Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram
Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many...
Saved in:
| Published in | Physiological measurement Vol. 39; no. 6; pp. 65003 - 65011 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
20.06.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0967-3334 1361-6579 1361-6579 |
| DOI | 10.1088/1361-6579/aac7b7 |
Cover
| Abstract | Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. Approach: In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. Main results: The proposed CNN model reaches a mean -score of 93.0 for the training dataset and 87.0 for the test dataset. Significance: Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH. |
|---|---|
| AbstractList | Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. Approach: In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. Main results: The proposed CNN model reaches a mean -score of 93.0 for the training dataset and 87.0 for the test dataset. Significance: Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH. In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important.OBJECTIVEIn this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important.In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations.APPROACHIn this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations.The proposed CNN model reaches a mean [Formula: see text]-score of 93.0 for the training dataset and 87.0 for the test dataset.MAIN RESULTSThe proposed CNN model reaches a mean [Formula: see text]-score of 93.0 for the training dataset and 87.0 for the test dataset.Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH.SIGNIFICANCEThus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH. In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45 096 events) and evaluated on a test dataset (11 274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. The proposed CNN model reaches a mean [Formula: see text]-score of 93.0 for the training dataset and 87.0 for the test dataset. Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH. |
| Author | Lee, Kyoung-Joung Urtnasan, Erdenebayar Park, Jong-Uk |
| Author_xml | – sequence: 1 givenname: Erdenebayar surname: Urtnasan fullname: Urtnasan, Erdenebayar organization: Yonsei University Department of Biomedical Engineering, College of Health Science, Wonju-si, Gangwon-do 26493, Republic of Korea – sequence: 2 givenname: Jong-Uk surname: Park fullname: Park, Jong-Uk organization: Yonsei University Department of Biomedical Engineering, College of Health Science, Wonju-si, Gangwon-do 26493, Republic of Korea – sequence: 3 givenname: Kyoung-Joung surname: Lee fullname: Lee, Kyoung-Joung email: lkj5809@yonsei.ac.kr organization: Yonsei University Department of Biomedical Engineering, College of Health Science, Wonju-si, Gangwon-do 26493, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29794342$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1v1TAUhi1URG8LOxPyyNBw_ZHYyYgqvqQiFpitE-e4uDhxsJ2i_gV-dZN7WwYkWHws63mO5Pc9IydTnJCQl5y94axt91wqXqlGd3sAq3v9hOz-PJ2QHeuUrqSU9Sk5y_mGMc5b0Twjp6LTXS1rsSO_Py-heBsgZ3o4vfMWio8TjY7GPpe02OJvkeaAOFOYJ4T997s5bhfaQ8aBrjBQG6fbGJZNhUAnXNJhlF8x_aAuxXFlsp-uA1YBYaAY0JYULaTBx-sE43Py1EHI-OJhnpNv7999vfxYXX358Ony7VVlpVSl6sFp1_WtZpI7jb20Cpua9U6q9b_AAVQ7gECorVOCsRaFrOuBiaatBZNWnpPXx71zij8XzMWMPlsMASaMSzaC1Y3QSul2RV89oEs_4mDm5EdId-YxvxVQR8CmmHNCZ6wvh_hKAh8MZ2YrymytmK0VcyxqFdlf4uPu_ygXR8XH2dzEJa0553_j9zTJp0g |
| CODEN | PMEAE3 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0293610 crossref_primary_10_1016_j_cmpb_2019_05_002 crossref_primary_10_1016_j_knosys_2020_106591 crossref_primary_10_2139_ssrn_4102676 crossref_primary_10_1155_2020_6648574 crossref_primary_10_1016_j_cmpb_2021_106119 crossref_primary_10_1088_1361_6579_ac0a9c crossref_primary_10_3389_fpubh_2021_745524 crossref_primary_10_1007_s13755_024_00320_8 crossref_primary_10_1016_j_compbiomed_2023_107628 crossref_primary_10_3390_s19224934 crossref_primary_10_1016_j_cmpb_2020_105640 crossref_primary_10_1016_j_compbiomed_2020_103801 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_3390_e25060879 crossref_primary_10_1109_ACCESS_2024_3426928 crossref_primary_10_1088_2057_1976_aafc80 crossref_primary_10_1007_s13534_023_00297_5 crossref_primary_10_1088_1361_6579_ac184e crossref_primary_10_1016_j_sleep_2024_01_015 crossref_primary_10_1038_s41598_019_53403_y crossref_primary_10_1007_s13311_021_01014_9 crossref_primary_10_1016_j_ijcard_2021_05_017 crossref_primary_10_1109_ACCESS_2020_3009149 crossref_primary_10_1002_widm_1478 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1007_s12553_021_00557_3 crossref_primary_10_3390_s23010328 crossref_primary_10_1016_j_artmed_2024_102808 crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_3390_s21175858 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_5664_jcsm_10532 crossref_primary_10_1007_s40846_021_00646_8 crossref_primary_10_5812_ans_144058 crossref_primary_10_1088_1361_6579_aca879 crossref_primary_10_1016_j_sleep_2020_12_032 crossref_primary_10_3346_jkms_2020_35_e399 |
| Cites_doi | 10.1109/TBME.2015.2468589 10.1088/0967-3334/31/3/001 10.1016/j.compbiomed.2008.11.003 10.1378/chest.07-0800 10.1109/TITB.2012.2188299 10.1038/nature14539 10.1162/089976604773135104 10.1109/TASE.2014.2345667 10.1016/j.bspc.2013.05.007 10.1164/ajrccm.158.1.9709135 10.1109/JBHI.2016.2636665 10.1109/72.977323 10.1007/s13534-017-0055-y 10.1088/0967-3334/36/9/2009 10.1109/MSP.2012.2205597 10.5391/IJFIS.2017.17.3.187 10.1016/j.eswa.2008.11.043 10.15252/msb.20156651 10.1016/j.pcad.2008.03.002 10.1136/thx.2003.015867 10.1016/j.neucom.2015.09.116 10.1109/TITB.2012.2185809 10.1007/BF02345072 10.1210/jcem.85.3.6484 10.1109/TITB.2009.2031639 10.5391/IJFIS.2017.17.2.76 10.1093/sleep/20.9.705 10.1109/WSC.1994.717192 |
| ContentType | Journal Article |
| Copyright | 2018 Institute of Physics and Engineering in Medicine |
| Copyright_xml | – notice: 2018 Institute of Physics and Engineering in Medicine |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1088/1361-6579/aac7b7 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| DocumentTitleAlternate | Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram |
| EISSN | 1361-6579 |
| ExternalDocumentID | 29794342 10_1088_1361_6579_aac7b7 pmeaaac7b7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: The Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea grantid: NRF-2014H1C1A1063845 |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 UCJ W28 XPP ZMT AAYXX ADEQX AEINN CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c336t-baf7f9b87031f7eb3c6e540bf36096a1aa68da2ea4cf62008e2344d02584203c3 |
| IEDL.DBID | IOP |
| ISSN | 0967-3334 1361-6579 |
| IngestDate | Tue Aug 05 11:38:42 EDT 2025 Wed Feb 19 02:35:40 EST 2025 Wed Oct 01 05:08:55 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Wed Aug 21 03:41:28 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-baf7f9b87031f7eb3c6e540bf36096a1aa68da2ea4cf62008e2344d02584203c3 |
| Notes | Institute of Physics and Engineering in Medicine PMEA-102424.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29794342 |
| PQID | 2045276678 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1088_1361_6579_aac7b7 pubmed_primary_29794342 iop_journals_10_1088_1361_6579_aac7b7 proquest_miscellaneous_2045276678 crossref_primary_10_1088_1361_6579_aac7b7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-20 |
| PublicationDateYYYYMMDD | 2018-06-20 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physiological measurement |
| PublicationTitleAbbrev | PM |
| PublicationTitleAlternate | Physiol. Meas |
| PublicationYear | 2018 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Kingma D P (20) 2014 23 24 Park J U (27) 2015; 36 25 28 29 Ioffe S (15) 2015 Berry R B (6) 2012 Abadi M (1) 2016 30 11 33 12 34 13 35 14 36 37 16 Mendez M O (26) 2010; 31 Chollet F K (10) 2015 18 19 2 3 Kaguara A (17) 2015 Srivastava N (31) 2014; 15 Sutskever I (32) 2014 4 5 7 8 9 Krizhevsky A (22) 2012; 1 21 |
| References_xml | – volume: 1 start-page: 1097 issn: 1049-5258 year: 2012 ident: 22 publication-title: Adv. Neural Inf. Process. Syst. – ident: 21 doi: 10.1109/TBME.2015.2468589 – volume: 31 start-page: 273 issn: 0967-3334 year: 2010 ident: 26 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/3/001 – ident: 19 doi: 10.1016/j.compbiomed.2008.11.003 – ident: 25 doi: 10.1378/chest.07-0800 – ident: 35 doi: 10.1109/TITB.2012.2188299 – ident: 23 doi: 10.1038/nature14539 – year: 2012 ident: 6 publication-title: AASM Manual for the Scoring of Sleep and Associated Events. Rules, Terminology and Technical Specifications – ident: 30 doi: 10.1162/089976604773135104 – ident: 8 doi: 10.1109/TASE.2014.2345667 – start-page: 448 year: 2015 ident: 15 publication-title: Int. Conf. on Machine Learning – ident: 16 doi: 10.1016/j.bspc.2013.05.007 – ident: 5 doi: 10.1164/ajrccm.158.1.9709135 – ident: 29 doi: 10.1109/JBHI.2016.2636665 – ident: 37 doi: 10.1109/72.977323 – ident: 11 doi: 10.1007/s13534-017-0055-y – volume: 36 start-page: 2009 issn: 0967-3334 year: 2015 ident: 27 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/9/2009 – start-page: 3104 year: 2014 ident: 32 publication-title: Adv. Neural Inf. Process. Syst. – ident: 14 doi: 10.1109/MSP.2012.2205597 – ident: 24 doi: 10.5391/IJFIS.2017.17.3.187 – ident: 3 doi: 10.1016/j.eswa.2008.11.043 – ident: 4 doi: 10.15252/msb.20156651 – volume: 15 start-page: 1929 year: 2014 ident: 31 publication-title: J. Mach. Learn. Res. – ident: 7 doi: 10.1016/j.pcad.2008.03.002 – ident: 12 doi: 10.1136/thx.2003.015867 – year: 2016 ident: 1 – ident: 13 doi: 10.1016/j.neucom.2015.09.116 – ident: 2 doi: 10.1109/TITB.2012.2185809 – ident: 28 doi: 10.1007/BF02345072 – ident: 34 doi: 10.1210/jcem.85.3.6484 – year: 2014 ident: 20 – ident: 18 doi: 10.1109/TITB.2009.2031639 – year: 2015 ident: 10 – ident: 33 doi: 10.5391/IJFIS.2017.17.2.76 – ident: 36 doi: 10.1093/sleep/20.9.705 – ident: 9 doi: 10.1109/WSC.1994.717192 – year: 2015 ident: 17 |
| SSID | ssj0011825 |
| Score | 2.411782 |
| Snippet | Objective: In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep... In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and... |
| SourceID | proquest pubmed crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 65003 |
| SubjectTerms | convolutional neural network (CNN) deep learning obstructive sleep apnea and hypopnea (OSAH) single-lead electrocardiogram (ECG) |
| Title | Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram |
| URI | https://iopscience.iop.org/article/10.1088/1361-6579/aac7b7 https://www.ncbi.nlm.nih.gov/pubmed/29794342 https://www.proquest.com/docview/2045276678 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6579 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011825 issn: 0967-3334 databaseCode: IOP dateStart: 19930101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IRAcaFmgLLSVkeDAIbsb2-s44oRQq6pSH4dW6gEpsh1bSKySSLuLVH4Cv5oZx7sCBBXqJfFhEiceP75kvvkM8FaJYLjzPEOwXlBKjs5sXtisMMY7OXUUOyK2xbk6uZanN9ObDfiwzoVpuzT1j7DYCwX3TZgIcXqcC5UTY6McG-MKW2zCttAIjCl77-JyHUJA4Bz5iyXOBEIImWKUf7vDb2vSJtb7b7gZl53jHfi8euCebfJ1tFzYkfv-h5bjPd9oF54kOMo-9qZPYcM3A3j8i0jhAB6epfD7AB5EvqibP4MfMXHXEfRm8UiMo-hk1gbW2iRL-82z-cz7jpmu8Wb85bZrqcBo7awZGhtGtPfU_fFBSF4zniI5nVHyC9rQ_4yZz2bYH1nat8dFHi1Ry57D9fHR1aeTLG3rkDkh1CKzJhShtJqU80OBH_NOecSNNgiFzjK5MUrXhnsjXVBEz_BcSFkjONOST4QTL2CraRv_EtjETaXLlS1rm0v6svOh1DWiIlMGmws_hPHKsZVLmue09casirF3rStq-oqavuqbfgjv11d0vd7HHbbv0KNVGvTzO-zerHpThYOXIjKm8e1yXtFeALxQCBiGsNd3s3WtvIzaffzVf9byGh4hmNNEY-OTfdhCP_sDBEwLexgHxk-h5w_1 |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqr2wGOhZXkaCQ4cstnEXsc5ImBVXqUHKvVmbMcWUldJpN0ilZ_Ar2bG8a4AQYXEJclhEiceO_6S-eYbgKeSB1M6X2YI1itKyVGZLSqbVcZ4J2aOYkfEtjiShyfi7ensNNU5jbkwXZ9e_RM8HISChy5MhDiVF1wWxNioc2NcZau8b8IWXI06JZTB9_F4E0ZA8Bw5jDW-DTjnIsUp_3SVX9alLWz775AzLj3zG_B5fdMD4-Rscr6yE_ftNz3H_3iqm3A9wVL2YjC_BVd8O4K9n8QKR7DzIYXhR3At8kbd8jZ8jwm8jiA4i1tiHkVnsy6wziZ52q-eLRfe98z0rTf5l4u-owNGa2jD0Ngwor-naYA3QjKbcRdJ6oySYNCG_mssfLbAcclS_R4X-bREMbsDJ_PXn14eZqm8Q-Y4l6vMmlCF2ipS0A8VftQ76RE_2sAlOswUxkjVmNIb4YIkmoYvuRANgjQlyil3fB-22671d4FN3Uy4Qtq6sYWgLzwfatUgOjJ1sAX3Y8jXztUuaZ9TCY6FjjF4pTR1v6bu10P3j-H55ox-0P24xPYZelWnyb-8xO7JekRpnMQUmTGt786XmmoClJVE4DCGg2GobVot66jhV977x1Yew87xq7l-_-bo3X3YRXyniNlWTh_ANrrcP0QMtbKP4jz5ASmyFVY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+classification+of+obstructive+sleep+apnea%2Fhypopnea+based+on+a+convolutional+neural+network+from+a+single-lead+electrocardiogram&rft.jtitle=Physiological+measurement&rft.au=Urtnasan%2C+Erdenebayar&rft.au=Park%2C+Jong-Uk&rft.au=Lee%2C+Kyoung-Joung&rft.date=2018-06-20&rft.issn=1361-6579&rft.eissn=1361-6579&rft.volume=39&rft.issue=6&rft.spage=065003&rft_id=info:doi/10.1088%2F1361-6579%2Faac7b7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon |