Breakup of Directed Multipartite Networks

A complex network in reality often consists of profuse components, which might suffer from unpredictable perturbations. Because the components of a network could be interdependent, therefore the failures of a few components may trigger catastrophes to the entire network. It is thus pivotal to exploi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 7; no. 3; pp. 947 - 960
Main Authors Cai, Qing, Pratama, Mahardhika, Alam, Sameer, Ma, Chunyao, Liu, Jiming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4697
2334-329X
2334-329X
DOI10.1109/TNSE.2019.2894142

Cover

More Information
Summary:A complex network in reality often consists of profuse components, which might suffer from unpredictable perturbations. Because the components of a network could be interdependent, therefore the failures of a few components may trigger catastrophes to the entire network. It is thus pivotal to exploit the robustness of complex networks. Existing studies on network robustness mainly deal with interdependent or multilayer networks; little work is done to investigate the robustness of multipartite networks, which are an indispensable part of complex networks. Here, we plumb the robustness of directed multipartite networks. To be specific, we exploit the robustness of bi-directed and unidirectional multipartite networks in face of random node failures. We, respectively, establish cascading and non-cascading models based on the largest connected component concept for depicting the dynamical processes on bi-directed and unidirectional multipartite networks subject to perturbations. Based on our developed models, we, respectively, derive the corresponding percolation theories for mathematically computing the robustness of directed multipartite networks subject to random node failures. We unravel the first-order and second-order phase transition phenomena on the robustness of directed multipartite networks. The correctness of our developed theories has been verified through experiments on computer-generated as well as real-world multipartite networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4697
2334-329X
2334-329X
DOI:10.1109/TNSE.2019.2894142