.2230015
10.1109/TMI.2009.2017942
10.1109/TMI.2009.2014372
10.1137/090768539
10.1016/j.neuroimage.2011.03.050
10.1016/j.neuroimage.2010.09.019
10.1007/s12021-015-9285-2
10.1109/TSMC.1974.5409141
10.1088/1361-6560/aa5ed9
10.1016/j.neuroimage.2013.09.023
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.media.2020.101711
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2020_101711
S1361841518300549
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
ID FETCH-LOGICAL-c336t-bbef26fcd747a18ae984469e552d94b4dac64d5c451b461363caa18bbc0ddfd63
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 10:55:48 EDT 2025
Wed Oct 01 03:29:51 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph shrinkage
Atlas construction
Global-local
Groupwise registration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-bbef26fcd747a18ae984469e552d94b4dac64d5c451b461363caa18bbc0ddfd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2675-528X
0000-0003-1250-6319
PQID 2418130495
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2418130495
crossref_citationtrail_10_1016_j_media_2020_101711
crossref_primary_10_1016_j_media_2020_101711
elsevier_sciencedirect_doi_10_1016_j_media_2020_101711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Medical image analysis
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sabuncu, Balci, Shenton, Golland (bib0024) 2009; 28
Fu, Li, Zhu, Ai, Yang (bib0011) 2018; 162
Smolentsev (bib0026) 2007; 146
Besl, Mckay (bib0005) 1992; 14
Karasawa, Oda, Kitasaka, Misawa, Fujiwara, Chu, Zheng, Rueckert, Mori (bib0021) 2017; 39
Helgason (bib0013) 2012
Leone, Sumedha, Weigt (bib0022) 2008; 66
Wu, Jia, Wang, Shen (bib0032) 2011; 56
Artaechevarria, Munoz-Barrutia, Ortiz-de-Solorzano (bib0001) 2009; 28
Schenk, Prause, Peitgen (bib0025) 2000; 1935
Chang, Tian, Lu, Gu, Chen, Jiang (bib0007) 2017; 62
Cabezas, Oliver, Llado, Freixenet, Cuadra (bib0006) 2011; 104
Tian, Chen, Wang, Peng, Wang, Duan, Wu, Zhou (bib0029) 2014; 2014
Pollack, Sharir, Rote (bib0023) 1989; 4
Ashburner, Friston (bib0002) 2009; 45
Iglesias, Sabuncu (bib0017) 2015; 24
Barratt, Chan, Edwards, Penney, Slomczykowski, Carter, Hawkes (bib0004) 2008; 12
Balci, Golland, Shenton, Wells (bib0003) 2007; 10
Devi, Sarma (bib0008) 1984; 2
Hori, Okada, Higashiura, Sato, Chen, Kim, Onishi, Eguchi, Nagano, Umeshita, Wakasa, Tomiyama (bib0016) 2015; 22
Jia, Yap, Wu, Wang, Shen (bib0019) 2011; 54
Heimann, van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes, Bello, Binnig, Bischof, Bornik, Cashman, Chi, Cordova, Dawant, Fidrich, Furst, Furukawa, Grenacher, Hornegger, Kainmuller, Kitney, Kobatake, Lamecker, Lange, Lee, Lennon, Li, Li, Meinzer, Nemeth, Raicu, Rau, van Rikxoort, Rousson, Rusko, Saddi, Schmidt, Seghers, Shimizu, Slagmolen, Sorantin, Soza, Susomboon, Waite, Wimmer, Wolf (bib0012) 2009; 28
Tang, Fan (bib0028) 2016; 14
Souvenir, Pless (bib0027) 2005; 2
Vercauteren, Pennec, Perchant, Ayache (bib0030) 2008; 11
Jia, Wu, Wang, Shen (bib0018) 2010; 51
Higham (bib0014) 2005; 51
Joshi, Davis, Jomier, Gerig (bib0020) 2004; 23
Wang, Rusu, Golden, Gow, Madabhushi (bib0031) 2013; 8669
Hoogendoorn, Duchateau, Sanchez-Quintana, Whitmarsh, Sukno, De Craene, Lekadir, Frangi (bib0015) 2013; 32
Dubes, Jain (bib0009) 1976; 8
Dunn (bib0010) 1974; 4
Ying, Wu, Wang, Shen (bib0033) 2014; 84
Joshi (10.1016/j.media.2020.101711_bib0020) 2004; 23
Balci (10.1016/j.media.2020.101711_bib0003) 2007; 10
Besl (10.1016/j.media.2020.101711_bib0005) 1992; 14
Jia (10.1016/j.media.2020.101711_bib0018) 2010; 51
Smolentsev (10.1016/j.media.2020.101711_bib0026) 2007; 146
Iglesias (10.1016/j.media.2020.101711_bib0017) 2015; 24
Helgason (10.1016/j.media.2020.101711_bib0013) 2012
Pollack (10.1016/j.media.2020.101711_bib0023) 1989; 4
Ying (10.1016/j.media.2020.101711_bib0033) 2014; 84
Cabezas (10.1016/j.media.2020.101711_bib0006) 2011; 104
Schenk (10.1016/j.media.2020.101711_bib0025) 2000; 1935
Karasawa (10.1016/j.media.2020.101711_bib0021) 2017; 39
Higham (10.1016/j.media.2020.101711_bib0014) 2005; 51
Tang (10.1016/j.media.2020.101711_bib0028) 2016; 14
Vercauteren (10.1016/j.media.2020.101711_bib0030) 2008; 11
Ashburner (10.1016/j.media.2020.101711_bib0002) 2009; 45
Barratt (10.1016/j.media.2020.101711_bib0004) 2008; 12
Souvenir (10.1016/j.media.2020.101711_bib0027) 2005; 2
Artaechevarria (10.1016/j.media.2020.101711_bib0001) 2009; 28
Tian (10.1016/j.media.2020.101711_bib0029) 2014; 2014
Hori (10.1016/j.media.2020.101711_bib0016) 2015; 22
Devi (10.1016/j.media.2020.101711_bib0008) 1984; 2
Chang (10.1016/j.media.2020.101711_bib0007) 2017; 62
Dunn (10.1016/j.media.2020.101711_bib0010) 1974; 4
Jia (10.1016/j.media.2020.101711_bib0019) 2011; 54
Leone (10.1016/j.media.2020.101711_bib0022) 2008; 66
Sabuncu (10.1016/j.media.2020.101711_bib0024) 2009; 28
Wang (10.1016/j.media.2020.101711_bib0031) 2013; 8669
Fu (10.1016/j.media.2020.101711_bib0011) 2018; 162
Wu (10.1016/j.media.2020.101711_bib0032) 2011; 56
Dubes (10.1016/j.media.2020.101711_bib0009) 1976; 8
Heimann (10.1016/j.media.2020.101711_bib0012) 2009; 28
Hoogendoorn (10.1016/j.media.2020.101711_bib0015) 2013; 32
References_xml – volume: 104
  start-page: 158
  year: 2011
  end-page: 177
  ident: bib0006
  article-title: A review of atlas-based segmentation for magnetic resonance brain images
  publication-title: Comput. Methods Progr. Biomed.
– volume: 162
  start-page: 47
  year: 2018
  end-page: 59
  ident: bib0011
  article-title: Sparse deformation prediction using markove decision processes (MDP) for non-rigid registration of MR image
  publication-title: Comput. Methods Programs Biomed.
– volume: 8
  start-page: 247
  year: 1976
  end-page: 260
  ident: bib0009
  article-title: Clustering techniques - users dilemma
  publication-title: Pattern Recognit.
– volume: 45
  start-page: 333
  year: 2009
  end-page: 341
  ident: bib0002
  article-title: Computing average shaped tissue probability templates
  publication-title: Neuroimage
– volume: 11
  start-page: 754
  year: 2008
  end-page: 761
  ident: bib0030
  article-title: Symmetric log-domain diffeomorphic registration: a demons-based approach
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 4
  start-page: 611
  year: 1989
  end-page: 626
  ident: bib0023
  article-title: Computing the geodesic center of a simple polygon
  publication-title: Discret. Comput. Geom.
– volume: 62
  start-page: 3656
  year: 2017
  end-page: 3667
  ident: bib0007
  article-title: A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: bib0001
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
– volume: 51
  start-page: 1057
  year: 2010
  end-page: 1070
  ident: bib0018
  article-title: ABSORB: atlas building by self-organized registration and bundling
  publication-title: Neuroimage
– volume: 14
  start-page: 131
  year: 2016
  end-page: 145
  ident: bib0028
  article-title: Groupwise image registration guided by a dynamic digraph of images
  publication-title: Neuroinformatics
– volume: 66
  start-page: 125
  year: 2008
  end-page: 135
  ident: bib0022
  article-title: Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
  publication-title: Eur. Phys. J.
– volume: 28
  start-page: 1473
  year: 2009
  end-page: 1487
  ident: bib0024
  article-title: Image-driven population analysis through mixture modeling
  publication-title: IEEE Trans. Med. Imaging
– volume: 146
  start-page: 6213
  year: 2007
  end-page: 6312
  ident: bib0026
  article-title: Diffeomorphism groups of compact manifolds
  publication-title: J. Math. Sci.
– volume: 24
  start-page: 205
  year: 2015
  end-page: 219
  ident: bib0017
  article-title: Multi-atlas segmentation of biomedical images: a survey
  publication-title: Med. Image Anal.
– start-page: 641
  year: 2012
  ident: bib0013
  article-title: Differential Geometry, Lie Groups, and Symmetric Spaces (Sigurdur Helgason)
– volume: 51
  start-page: 747
  year: 2005
  end-page: 764
  ident: bib0014
  article-title: The scaling and squaring method for the matrix exponential revisite
  publication-title: SIAM Rev.
– volume: 84
  start-page: 626
  year: 2014
  end-page: 638
  ident: bib0033
  article-title: Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set
  publication-title: Neuroimage
– volume: 4
  start-page: 310
  year: 1974
  end-page: 313
  ident: bib0010
  article-title: Graph theoretic analysis of pattern-classification via tamuras fuzzy relation
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 2
  start-page: 195
  year: 2005
  end-page: 200
  ident: bib0027
  article-title: Isomap and nonparametric models of image deformation
  publication-title: IEEE Workshop on Motion and Video Computing
– volume: 22
  start-page: 303
  year: 2015
  end-page: 309
  ident: bib0016
  article-title: Quantitative imaging: quantification of liver shape on CT using the statistical shape model to evaluate hepatic fibrosis
  publication-title: Acad. Radiol.
– volume: 39
  start-page: 18
  year: 2017
  end-page: 28
  ident: bib0021
  article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: bib0005
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 23
  year: 2007
  end-page: 30
  ident: bib0003
  article-title: Free-form B-spline deformation model for groupwise registration
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 1265
  ident: bib0012
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib0029
  article-title: A vessel active contour model for vascular segmentation
  publication-title: Biomed. Res. Int.
– volume: 2
  start-page: 139
  year: 1984
  end-page: 145
  ident: bib0008
  article-title: A fuzzy multistage evolutionary (fume) clustering technique
  publication-title: Pattern Recognit. Lett.
– volume: 12
  start-page: 358
  year: 2008
  end-page: 374
  ident: bib0004
  article-title: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging
  publication-title: Med. Image Anal.
– volume: 8669
  start-page: 598
  year: 2013
  end-page: 608
  ident: bib0031
  article-title: Mouse lung volume reconstruction from efficient groupwise registration of individual histological slices with natural gradient
  publication-title: Proc. SPIE
– volume: 1935
  start-page: 186
  year: 2000
  end-page: 195
  ident: bib0025
  article-title: Efficient semiautomatic segmentation of 3D objects in medical images
  publication-title: Lect. Notes Comput. Sci.
– volume: 56
  start-page: 1968
  year: 2011
  end-page: 1981
  ident: bib0032
  article-title: SharpMean: groupwise registration guided by sharp mean image and tree-based registration
  publication-title: Neuroimage
– volume: 32
  start-page: 28
  year: 2013
  end-page: 44
  ident: bib0015
  article-title: A high-resolution atlas and statistical model of the human heart from multislice CT
  publication-title: IEEE Trans. Med. Imaging
– volume: 54
  start-page: 928
  year: 2011
  end-page: 939
  ident: bib0019
  article-title: Intermediate templates guided groupwise registration of diffusion tensor images
  publication-title: Neuroimage
– volume: 23
  start-page: 151
  year: 2004
  end-page: 160
  ident: bib0020
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: Neuroimage
– volume: 39
  start-page: 18
  year: 2017
  ident: 10.1016/j.media.2020.101711_bib0021
  article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.03.006
– volume: 45
  start-page: 333
  year: 2009
  ident: 10.1016/j.media.2020.101711_bib0002
  article-title: Computing average shaped tissue probability templates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.008
– volume: 66
  start-page: 125
  year: 2008
  ident: 10.1016/j.media.2020.101711_bib0022
  article-title: Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjb/e2008-00381-8
– volume: 2
  start-page: 195
  year: 2005
  ident: 10.1016/j.media.2020.101711_bib0027
  article-title: Isomap and nonparametric models of image deformation
– volume: 14
  start-page: 239
  year: 1992
  ident: 10.1016/j.media.2020.101711_bib0005
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.121791
– volume: 162
  start-page: 47
  year: 2018
  ident: 10.1016/j.media.2020.101711_bib0011
  article-title: Sparse deformation prediction using markove decision processes (MDP) for non-rigid registration of MR image
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.024
– volume: 1935
  start-page: 186
  year: 2000
  ident: 10.1016/j.media.2020.101711_bib0025
  article-title: Efficient semiautomatic segmentation of 3D objects in medical images
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-40899-4_19
– volume: 4
  start-page: 611
  year: 1989
  ident: 10.1016/j.media.2020.101711_bib0023
  article-title: Computing the geodesic center of a simple polygon
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/BF02187751
– volume: 2
  start-page: 139
  year: 1984
  ident: 10.1016/j.media.2020.101711_bib0008
  article-title: A fuzzy multistage evolutionary (fume) clustering technique
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(84)90037-0
– volume: 51
  start-page: 1057
  year: 2010
  ident: 10.1016/j.media.2020.101711_bib0018
  article-title: ABSORB: atlas building by self-organized registration and bundling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.010
– volume: 12
  start-page: 358
  year: 2008
  ident: 10.1016/j.media.2020.101711_bib0004
  article-title: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.12.006
– volume: 8
  start-page: 247
  year: 1976
  ident: 10.1016/j.media.2020.101711_bib0009
  article-title: Clustering techniques - users dilemma
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(76)90045-5
– volume: 22
  start-page: 303
  year: 2015
  ident: 10.1016/j.media.2020.101711_bib0016
  article-title: Quantitative imaging: quantification of liver shape on CT using the statistical shape model to evaluate hepatic fibrosis
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2014.10.001
– volume: 23
  start-page: 151
  year: 2004
  ident: 10.1016/j.media.2020.101711_bib0020
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.068
– volume: 104
  start-page: 158
  year: 2011
  ident: 10.1016/j.media.2020.101711_bib0006
  article-title: A review of atlas-based segmentation for magnetic resonance brain images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2011.07.015
– volume: 28
  start-page: 1251
  year: 2009
  ident: 10.1016/j.media.2020.101711_bib0012
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2013851
– volume: 24
  start-page: 205
  year: 2015
  ident: 10.1016/j.media.2020.101711_bib0017
  article-title: Multi-atlas segmentation of biomedical images: a survey
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.06.012
– volume: 146
  start-page: 6213
  year: 2007
  ident: 10.1016/j.media.2020.101711_bib0026
  article-title: Diffeomorphism groups of compact manifolds
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-007-0471-0
– volume: 32
  start-page: 28
  year: 2013
  ident: 10.1016/j.media.2020.101711_bib0015
  article-title: A high-resolution atlas and statistical model of the human heart from multislice CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2230015
– volume: 28
  start-page: 1473
  year: 2009
  ident: 10.1016/j.media.2020.101711_bib0024
  article-title: Image-driven population analysis through mixture modeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2017942
– volume: 28
  start-page: 1266
  year: 2009
  ident: 10.1016/j.media.2020.101711_bib0001
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 51
  start-page: 747
  year: 2005
  ident: 10.1016/j.media.2020.101711_bib0014
  article-title: The scaling and squaring method for the matrix exponential revisite
  publication-title: SIAM Rev.
  doi: 10.1137/090768539
– volume: 11
  start-page: 754
  year: 2008
  ident: 10.1016/j.media.2020.101711_bib0030
  article-title: Symmetric log-domain diffeomorphic registration: a demons-based approach
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 56
  start-page: 1968
  year: 2011
  ident: 10.1016/j.media.2020.101711_bib0032
  article-title: SharpMean: groupwise registration guided by sharp mean image and tree-based registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.050
– volume: 10
  start-page: 23
  year: 2007
  ident: 10.1016/j.media.2020.101711_bib0003
  article-title: Free-form B-spline deformation model for groupwise registration
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 54
  start-page: 928
  year: 2011
  ident: 10.1016/j.media.2020.101711_bib0019
  article-title: Intermediate templates guided groupwise registration of diffusion tensor images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.019
– start-page: 641
  year: 2012
  ident: 10.1016/j.media.2020.101711_bib0013
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.media.2020.101711_bib0029
  article-title: A vessel active contour model for vascular segmentation
  publication-title: Biomed. Res. Int.
– volume: 8669
  start-page: 598
  year: 2013
  ident: 10.1016/j.media.2020.101711_bib0031
  article-title: Mouse lung volume reconstruction from efficient groupwise registration of individual histological slices with natural gradient
  publication-title: Proc. SPIE
– volume: 14
  start-page: 131
  year: 2016
  ident: 10.1016/j.media.2020.101711_bib0028
  article-title: Groupwise image registration guided by a dynamic digraph of images
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9285-2
– volume: 4
  start-page: 310
  year: 1974
  ident: 10.1016/j.media.2020.101711_bib0010
  article-title: Graph theoretic analysis of pattern-classification via tamuras fuzzy relation
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1974.5409141
– volume: 62
  start-page: 3656
  year: 2017
  ident: 10.1016/j.media.2020.101711_bib0007
  article-title: A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5ed9
– volume: 84
  start-page: 626
  year: 2014
  ident: 10.1016/j.media.2020.101711_bib0033
  article-title: Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.023
SSID ssj0007440
Score 2.367627
Snippet •A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational...
Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101711
SubjectTerms Atlas construction
Global-local
Graph shrinkage
Groupwise registration
Title Groupwise registration with global-local graph shrinkage in atlas construction
URI https://dx.doi.org/10.1016/j.media.2020.101711
https://www.proquest.com/docview/2418130495
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iIHoQn_gsETwa22yy2e2xilof7UUrvYU8sSpboRVv_nYn2V1foAdPyy6TsEySbybJzDcIHVgq2pnnjDBlBeE6y4gSihNPLeyHqG0ZHw70e33RHfDLYTqcQSd1LkwIq6ywv8T0iNbVl2alzebzaNS8oSwUKwGLlQfKdR6S-AL7F8zpo7fPMI9AgFfmXlESpGvmoRjjFbMzYJOYlHxDlP5mnX7gdDQ-Z8toqfIacaf8sRU044pVtPiFS3AVzfeqW_I11I8HSq-jicOh7kLNjIvDmSsuGUBItGE40lXjyT108QjAgkcFVlPwp7EZfzLLrqPB2entSZdUdROIYUxMidbOJ8IbC1sFRXPl2jkopu3SNLFtrrlVRnCbGp5SzcGcC2YUyGltWtZ6K9gGmi3GhdtEWGnf8lnoViQ89XnuMxBjAPDO2yxhWyip9SVNRSoeals8yTp67EFGJcugZFkqeQsdfjR6Ljk1_hYX9UDIb1NDAur_3XC_HjYJiybchKjCjV8mEtyWnIYLxnT7v53voIXwVsYC7qJZGBO3B_7JVDfiBGyguc7FVbcPz_Pj67vOO9aU5x0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BIhU4oBKoyqPUlXrESrz2enePKCpKgOQCkXKz_BSh1SZSgvr3O94HtEhw6HXXM1qNvd_M2ONvAL47JossCE65dpIKk2VUSy1oYA7zIeYGNsQN_clUjmbiep7Ot2DY3oWJZZUN9teYXqF186TfWLO_Wiz6d4zHZiXosfJIuS6KbeiKFDG5A93L8c1o-gzIkQOvvn7FaBRoyYeqMq_qggbmiUlNOcTYWw7qFVRX_ufqI-w3gSO5rL_tALZ82YO9v-gEe_Bh0hyUH8K02lP6vVh7ElsvtOS4JG67kpoEhFZujFSM1WT9gCp-IraQRUn0BkNqYpcv5LJHMLv6cT8c0aZ1ArWcyw01xodEBuswW9As177IMe8rfJomrhBGOG2lcKkVKTMCPbrkVuM4Y-zAueAk_wSdcln6z0C0CYOQRbUyEWnI85DhMI4Y74PLEn4MSWsvZRte8dje4pdqC8geVWVkFY2saiMfw8Wz0Kqm1Xh_uGwnQv2zOhQC__uC39ppU_jfxMMQXfrl01ph5JKzeMaYnvyv8q-wM7qf3Krb8fTmFHbjm7o08Aw6OD_-C4YrG3PeLMc_eA7oOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groupwise+registration+with+global-local+graph+shrinkage+in+atlas+construction&rft.jtitle=Medical+image+analysis&rft.au=Fu%2C+Tianyu&rft.au=Yang%2C+Jian&rft.au=Li%2C+Qin&rft.au=Ai%2C+Danni&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=64&rft_id=info:doi/10.1016%2Fj.media.2020.101711&rft.externalDocID=S1361841518300549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon