Groupwise registration with global-local graph shrinkage in atlas construction
•A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational efficiency is achieved by maintaining the local distributions on the image manifold.•The accuracy of the resultant atlas is improved by captur...
Saved in:
Published in | Medical image analysis Vol. 64; p. 101711 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2020.101711 |
Cover
Abstract | •A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational efficiency is achieved by maintaining the local distributions on the image manifold.•The accuracy of the resultant atlas is improved by capturing both global and local structural variations among images during graph shrinkage.•Compared with six state-of-the-art methods on synthetic and clinical datasets, results of the proposed method show a competitive performance.
Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy.
[Display omitted] |
---|---|
AbstractList | Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy.Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy. •A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational efficiency is achieved by maintaining the local distributions on the image manifold.•The accuracy of the resultant atlas is improved by capturing both global and local structural variations among images during graph shrinkage.•Compared with six state-of-the-art methods on synthetic and clinical datasets, results of the proposed method show a competitive performance. Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy. [Display omitted] |
ArticleNumber | 101711 |
Author | Song, Hong Fu, Tianyu Ai, Danni Yang, Jian Frangi, Alejandro F. Wang, Yongtian Li, Qin Jiang, Yurong |
Author_xml | – sequence: 1 givenname: Tianyu surname: Fu fullname: Fu, Tianyu organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Jian orcidid: 0000-0003-1250-6319 surname: Yang fullname: Yang, Jian email: jyang@bit.edu.cn organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Qin surname: Li fullname: Li, Qin organization: School of Life Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Danni surname: Ai fullname: Ai, Danni organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China – sequence: 5 givenname: Hong surname: Song fullname: Song, Hong organization: School of Software, Beijing Institute of Technology, Beijing 100081, China – sequence: 6 givenname: Yurong surname: Jiang fullname: Jiang, Yurong organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China – sequence: 7 givenname: Yongtian surname: Wang fullname: Wang, Yongtian organization: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China – sequence: 8 givenname: Alejandro F. orcidid: 0000-0002-2675-528X surname: Frangi fullname: Frangi, Alejandro F. organization: Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg. Cardiovascular Sciences and Electrical Engineering Departments, KU Leuven, Leuven, Belgium |
BookMark | eNqFkLFOwzAQhi1UJNrCE7BkZEmxY8dJBgZUQUGqYIHZcuxL6uLGwU6oeHvSBjEwwHSn0_-d7r4ZmjSuAYQuCV4QTPj1drEDbeQiwclxkhFygqaEchLnLKGTn56kZ2gWwhZjnDGGp-hp5V3f7k2AyENtQudlZ1wT7U23iWrrSmlj65S0Ue1lu4nCxpvmTdYQmSaSnZUhUq4ZsF4duHN0Wkkb4OK7ztHr_d3L8iFeP68el7frWFHKu7gsoUp4pXTGMklyCUXOGC8gTRNdsJJpqTjTqWIpKRkfbqdKDrmyVFjrSnM6R1fj3ta79x5CJ3YmKLBWNuD6IBJGckIxK9IhWoxR5V0IHiqhTHd8cvjVWEGwODgUW3F0KA4OxehwYOkvtvVmJ_3nP9TNSMFg4MOAF0EZaNQQ9KA6oZ35k_8C8IaPlw |
CitedBy_id | crossref_primary_10_3788_AOS230742 crossref_primary_10_1016_j_eswa_2025_126619 crossref_primary_10_1109_JBHI_2020_3013126 |
Cites_doi | 10.1016/j.media.2017.03.006 10.1016/j.neuroimage.2008.12.008 10.1140/epjb/e2008-00381-8 10.1109/34.121791 10.1016/j.cmpb.2018.04.024 10.1007/978-3-540-40899-4_19 10.1007/BF02187751 10.1016/0167-8655(84)90037-0 10.1016/j.neuroimage.2010.03.010 10.1016/j.media.2007.12.006 10.1016/0031-3203(76)90045-5 10.1016/j.acra.2014.10.001 10.1016/j.neuroimage.2004.07.068 10.1016/j.cmpb.2011.07.015 10.1109/TMI.2009.2013851 10.1016/j.media.2015.06.012 10.1007/s10958-007-0471-0 10.1109/TMI.2012.2230015 10.1109/TMI.2009.2017942 10.1109/TMI.2009.2014372 10.1137/090768539 10.1016/j.neuroimage.2011.03.050 10.1016/j.neuroimage.2010.09.019 10.1007/s12021-015-9285-2 10.1109/TSMC.1974.5409141 10.1088/1361-6560/aa5ed9 10.1016/j.neuroimage.2013.09.023 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.media.2020.101711 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 10_1016_j_media_2020_101711 S1361841518300549 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 |
ID | FETCH-LOGICAL-c336t-bbef26fcd747a18ae984469e552d94b4dac64d5c451b461363caa18bbc0ddfd63 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Sun Sep 28 10:55:48 EDT 2025 Wed Oct 01 03:29:51 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Fri Feb 23 02:47:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph shrinkage Atlas construction Global-local Groupwise registration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-bbef26fcd747a18ae984469e552d94b4dac64d5c451b461363caa18bbc0ddfd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2675-528X 0000-0003-1250-6319 |
PQID | 2418130495 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2418130495 crossref_citationtrail_10_1016_j_media_2020_101711 crossref_primary_10_1016_j_media_2020_101711 elsevier_sciencedirect_doi_10_1016_j_media_2020_101711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Medical image analysis |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sabuncu, Balci, Shenton, Golland (bib0024) 2009; 28 Fu, Li, Zhu, Ai, Yang (bib0011) 2018; 162 Smolentsev (bib0026) 2007; 146 Besl, Mckay (bib0005) 1992; 14 Karasawa, Oda, Kitasaka, Misawa, Fujiwara, Chu, Zheng, Rueckert, Mori (bib0021) 2017; 39 Helgason (bib0013) 2012 Leone, Sumedha, Weigt (bib0022) 2008; 66 Wu, Jia, Wang, Shen (bib0032) 2011; 56 Artaechevarria, Munoz-Barrutia, Ortiz-de-Solorzano (bib0001) 2009; 28 Schenk, Prause, Peitgen (bib0025) 2000; 1935 Chang, Tian, Lu, Gu, Chen, Jiang (bib0007) 2017; 62 Cabezas, Oliver, Llado, Freixenet, Cuadra (bib0006) 2011; 104 Tian, Chen, Wang, Peng, Wang, Duan, Wu, Zhou (bib0029) 2014; 2014 Pollack, Sharir, Rote (bib0023) 1989; 4 Ashburner, Friston (bib0002) 2009; 45 Iglesias, Sabuncu (bib0017) 2015; 24 Barratt, Chan, Edwards, Penney, Slomczykowski, Carter, Hawkes (bib0004) 2008; 12 Balci, Golland, Shenton, Wells (bib0003) 2007; 10 Devi, Sarma (bib0008) 1984; 2 Hori, Okada, Higashiura, Sato, Chen, Kim, Onishi, Eguchi, Nagano, Umeshita, Wakasa, Tomiyama (bib0016) 2015; 22 Jia, Yap, Wu, Wang, Shen (bib0019) 2011; 54 Heimann, van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes, Bello, Binnig, Bischof, Bornik, Cashman, Chi, Cordova, Dawant, Fidrich, Furst, Furukawa, Grenacher, Hornegger, Kainmuller, Kitney, Kobatake, Lamecker, Lange, Lee, Lennon, Li, Li, Meinzer, Nemeth, Raicu, Rau, van Rikxoort, Rousson, Rusko, Saddi, Schmidt, Seghers, Shimizu, Slagmolen, Sorantin, Soza, Susomboon, Waite, Wimmer, Wolf (bib0012) 2009; 28 Tang, Fan (bib0028) 2016; 14 Souvenir, Pless (bib0027) 2005; 2 Vercauteren, Pennec, Perchant, Ayache (bib0030) 2008; 11 Jia, Wu, Wang, Shen (bib0018) 2010; 51 Higham (bib0014) 2005; 51 Joshi, Davis, Jomier, Gerig (bib0020) 2004; 23 Wang, Rusu, Golden, Gow, Madabhushi (bib0031) 2013; 8669 Hoogendoorn, Duchateau, Sanchez-Quintana, Whitmarsh, Sukno, De Craene, Lekadir, Frangi (bib0015) 2013; 32 Dubes, Jain (bib0009) 1976; 8 Dunn (bib0010) 1974; 4 Ying, Wu, Wang, Shen (bib0033) 2014; 84 Joshi (10.1016/j.media.2020.101711_bib0020) 2004; 23 Balci (10.1016/j.media.2020.101711_bib0003) 2007; 10 Besl (10.1016/j.media.2020.101711_bib0005) 1992; 14 Jia (10.1016/j.media.2020.101711_bib0018) 2010; 51 Smolentsev (10.1016/j.media.2020.101711_bib0026) 2007; 146 Iglesias (10.1016/j.media.2020.101711_bib0017) 2015; 24 Helgason (10.1016/j.media.2020.101711_bib0013) 2012 Pollack (10.1016/j.media.2020.101711_bib0023) 1989; 4 Ying (10.1016/j.media.2020.101711_bib0033) 2014; 84 Cabezas (10.1016/j.media.2020.101711_bib0006) 2011; 104 Schenk (10.1016/j.media.2020.101711_bib0025) 2000; 1935 Karasawa (10.1016/j.media.2020.101711_bib0021) 2017; 39 Higham (10.1016/j.media.2020.101711_bib0014) 2005; 51 Tang (10.1016/j.media.2020.101711_bib0028) 2016; 14 Vercauteren (10.1016/j.media.2020.101711_bib0030) 2008; 11 Ashburner (10.1016/j.media.2020.101711_bib0002) 2009; 45 Barratt (10.1016/j.media.2020.101711_bib0004) 2008; 12 Souvenir (10.1016/j.media.2020.101711_bib0027) 2005; 2 Artaechevarria (10.1016/j.media.2020.101711_bib0001) 2009; 28 Tian (10.1016/j.media.2020.101711_bib0029) 2014; 2014 Hori (10.1016/j.media.2020.101711_bib0016) 2015; 22 Devi (10.1016/j.media.2020.101711_bib0008) 1984; 2 Chang (10.1016/j.media.2020.101711_bib0007) 2017; 62 Dunn (10.1016/j.media.2020.101711_bib0010) 1974; 4 Jia (10.1016/j.media.2020.101711_bib0019) 2011; 54 Leone (10.1016/j.media.2020.101711_bib0022) 2008; 66 Sabuncu (10.1016/j.media.2020.101711_bib0024) 2009; 28 Wang (10.1016/j.media.2020.101711_bib0031) 2013; 8669 Fu (10.1016/j.media.2020.101711_bib0011) 2018; 162 Wu (10.1016/j.media.2020.101711_bib0032) 2011; 56 Dubes (10.1016/j.media.2020.101711_bib0009) 1976; 8 Heimann (10.1016/j.media.2020.101711_bib0012) 2009; 28 Hoogendoorn (10.1016/j.media.2020.101711_bib0015) 2013; 32 |
References_xml | – volume: 104 start-page: 158 year: 2011 end-page: 177 ident: bib0006 article-title: A review of atlas-based segmentation for magnetic resonance brain images publication-title: Comput. Methods Progr. Biomed. – volume: 162 start-page: 47 year: 2018 end-page: 59 ident: bib0011 article-title: Sparse deformation prediction using markove decision processes (MDP) for non-rigid registration of MR image publication-title: Comput. Methods Programs Biomed. – volume: 8 start-page: 247 year: 1976 end-page: 260 ident: bib0009 article-title: Clustering techniques - users dilemma publication-title: Pattern Recognit. – volume: 45 start-page: 333 year: 2009 end-page: 341 ident: bib0002 article-title: Computing average shaped tissue probability templates publication-title: Neuroimage – volume: 11 start-page: 754 year: 2008 end-page: 761 ident: bib0030 article-title: Symmetric log-domain diffeomorphic registration: a demons-based approach publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 4 start-page: 611 year: 1989 end-page: 626 ident: bib0023 article-title: Computing the geodesic center of a simple polygon publication-title: Discret. Comput. Geom. – volume: 62 start-page: 3656 year: 2017 end-page: 3667 ident: bib0007 article-title: A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study publication-title: Phys. Med. Biol. – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: bib0001 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans. Med. Imaging – volume: 51 start-page: 1057 year: 2010 end-page: 1070 ident: bib0018 article-title: ABSORB: atlas building by self-organized registration and bundling publication-title: Neuroimage – volume: 14 start-page: 131 year: 2016 end-page: 145 ident: bib0028 article-title: Groupwise image registration guided by a dynamic digraph of images publication-title: Neuroinformatics – volume: 66 start-page: 125 year: 2008 end-page: 135 ident: bib0022 article-title: Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation publication-title: Eur. Phys. J. – volume: 28 start-page: 1473 year: 2009 end-page: 1487 ident: bib0024 article-title: Image-driven population analysis through mixture modeling publication-title: IEEE Trans. Med. Imaging – volume: 146 start-page: 6213 year: 2007 end-page: 6312 ident: bib0026 article-title: Diffeomorphism groups of compact manifolds publication-title: J. Math. Sci. – volume: 24 start-page: 205 year: 2015 end-page: 219 ident: bib0017 article-title: Multi-atlas segmentation of biomedical images: a survey publication-title: Med. Image Anal. – start-page: 641 year: 2012 ident: bib0013 article-title: Differential Geometry, Lie Groups, and Symmetric Spaces (Sigurdur Helgason) – volume: 51 start-page: 747 year: 2005 end-page: 764 ident: bib0014 article-title: The scaling and squaring method for the matrix exponential revisite publication-title: SIAM Rev. – volume: 84 start-page: 626 year: 2014 end-page: 638 ident: bib0033 article-title: Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set publication-title: Neuroimage – volume: 4 start-page: 310 year: 1974 end-page: 313 ident: bib0010 article-title: Graph theoretic analysis of pattern-classification via tamuras fuzzy relation publication-title: IEEE Trans. Syst. Man Cybern. – volume: 2 start-page: 195 year: 2005 end-page: 200 ident: bib0027 article-title: Isomap and nonparametric models of image deformation publication-title: IEEE Workshop on Motion and Video Computing – volume: 22 start-page: 303 year: 2015 end-page: 309 ident: bib0016 article-title: Quantitative imaging: quantification of liver shape on CT using the statistical shape model to evaluate hepatic fibrosis publication-title: Acad. Radiol. – volume: 39 start-page: 18 year: 2017 end-page: 28 ident: bib0021 article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure publication-title: Med. Image Anal. – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib0005 article-title: A method for registration of 3-d shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 23 year: 2007 end-page: 30 ident: bib0003 article-title: Free-form B-spline deformation model for groupwise registration publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 28 start-page: 1251 year: 2009 end-page: 1265 ident: bib0012 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imaging – volume: 2014 start-page: 1 year: 2014 end-page: 15 ident: bib0029 article-title: A vessel active contour model for vascular segmentation publication-title: Biomed. Res. Int. – volume: 2 start-page: 139 year: 1984 end-page: 145 ident: bib0008 article-title: A fuzzy multistage evolutionary (fume) clustering technique publication-title: Pattern Recognit. Lett. – volume: 12 start-page: 358 year: 2008 end-page: 374 ident: bib0004 article-title: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging publication-title: Med. Image Anal. – volume: 8669 start-page: 598 year: 2013 end-page: 608 ident: bib0031 article-title: Mouse lung volume reconstruction from efficient groupwise registration of individual histological slices with natural gradient publication-title: Proc. SPIE – volume: 1935 start-page: 186 year: 2000 end-page: 195 ident: bib0025 article-title: Efficient semiautomatic segmentation of 3D objects in medical images publication-title: Lect. Notes Comput. Sci. – volume: 56 start-page: 1968 year: 2011 end-page: 1981 ident: bib0032 article-title: SharpMean: groupwise registration guided by sharp mean image and tree-based registration publication-title: Neuroimage – volume: 32 start-page: 28 year: 2013 end-page: 44 ident: bib0015 article-title: A high-resolution atlas and statistical model of the human heart from multislice CT publication-title: IEEE Trans. Med. Imaging – volume: 54 start-page: 928 year: 2011 end-page: 939 ident: bib0019 article-title: Intermediate templates guided groupwise registration of diffusion tensor images publication-title: Neuroimage – volume: 23 start-page: 151 year: 2004 end-page: 160 ident: bib0020 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: Neuroimage – volume: 39 start-page: 18 year: 2017 ident: 10.1016/j.media.2020.101711_bib0021 article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.03.006 – volume: 45 start-page: 333 year: 2009 ident: 10.1016/j.media.2020.101711_bib0002 article-title: Computing average shaped tissue probability templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.008 – volume: 66 start-page: 125 year: 2008 ident: 10.1016/j.media.2020.101711_bib0022 article-title: Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation publication-title: Eur. Phys. J. doi: 10.1140/epjb/e2008-00381-8 – volume: 2 start-page: 195 year: 2005 ident: 10.1016/j.media.2020.101711_bib0027 article-title: Isomap and nonparametric models of image deformation – volume: 14 start-page: 239 year: 1992 ident: 10.1016/j.media.2020.101711_bib0005 article-title: A method for registration of 3-d shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.121791 – volume: 162 start-page: 47 year: 2018 ident: 10.1016/j.media.2020.101711_bib0011 article-title: Sparse deformation prediction using markove decision processes (MDP) for non-rigid registration of MR image publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.024 – volume: 1935 start-page: 186 year: 2000 ident: 10.1016/j.media.2020.101711_bib0025 article-title: Efficient semiautomatic segmentation of 3D objects in medical images publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-40899-4_19 – volume: 4 start-page: 611 year: 1989 ident: 10.1016/j.media.2020.101711_bib0023 article-title: Computing the geodesic center of a simple polygon publication-title: Discret. Comput. Geom. doi: 10.1007/BF02187751 – volume: 2 start-page: 139 year: 1984 ident: 10.1016/j.media.2020.101711_bib0008 article-title: A fuzzy multistage evolutionary (fume) clustering technique publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(84)90037-0 – volume: 51 start-page: 1057 year: 2010 ident: 10.1016/j.media.2020.101711_bib0018 article-title: ABSORB: atlas building by self-organized registration and bundling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.010 – volume: 12 start-page: 358 year: 2008 ident: 10.1016/j.media.2020.101711_bib0004 article-title: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.12.006 – volume: 8 start-page: 247 year: 1976 ident: 10.1016/j.media.2020.101711_bib0009 article-title: Clustering techniques - users dilemma publication-title: Pattern Recognit. doi: 10.1016/0031-3203(76)90045-5 – volume: 22 start-page: 303 year: 2015 ident: 10.1016/j.media.2020.101711_bib0016 article-title: Quantitative imaging: quantification of liver shape on CT using the statistical shape model to evaluate hepatic fibrosis publication-title: Acad. Radiol. doi: 10.1016/j.acra.2014.10.001 – volume: 23 start-page: 151 year: 2004 ident: 10.1016/j.media.2020.101711_bib0020 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 104 start-page: 158 year: 2011 ident: 10.1016/j.media.2020.101711_bib0006 article-title: A review of atlas-based segmentation for magnetic resonance brain images publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2011.07.015 – volume: 28 start-page: 1251 year: 2009 ident: 10.1016/j.media.2020.101711_bib0012 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2013851 – volume: 24 start-page: 205 year: 2015 ident: 10.1016/j.media.2020.101711_bib0017 article-title: Multi-atlas segmentation of biomedical images: a survey publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.06.012 – volume: 146 start-page: 6213 year: 2007 ident: 10.1016/j.media.2020.101711_bib0026 article-title: Diffeomorphism groups of compact manifolds publication-title: J. Math. Sci. doi: 10.1007/s10958-007-0471-0 – volume: 32 start-page: 28 year: 2013 ident: 10.1016/j.media.2020.101711_bib0015 article-title: A high-resolution atlas and statistical model of the human heart from multislice CT publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2230015 – volume: 28 start-page: 1473 year: 2009 ident: 10.1016/j.media.2020.101711_bib0024 article-title: Image-driven population analysis through mixture modeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2017942 – volume: 28 start-page: 1266 year: 2009 ident: 10.1016/j.media.2020.101711_bib0001 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2014372 – volume: 51 start-page: 747 year: 2005 ident: 10.1016/j.media.2020.101711_bib0014 article-title: The scaling and squaring method for the matrix exponential revisite publication-title: SIAM Rev. doi: 10.1137/090768539 – volume: 11 start-page: 754 year: 2008 ident: 10.1016/j.media.2020.101711_bib0030 article-title: Symmetric log-domain diffeomorphic registration: a demons-based approach publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 56 start-page: 1968 year: 2011 ident: 10.1016/j.media.2020.101711_bib0032 article-title: SharpMean: groupwise registration guided by sharp mean image and tree-based registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.050 – volume: 10 start-page: 23 year: 2007 ident: 10.1016/j.media.2020.101711_bib0003 article-title: Free-form B-spline deformation model for groupwise registration publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 54 start-page: 928 year: 2011 ident: 10.1016/j.media.2020.101711_bib0019 article-title: Intermediate templates guided groupwise registration of diffusion tensor images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.019 – start-page: 641 year: 2012 ident: 10.1016/j.media.2020.101711_bib0013 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.media.2020.101711_bib0029 article-title: A vessel active contour model for vascular segmentation publication-title: Biomed. Res. Int. – volume: 8669 start-page: 598 year: 2013 ident: 10.1016/j.media.2020.101711_bib0031 article-title: Mouse lung volume reconstruction from efficient groupwise registration of individual histological slices with natural gradient publication-title: Proc. SPIE – volume: 14 start-page: 131 year: 2016 ident: 10.1016/j.media.2020.101711_bib0028 article-title: Groupwise image registration guided by a dynamic digraph of images publication-title: Neuroinformatics doi: 10.1007/s12021-015-9285-2 – volume: 4 start-page: 310 year: 1974 ident: 10.1016/j.media.2020.101711_bib0010 article-title: Graph theoretic analysis of pattern-classification via tamuras fuzzy relation publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1974.5409141 – volume: 62 start-page: 3656 year: 2017 ident: 10.1016/j.media.2020.101711_bib0007 article-title: A novel geometry-dosimetry label fusion method in multi-atlas segmentation for radiotherapy: a proof-of-concept study publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5ed9 – volume: 84 start-page: 626 year: 2014 ident: 10.1016/j.media.2020.101711_bib0033 article-title: Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.023 |
SSID | ssj0007440 |
Score | 2.367627 |
Snippet | •A graph is automatically constructed to model the global distribution of the dataset on the image manifold without a priori template.•A higher computational... Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101711 |
SubjectTerms | Atlas construction Global-local Graph shrinkage Groupwise registration |
Title | Groupwise registration with global-local graph shrinkage in atlas construction |
URI | https://dx.doi.org/10.1016/j.media.2020.101711 https://www.proquest.com/docview/2418130495 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iIHoQn_gsETwa22yy2e2xilof7UUrvYU8sSpboRVv_nYn2V1foAdPyy6TsEySbybJzDcIHVgq2pnnjDBlBeE6y4gSihNPLeyHqG0ZHw70e33RHfDLYTqcQSd1LkwIq6ywv8T0iNbVl2alzebzaNS8oSwUKwGLlQfKdR6S-AL7F8zpo7fPMI9AgFfmXlESpGvmoRjjFbMzYJOYlHxDlP5mnX7gdDQ-Z8toqfIacaf8sRU044pVtPiFS3AVzfeqW_I11I8HSq-jicOh7kLNjIvDmSsuGUBItGE40lXjyT108QjAgkcFVlPwp7EZfzLLrqPB2entSZdUdROIYUxMidbOJ8IbC1sFRXPl2jkopu3SNLFtrrlVRnCbGp5SzcGcC2YUyGltWtZ6K9gGmi3GhdtEWGnf8lnoViQ89XnuMxBjAPDO2yxhWyip9SVNRSoeals8yTp67EFGJcugZFkqeQsdfjR6Ljk1_hYX9UDIb1NDAur_3XC_HjYJiybchKjCjV8mEtyWnIYLxnT7v53voIXwVsYC7qJZGBO3B_7JVDfiBGyguc7FVbcPz_Pj67vOO9aU5x0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BIhU4oBKoyqPUlXrESrz2enePKCpKgOQCkXKz_BSh1SZSgvr3O94HtEhw6HXXM1qNvd_M2ONvAL47JossCE65dpIKk2VUSy1oYA7zIeYGNsQN_clUjmbiep7Ot2DY3oWJZZUN9teYXqF186TfWLO_Wiz6d4zHZiXosfJIuS6KbeiKFDG5A93L8c1o-gzIkQOvvn7FaBRoyYeqMq_qggbmiUlNOcTYWw7qFVRX_ufqI-w3gSO5rL_tALZ82YO9v-gEe_Bh0hyUH8K02lP6vVh7ElsvtOS4JG67kpoEhFZujFSM1WT9gCp-IraQRUn0BkNqYpcv5LJHMLv6cT8c0aZ1ArWcyw01xodEBuswW9As177IMe8rfJomrhBGOG2lcKkVKTMCPbrkVuM4Y-zAueAk_wSdcln6z0C0CYOQRbUyEWnI85DhMI4Y74PLEn4MSWsvZRte8dje4pdqC8geVWVkFY2saiMfw8Wz0Kqm1Xh_uGwnQv2zOhQC__uC39ppU_jfxMMQXfrl01ph5JKzeMaYnvyv8q-wM7qf3Krb8fTmFHbjm7o08Aw6OD_-C4YrG3PeLMc_eA7oOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groupwise+registration+with+global-local+graph+shrinkage+in+atlas+construction&rft.jtitle=Medical+image+analysis&rft.au=Fu%2C+Tianyu&rft.au=Yang%2C+Jian&rft.au=Li%2C+Qin&rft.au=Ai%2C+Danni&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=64&rft_id=info:doi/10.1016%2Fj.media.2020.101711&rft.externalDocID=S1361841518300549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |