Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram

Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 39; no. 6; pp. 65003 - 65011
Main Authors Urtnasan, Erdenebayar, Park, Jong-Uk, Lee, Kyoung-Joung
Format Journal Article
LanguageEnglish
Published England IOP Publishing 20.06.2018
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
1361-6579
DOI10.1088/1361-6579/aac7b7

Cover

Abstract Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. Approach: In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. Main results: The proposed CNN model reaches a mean -score of 93.0 for the training dataset and 87.0 for the test dataset. Significance: Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH.
AbstractList Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. Approach: In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. Main results: The proposed CNN model reaches a mean -score of 93.0 for the training dataset and 87.0 for the test dataset. Significance: Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH.
In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important.OBJECTIVEIn this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important.In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations.APPROACHIn this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations.The proposed CNN model reaches a mean [Formula: see text]-score of 93.0 for the training dataset and 87.0 for the test dataset.MAIN RESULTSThe proposed CNN model reaches a mean [Formula: see text]-score of 93.0 for the training dataset and 87.0 for the test dataset.Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH.SIGNIFICANCEThus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH.
In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. The proposed CNN model reaches a mean [Formula: see text]-score of 93.0 for the training dataset and 87.0 for the test dataset. Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH.
Author Lee, Kyoung-Joung
Urtnasan, Erdenebayar
Park, Jong-Uk
Author_xml – sequence: 1
  givenname: Erdenebayar
  surname: Urtnasan
  fullname: Urtnasan, Erdenebayar
  organization: Yonsei University Department of Biomedical Engineering, College of Health Science, Wonju-si, Gangwon-do 26493, Republic of Korea
– sequence: 2
  givenname: Jong-Uk
  surname: Park
  fullname: Park, Jong-Uk
  organization: Yonsei University Department of Biomedical Engineering, College of Health Science, Wonju-si, Gangwon-do 26493, Republic of Korea
– sequence: 3
  givenname: Kyoung-Joung
  surname: Lee
  fullname: Lee, Kyoung-Joung
  email: lkj5809@yonsei.ac.kr
  organization: Yonsei University Department of Biomedical Engineering, College of Health Science, Wonju-si, Gangwon-do 26493, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29794342$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1v1TAUhi1URG8LOxPyyNBw_ZHYyYgqvqQiFpitE-e4uDhxsJ2i_gV-dZN7WwYkWHws63mO5Pc9IydTnJCQl5y94axt91wqXqlGd3sAq3v9hOz-PJ2QHeuUrqSU9Sk5y_mGMc5b0Twjp6LTXS1rsSO_Py-heBsgZ3o4vfMWio8TjY7GPpe02OJvkeaAOFOYJ4T997s5bhfaQ8aBrjBQG6fbGJZNhUAnXNJhlF8x_aAuxXFlsp-uA1YBYaAY0JYULaTBx-sE43Py1EHI-OJhnpNv7999vfxYXX358Ony7VVlpVSl6sFp1_WtZpI7jb20Cpua9U6q9b_AAVQ7gECorVOCsRaFrOuBiaatBZNWnpPXx71zij8XzMWMPlsMASaMSzaC1Y3QSul2RV89oEs_4mDm5EdId-YxvxVQR8CmmHNCZ6wvh_hKAh8MZ2YrymytmK0VcyxqFdlf4uPu_ygXR8XH2dzEJa0553_j9zTJp0g
CODEN PMEAE3
CitedBy_id crossref_primary_10_1371_journal_pone_0293610
crossref_primary_10_1016_j_cmpb_2019_05_002
crossref_primary_10_1016_j_knosys_2020_106591
crossref_primary_10_2139_ssrn_4102676
crossref_primary_10_1155_2020_6648574
crossref_primary_10_1016_j_cmpb_2021_106119
crossref_primary_10_1088_1361_6579_ac0a9c
crossref_primary_10_3389_fpubh_2021_745524
crossref_primary_10_1007_s13755_024_00320_8
crossref_primary_10_1016_j_compbiomed_2023_107628
crossref_primary_10_3390_s19224934
crossref_primary_10_1016_j_cmpb_2020_105640
crossref_primary_10_1016_j_compbiomed_2020_103801
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_3390_e25060879
crossref_primary_10_1109_ACCESS_2024_3426928
crossref_primary_10_1088_2057_1976_aafc80
crossref_primary_10_1007_s13534_023_00297_5
crossref_primary_10_1088_1361_6579_ac184e
crossref_primary_10_1016_j_sleep_2024_01_015
crossref_primary_10_1038_s41598_019_53403_y
crossref_primary_10_1007_s13311_021_01014_9
crossref_primary_10_1016_j_ijcard_2021_05_017
crossref_primary_10_1109_ACCESS_2020_3009149
crossref_primary_10_1002_widm_1478
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1007_s12553_021_00557_3
crossref_primary_10_3390_s23010328
crossref_primary_10_1016_j_artmed_2024_102808
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_3390_s21175858
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_5664_jcsm_10532
crossref_primary_10_1007_s40846_021_00646_8
crossref_primary_10_5812_ans_144058
crossref_primary_10_1088_1361_6579_aca879
crossref_primary_10_1016_j_sleep_2020_12_032
crossref_primary_10_3346_jkms_2020_35_e399
Cites_doi 10.1109/TBME.2015.2468589
10.1088/0967-3334/31/3/001
10.1016/j.compbiomed.2008.11.003
10.1378/chest.07-0800
10.1109/TITB.2012.2188299
10.1038/nature14539
10.1162/089976604773135104
10.1109/TASE.2014.2345667
10.1016/j.bspc.2013.05.007
10.1164/ajrccm.158.1.9709135
10.1109/JBHI.2016.2636665
10.1109/72.977323
10.1007/s13534-017-0055-y
10.1088/0967-3334/36/9/2009
10.1109/MSP.2012.2205597
10.5391/IJFIS.2017.17.3.187
10.1016/j.eswa.2008.11.043
10.15252/msb.20156651
10.1016/j.pcad.2008.03.002
10.1136/thx.2003.015867
10.1016/j.neucom.2015.09.116
10.1109/TITB.2012.2185809
10.1007/BF02345072
10.1210/jcem.85.3.6484
10.1109/TITB.2009.2031639
10.5391/IJFIS.2017.17.2.76
10.1093/sleep/20.9.705
10.1109/WSC.1994.717192
ContentType Journal Article
Copyright 2018 Institute of Physics and Engineering in Medicine
Copyright_xml – notice: 2018 Institute of Physics and Engineering in Medicine
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-6579/aac7b7
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
DocumentTitleAlternate Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
EISSN 1361-6579
ExternalDocumentID 29794342
10_1088_1361_6579_aac7b7
pmeaaac7b7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea
  grantid: NRF-2014H1C1A1063845
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
AEINN
CITATION
NPM
7X8
ID FETCH-LOGICAL-c336t-baf7f9b87031f7eb3c6e540bf36096a1aa68da2ea4cf62008e2344d02584203c3
IEDL.DBID IOP
ISSN 0967-3334
1361-6579
IngestDate Tue Aug 05 11:38:42 EDT 2025
Wed Feb 19 02:35:40 EST 2025
Wed Oct 01 05:08:55 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Wed Aug 21 03:41:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-baf7f9b87031f7eb3c6e540bf36096a1aa68da2ea4cf62008e2344d02584203c3
Notes Institute of Physics and Engineering in Medicine
PMEA-102424.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29794342
PQID 2045276678
PQPubID 23479
PageCount 9
ParticipantIDs crossref_citationtrail_10_1088_1361_6579_aac7b7
pubmed_primary_29794342
iop_journals_10_1088_1361_6579_aac7b7
proquest_miscellaneous_2045276678
crossref_primary_10_1088_1361_6579_aac7b7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-20
PublicationDateYYYYMMDD 2018-06-20
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAbbrev PM
PublicationTitleAlternate Physiol. Meas
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kingma D P (20) 2014
23
24
Park J U (27) 2015; 36
25
28
29
Ioffe S (15) 2015
Berry R B (6) 2012
Abadi M (1) 2016
30
11
33
12
34
13
35
14
36
37
16
Mendez M O (26) 2010; 31
Chollet F K (10) 2015
18
19
2
3
Kaguara A (17) 2015
Srivastava N (31) 2014; 15
Sutskever I (32) 2014
4
5
7
8
9
Krizhevsky A (22) 2012; 1
21
References_xml – volume: 1
  start-page: 1097
  issn: 1049-5258
  year: 2012
  ident: 22
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 21
  doi: 10.1109/TBME.2015.2468589
– volume: 31
  start-page: 273
  issn: 0967-3334
  year: 2010
  ident: 26
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/3/001
– ident: 19
  doi: 10.1016/j.compbiomed.2008.11.003
– ident: 25
  doi: 10.1378/chest.07-0800
– ident: 35
  doi: 10.1109/TITB.2012.2188299
– ident: 23
  doi: 10.1038/nature14539
– year: 2012
  ident: 6
  publication-title: AASM Manual for the Scoring of Sleep and Associated Events. Rules, Terminology and Technical Specifications
– ident: 30
  doi: 10.1162/089976604773135104
– ident: 8
  doi: 10.1109/TASE.2014.2345667
– start-page: 448
  year: 2015
  ident: 15
  publication-title: Int. Conf. on Machine Learning
– ident: 16
  doi: 10.1016/j.bspc.2013.05.007
– ident: 5
  doi: 10.1164/ajrccm.158.1.9709135
– ident: 29
  doi: 10.1109/JBHI.2016.2636665
– ident: 37
  doi: 10.1109/72.977323
– ident: 11
  doi: 10.1007/s13534-017-0055-y
– volume: 36
  start-page: 2009
  issn: 0967-3334
  year: 2015
  ident: 27
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/9/2009
– start-page: 3104
  year: 2014
  ident: 32
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 14
  doi: 10.1109/MSP.2012.2205597
– ident: 24
  doi: 10.5391/IJFIS.2017.17.3.187
– ident: 3
  doi: 10.1016/j.eswa.2008.11.043
– ident: 4
  doi: 10.15252/msb.20156651
– volume: 15
  start-page: 1929
  year: 2014
  ident: 31
  publication-title: J. Mach. Learn. Res.
– ident: 7
  doi: 10.1016/j.pcad.2008.03.002
– ident: 12
  doi: 10.1136/thx.2003.015867
– year: 2016
  ident: 1
– ident: 13
  doi: 10.1016/j.neucom.2015.09.116
– ident: 2
  doi: 10.1109/TITB.2012.2185809
– ident: 28
  doi: 10.1007/BF02345072
– ident: 34
  doi: 10.1210/jcem.85.3.6484
– year: 2014
  ident: 20
– ident: 18
  doi: 10.1109/TITB.2009.2031639
– year: 2015
  ident: 10
– ident: 33
  doi: 10.5391/IJFIS.2017.17.2.76
– ident: 36
  doi: 10.1093/sleep/20.9.705
– ident: 9
  doi: 10.1109/WSC.1994.717192
– year: 2015
  ident: 17
SSID ssj0011825
Score 2.411782
Snippet Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep...
In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65003
SubjectTerms convolutional neural network (CNN)
deep learning
obstructive sleep apnea and hypopnea (OSAH)
single-lead electrocardiogram (ECG)
Title Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
URI https://iopscience.iop.org/article/10.1088/1361-6579/aac7b7
https://www.ncbi.nlm.nih.gov/pubmed/29794342
https://www.proquest.com/docview/2045276678
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6579
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011825
  issn: 0967-3334
  databaseCode: IOP
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IRAcaFmgLLSVkeDAIbsb2-s44oRQq6pSH4dW6gEpsh1bSKySSLuLVH4Cv5oZx7sCBBXqJfFhEiceP75kvvkM8FaJYLjzPEOwXlBKjs5sXtisMMY7OXUUOyK2xbk6uZanN9ObDfiwzoVpuzT1j7DYCwX3TZgIcXqcC5UTY6McG-MKW2zCttAIjCl77-JyHUJA4Bz5iyXOBEIImWKUf7vDb2vSJtb7b7gZl53jHfi8euCebfJ1tFzYkfv-h5bjPd9oF54kOMo-9qZPYcM3A3j8i0jhAB6epfD7AB5EvqibP4MfMXHXEfRm8UiMo-hk1gbW2iRL-82z-cz7jpmu8Wb85bZrqcBo7awZGhtGtPfU_fFBSF4zniI5nVHyC9rQ_4yZz2bYH1nat8dFHi1Ry57D9fHR1aeTLG3rkDkh1CKzJhShtJqU80OBH_NOecSNNgiFzjK5MUrXhnsjXVBEz_BcSFkjONOST4QTL2CraRv_EtjETaXLlS1rm0v6svOh1DWiIlMGmws_hPHKsZVLmue09casirF3rStq-oqavuqbfgjv11d0vd7HHbbv0KNVGvTzO-zerHpThYOXIjKm8e1yXtFeALxQCBiGsNd3s3WtvIzaffzVf9byGh4hmNNEY-OTfdhCP_sDBEwLexgHxk-h5w_1
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqr2wGOhZXkaCQ4cstnEXsc5ImBVXqUHKvVmbMcWUldJpN0ilZ_Ar2bG8a4AQYXEJclhEiceO_6S-eYbgKeSB1M6X2YI1itKyVGZLSqbVcZ4J2aOYkfEtjiShyfi7ensNNU5jbkwXZ9e_RM8HISChy5MhDiVF1wWxNioc2NcZau8b8IWXI06JZTB9_F4E0ZA8Bw5jDW-DTjnIsUp_3SVX9alLWz775AzLj3zG_B5fdMD4-Rscr6yE_ftNz3H_3iqm3A9wVL2YjC_BVd8O4K9n8QKR7DzIYXhR3At8kbd8jZ8jwm8jiA4i1tiHkVnsy6wziZ52q-eLRfe98z0rTf5l4u-owNGa2jD0Ngwor-naYA3QjKbcRdJ6oySYNCG_mssfLbAcclS_R4X-bREMbsDJ_PXn14eZqm8Q-Y4l6vMmlCF2ipS0A8VftQ76RE_2sAlOswUxkjVmNIb4YIkmoYvuRANgjQlyil3fB-22671d4FN3Uy4Qtq6sYWgLzwfatUgOjJ1sAX3Y8jXztUuaZ9TCY6FjjF4pTR1v6bu10P3j-H55ox-0P24xPYZelWnyb-8xO7JekRpnMQUmTGt786XmmoClJVE4DCGg2GobVot66jhV977x1Yew87xq7l-_-bo3X3YRXyniNlWTh_ANrrcP0QMtbKP4jz5ASmyFVY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+classification+of+obstructive+sleep+apnea%2Fhypopnea+based+on+a+convolutional+neural+network+from+a+single-lead+electrocardiogram&rft.jtitle=Physiological+measurement&rft.au=Urtnasan%2C+Erdenebayar&rft.au=Park%2C+Jong-Uk&rft.au=Lee%2C+Kyoung-Joung&rft.date=2018-06-20&rft.issn=1361-6579&rft.eissn=1361-6579&rft.volume=39&rft.issue=6&rft.spage=065003&rft_id=info:doi/10.1088%2F1361-6579%2Faac7b7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon