Breakup of Directed Multipartite Networks
A complex network in reality often consists of profuse components, which might suffer from unpredictable perturbations. Because the components of a network could be interdependent, therefore the failures of a few components may trigger catastrophes to the entire network. It is thus pivotal to exploi...
        Saved in:
      
    
          | Published in | IEEE transactions on network science and engineering Vol. 7; no. 3; pp. 947 - 960 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.07.2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2327-4697 2334-329X 2334-329X  | 
| DOI | 10.1109/TNSE.2019.2894142 | 
Cover
| Abstract | A complex network in reality often consists of profuse components, which might suffer from unpredictable perturbations. Because the components of a network could be interdependent, therefore the failures of a few components may trigger catastrophes to the entire network. It is thus pivotal to exploit the robustness of complex networks. Existing studies on network robustness mainly deal with interdependent or multilayer networks; little work is done to investigate the robustness of multipartite networks, which are an indispensable part of complex networks. Here, we plumb the robustness of directed multipartite networks. To be specific, we exploit the robustness of bi-directed and unidirectional multipartite networks in face of random node failures. We, respectively, establish cascading and non-cascading models based on the largest connected component concept for depicting the dynamical processes on bi-directed and unidirectional multipartite networks subject to perturbations. Based on our developed models, we, respectively, derive the corresponding percolation theories for mathematically computing the robustness of directed multipartite networks subject to random node failures. We unravel the first-order and second-order phase transition phenomena on the robustness of directed multipartite networks. The correctness of our developed theories has been verified through experiments on computer-generated as well as real-world multipartite networks. | 
    
|---|---|
| AbstractList | A complex network in reality often consists of profuse components, which might suffer from unpredictable perturbations. Because the components of a network could be interdependent, therefore the failures of a few components may trigger catastrophes to the entire network. It is thus pivotal to exploit the robustness of complex networks. Existing studies on network robustness mainly deal with interdependent or multilayer networks; little work is done to investigate the robustness of multipartite networks, which are an indispensable part of complex networks. Here, we plumb the robustness of directed multipartite networks. To be specific, we exploit the robustness of bi-directed and unidirectional multipartite networks in face of random node failures. We, respectively, establish cascading and non-cascading models based on the largest connected component concept for depicting the dynamical processes on bi-directed and unidirectional multipartite networks subject to perturbations. Based on our developed models, we, respectively, derive the corresponding percolation theories for mathematically computing the robustness of directed multipartite networks subject to random node failures. We unravel the first-order and second-order phase transition phenomena on the robustness of directed multipartite networks. The correctness of our developed theories has been verified through experiments on computer-generated as well as real-world multipartite networks. | 
    
| Author | Alam, Sameer Ma, Chunyao Pratama, Mahardhika Cai, Qing Liu, Jiming  | 
    
| Author_xml | – sequence: 1 givenname: Qing orcidid: 0000-0002-4954-3124 surname: Cai fullname: Cai, Qing email: 506183509@qq.com organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Mahardhika surname: Pratama fullname: Pratama, Mahardhika email: mpratama@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Sameer orcidid: 0000-0002-7379-8223 surname: Alam fullname: Alam, Sameer email: sameeralam@ntu.edu.sg organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Chunyao surname: Ma fullname: Ma, Chunyao email: 931880342@qq.com organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore – sequence: 5 givenname: Jiming orcidid: 0000-0002-8669-9064 surname: Liu fullname: Liu, Jiming email: jiming@comp.hkbu.edu.hk organization: Department of Computer Science, Hong Kong Baptist University, Hong Kong  | 
    
| BookMark | eNptkD9PwzAUxC1UJErpB0AskZgYUmw_x45HKOWPVMpAkdgsx3WktCEJtqOq355GqTpUTO8N9zvd3SUaVHVlEbomeEIIlvfLxedsQjGRE5pKRhg9Q0MKwGKg8nvQ_VTEjEtxgcberzHGhKYcAIbo7tFZvWmbqM6jp8JZE-wqem_LUDTahSLYaGHDtnYbf4XOc116Oz7cEfp6ni2nr_H84-Vt-jCPDQAPcSaNgcSAMEIwnOkES55hKQVJrARjE0nS3OBVKhMsuF4RKYAyDTYTGaO5hhGivW9bNXq31WWpGlf8aLdTBKuurwqVt6rrqw5999BtDzWu_m2tD2pdt67a51SUgRQ4oYLvVaJXGVd772yuTBF0KOoqOF2UR_9uz1N_ckKeZvqPuemZwlp71KecYuAE_gDq_39Z | 
    
| CODEN | ITNSD5 | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3016050 crossref_primary_10_1109_TNSE_2021_3132703 crossref_primary_10_1109_TNSE_2021_3093311 crossref_primary_10_1063_5_0096983 crossref_primary_10_1109_ACCESS_2022_3152163 crossref_primary_10_1002_int_22927  | 
    
| Cites_doi | 10.1038/ncomms6415 10.1093/comnet/cnu016 10.1017/CBO9780511780356 10.1111/j.1461-0248.2010.01485.x 10.1103/PhysRevLett.110.148701 10.1038/nature16948 10.1109/TNSE.2015.2393291 10.1103/PhysRevLett.85.5468 10.1109/TNSE.2016.2600029 10.1016/j.physa.2009.12.068 10.1038/srep35904 10.1111/oik.01532 10.1371/journal.pone.0010012 10.1017/S0963548306007978 10.1073/pnas.1621369114 10.1073/pnas.1523412113 10.1038/s41559-017-0101 10.1007/978-3-540-74208-1_24 10.1038/464984a 10.1093/acprof:oso/9780199206650.001.0001 10.1109/TNSE.2014.2373358 10.1073/pnas.1009440108 10.1073/pnas.0900943106 10.1073/pnas.1603992113 10.1038/nature08932 10.1016/j.physa.2014.12.019 10.1038/nphys2180 10.1073/pnas.0803571105 10.1103/PhysRevE.88.022810 10.1103/PhysRevE.85.066130 10.1126/science.aan3184 10.1111/ele.12117 10.1109/TNSE.2015.2425961 10.1038/srep08439 10.1038/srep41600 10.1504/IJBIC.2016.076329 10.1038/srep01969 10.1038/nphys3097 10.1103/PhysRevE.93.062302 10.1209/0295-5075/89/38002 10.1016/j.chaos.2016.02.002 10.1109/TNSE.2017.2738843 10.1109/TCYB.2016.2520477 10.1103/PhysRevE.97.032306 10.1111/1365-2435.12356 10.1515/9781400841356 10.1038/s41567-018-0065-4 10.1126/science.1214915 10.1103/PhysRevE.87.052804 10.1038/srep30521 10.1038/ncomms7868 10.1109/TNSE.2016.2600059 10.1038/nature10011 10.1371/journal.pone.0110121 10.1073/pnas.1715832114 10.1103/PhysRevE.89.062814 10.1038/ncomms10196 10.1088/1367-2630/14/2/023012 10.1109/TCNS.2017.2724842 10.1209/0295-5075/111/38005 10.1109/TNSE.2015.2438818 10.1038/nphys2727 10.1126/science.aah3449 10.1109/TNSE.2016.2610838 10.1109/TNSE.2017.2742522 10.1093/bioinformatics/btw154 10.1038/nphys3865 10.1103/PhysRevE.71.027103 10.1126/science.286.5439.509 10.1088/1367-2630/17/8/083052 10.1137/16M1087175 10.1103/PhysRevE.83.036116 10.1017/CBO9780511791383 10.1038/ncomms7864 10.1007/978-1-4419-8462-3 10.1016/j.physrep.2014.07.001  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1109/TNSE.2019.2894142 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2334-329X | 
    
| EndPage | 960 | 
    
| ExternalDocumentID | oai:dr.ntu.edu.sg:10356/144369 10_1109_TNSE_2019_2894142 8620361  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c336t-b9cc35c37c7740ba5096b099715e93ce5918fc0d895076ad197324a3eb7b42fa3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2327-4697 2334-329X  | 
    
| IngestDate | Sun Oct 26 03:41:19 EDT 2025 Mon Jun 30 09:28:31 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Oct 01 03:54:44 EDT 2025 Wed Aug 27 02:32:11 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c336t-b9cc35c37c7740ba5096b099715e93ce5918fc0d895076ad197324a3eb7b42fa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4954-3124 0000-0002-8669-9064 0000-0002-7379-8223  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://dr.ntu.edu.sg/bitstream/10356/144369/2/Cai-w1-TNSE-v1-1009.pdf | 
    
| PQID | 2439705276 | 
    
| PQPubID | 2040409 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2019_2894142 unpaywall_primary_10_1109_tnse_2019_2894142 proquest_journals_2439705276 ieee_primary_8620361 crossref_primary_10_1109_TNSE_2019_2894142  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-07-01 | 
    
| PublicationDateYYYYMMDD | 2020-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on network science and engineering | 
    
| PublicationTitleAbbrev | TNSE | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 pelt (ref59) 2017; 115 ref19 ref18 ref51 ref50 ref46 ref45 broido (ref69) 2018 ref48 ref47 ref42 ref41 ref44 buldyrev (ref22) 2010; 464 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref79 ref35 ref78 ref34 ellens (ref66) 2013 ref37 ref36 ref75 ref31 huang (ref63) 2013; 3 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 barabási (ref68) 1999; 286 ref24 ref67 ref23 ref26 ref25 ref64 ref20 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref8 doi: 10.1038/ncomms6415 – ident: ref65 doi: 10.1093/comnet/cnu016 – ident: ref21 doi: 10.1017/CBO9780511780356 – ident: ref25 doi: 10.1111/j.1461-0248.2010.01485.x – ident: ref58 doi: 10.1103/PhysRevLett.110.148701 – ident: ref14 doi: 10.1038/nature16948 – ident: ref5 doi: 10.1109/TNSE.2015.2393291 – volume: 3 year: 2013 ident: ref63 article-title: Cascading failures in bi-partite graphs: Model for systemic risk propagation publication-title: Sci Rep – ident: ref18 doi: 10.1103/PhysRevLett.85.5468 – ident: ref6 doi: 10.1109/TNSE.2016.2600029 – ident: ref62 doi: 10.1016/j.physa.2009.12.068 – ident: ref30 doi: 10.1038/srep35904 – ident: ref29 doi: 10.1111/oik.01532 – ident: ref74 doi: 10.1371/journal.pone.0010012 – ident: ref73 doi: 10.1017/S0963548306007978 – ident: ref42 doi: 10.1073/pnas.1621369114 – ident: ref39 doi: 10.1073/pnas.1523412113 – ident: ref50 doi: 10.1038/s41559-017-0101 – year: 2018 ident: ref69 article-title: Scale-free networks are rare publication-title: arXiv 1801 03400 – ident: ref72 doi: 10.1007/978-3-540-74208-1_24 – ident: ref40 doi: 10.1038/464984a – ident: ref1 doi: 10.1093/acprof:oso/9780199206650.001.0001 – ident: ref13 doi: 10.1109/TNSE.2014.2373358 – ident: ref23 doi: 10.1073/pnas.1009440108 – ident: ref57 doi: 10.1073/pnas.0900943106 – ident: ref4 doi: 10.1073/pnas.1603992113 – volume: 464 start-page: 1025 year: 2010 ident: ref22 article-title: Catastrophic cascade of failures in interdependent networks publication-title: Nature doi: 10.1038/nature08932 – ident: ref64 doi: 10.1016/j.physa.2014.12.019 – ident: ref37 doi: 10.1038/nphys2180 – ident: ref61 doi: 10.1073/pnas.0803571105 – ident: ref67 doi: 10.1103/PhysRevE.88.022810 – ident: ref26 doi: 10.1103/PhysRevE.85.066130 – ident: ref56 doi: 10.1126/science.aan3184 – ident: ref28 doi: 10.1111/ele.12117 – ident: ref55 doi: 10.1109/TNSE.2015.2425961 – ident: ref34 doi: 10.1038/srep08439 – ident: ref36 doi: 10.1038/srep41600 – ident: ref79 doi: 10.1504/IJBIC.2016.076329 – ident: ref46 doi: 10.1038/srep01969 – ident: ref48 doi: 10.1038/nphys3097 – ident: ref31 doi: 10.1103/PhysRevE.93.062302 – ident: ref45 doi: 10.1209/0295-5075/89/38002 – ident: ref44 doi: 10.1016/j.chaos.2016.02.002 – ident: ref16 doi: 10.1109/TNSE.2017.2738843 – ident: ref35 doi: 10.1109/TCYB.2016.2520477 – ident: ref32 doi: 10.1103/PhysRevE.97.032306 – ident: ref27 doi: 10.1111/1365-2435.12356 – ident: ref2 doi: 10.1515/9781400841356 – ident: ref53 doi: 10.1038/s41567-018-0065-4 – ident: ref17 doi: 10.1126/science.1214915 – ident: ref33 doi: 10.1103/PhysRevE.87.052804 – ident: ref43 doi: 10.1038/srep30521 – ident: ref51 doi: 10.1038/ncomms7868 – ident: ref10 doi: 10.1109/TNSE.2016.2600059 – ident: ref7 doi: 10.1038/nature10011 – ident: ref76 doi: 10.1371/journal.pone.0110121 – volume: 115 start-page: 254 year: 2017 ident: ref59 article-title: A mixed-scale dense convolutional neural network for image analysis publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1715832114 – ident: ref54 doi: 10.1103/PhysRevE.89.062814 – ident: ref19 doi: 10.1038/ncomms10196 – ident: ref75 doi: 10.1088/1367-2630/14/2/023012 – ident: ref60 doi: 10.1109/TCNS.2017.2724842 – ident: ref47 doi: 10.1209/0295-5075/111/38005 – ident: ref15 doi: 10.1109/TNSE.2015.2438818 – ident: ref41 doi: 10.1038/nphys2727 – ident: ref11 doi: 10.1126/science.aah3449 – ident: ref9 doi: 10.1109/TNSE.2016.2610838 – ident: ref20 doi: 10.1109/TNSE.2017.2742522 – ident: ref3 doi: 10.1093/bioinformatics/btw154 – ident: ref38 doi: 10.1038/nphys3865 – ident: ref71 doi: 10.1103/PhysRevE.71.027103 – volume: 286 start-page: 509 year: 1999 ident: ref68 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – ident: ref77 doi: 10.1088/1367-2630/17/8/083052 – ident: ref78 doi: 10.1137/16M1087175 – year: 2013 ident: ref66 article-title: Graph measures and network robustness publication-title: arXiv 1311 5064 – ident: ref24 doi: 10.1103/PhysRevE.83.036116 – ident: ref70 doi: 10.1017/CBO9780511791383 – ident: ref52 doi: 10.1038/ncomms7864 – ident: ref12 doi: 10.1007/978-1-4419-8462-3 – ident: ref49 doi: 10.1016/j.physrep.2014.07.001  | 
    
| SSID | ssj0001286333 | 
    
| Score | 2.185207 | 
    
| Snippet | A complex network in reality often consists of profuse components, which might suffer from unpredictable perturbations. Because the components of a network... | 
    
| SourceID | unpaywall proquest crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 947 | 
    
| SubjectTerms | Analytical models Complex networks Computational modeling directed multipartite networks Failure Mathematical model Multilayers network robustness Networks Nonhomogeneous media Percolation Perturbation methods Phase transitions Robustness Robustness (mathematics)  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7augPjwAZjojCmHLgAcuLYjl0fx7RqQqJCYpXKKbIdZ5rWZdGaMsFfj1-SViuTkBB3_5D9nu3vJe_7HsA7b01ZSOEJk9YQ4ZQlI2s0CQ7teAgPVNHSx75M5PlUfJ5lsy0Yr7gwxV0c7tr2Q8XiMrFXDVImzE043DyTSUD_XOqEJafmityn5GLy7Yz8wJwsquO6KLdhR2YBkw9gZzr5evK9rSzHFBFdlRXGuSCc6Vn_ezOlOmmqBaplpjoOoYdIBdt4oNqKKxvg88myqs3PezOfP3iHxntwuVpBl35yHS8bG7tff4g7_v8S9-FZD1Wjk863nsOWr17A0wcChgfw_lMY83pZR7dl1F2evohaTm-NLtn4aNKlmS9ewnR8dnF6TvriC8RxLhtitXM8c1y5ABCpNSgTY5Fmm2ZecyRvpaPS0WKkA6KUpkhR9kcY7q2ygpWGH8Kguq38K4iYcsbRUmdKUaE4UnGFsxqFf8JI1A6BrnY8d70yORbImOdthEJ1jpuQo5Hy3khD-LDuUneyHH9rfIBmXDcMQVx4t9MhHK3MmvcHd5EzBGg0Y0oO4ePa1I_mQK_ZmOP1P7V-A7sM4_Y27fcIBs3d0r8N4Kaxx73n_gY19O0i priority: 102 providerName: Unpaywall  | 
    
| Title | Breakup of Directed Multipartite Networks | 
    
| URI | https://ieeexplore.ieee.org/document/8620361 https://www.proquest.com/docview/2439705276 https://dr.ntu.edu.sg/bitstream/10356/144369/2/Cai-w1-TNSE-v1-1009.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2334-329X databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgHfxtRJDt48cegW7t1PaKBEBOIiZDgaWm77gIZRLYY_ettt0FAjfG2Q7fX9L2132vf9xXgWgkeRz5RtusLbhNJhR0Izmwd0BLr9IBGOX2sP_B7I_I09sYVuF9xYZRSefGZaprH_Cw_msnMbJW1NPrWE67OdbZo4BdcrbX9lMDHGJcHlw5ireHgpWNqt1hTJxXEIe7G0pPfpbIBK3eyZM4_3vl0urbCdA-gv-xbUVgyaWapaMrPb7KN_-38IeyXUNNqF7FxBBWVHMPemgDhCdw8aMw4yebWLLaKyU9FVs7JnZuQSpU1KMrEF6cw6naGjz27vDzBlhj7qS2YlNiTmEoN8JDgRuZFGJqs4ymGDfnKCWKJooBpROjzyDGyPYRjJaggbszxGVSTWaLOwXKp5BLFzKMUEYoNlZZIwYxwj_4SEjVAy3ENZaksbi64mIZ5hoFYaFwRGleEpStqcLt6ZV7IavzV-MQM56phOZI1qC-dF5Y_3iJ0DcBCnkv9GtytHPrDRpos1IaNi99tXMKuaxLsvD63DtX0LVNXGoWkopGHXwO2R4Pn9usXmp7YlQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heEAP_kIjirqDF38MurVb6VENBBW4CAm3pe26C2QQ2WL0r7fdBgE1xtsO3V7T99Z-r33fV4ArJXgU-kTZri-4TSQVdktwZuuAllinBzTM6GP9gd8dkeexNy7B3YoLo5TKis9UwzxmZ_nhTKZmq6yp0beecHWus-URQrycrbW2o9LyMcbF0aWDWHM4eG2b6i3W0GkFcYi7sfhkt6lsAMtKGs_5xzufTtfWmM4e9Je9y0tLJo00EQ35-U248b_d34fdAmxa93l0HEBJxYewsyZBWIXrB40aJ-ncmkVWPv2p0MpYuXMTVImyBnmh-OIIRp328LFrF9cn2BJjP7EFkxJ7ElOpIR4S3Ai9CEOUdTzFsKFfOa1IorDFNCb0eegY4R7CsRJUEDfi-BjK8SxWJ2C5VHKJIuZRigjFhkxLpGBGukd_CYkaoOW4BrLQFjdXXEyDLMdALDCuCIwrgsIVNbhZvTLPhTX-alw1w7lqWIxkDepL5wXFr7cIXAOxkOdSvwa3K4f-sJHEC7Vh4_R3G5dQ6Q77vaD3NHg5g23XpNtZtW4dyslbqs41JknERRaKX0pf2jI | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7augPjwAZjojCmHLgAcuLYjl0fx7RqQqJCYpXKKbIdZ5rWZdGaMsFfj1-SViuTkBB3_5D9nu3vJe_7HsA7b01ZSOEJk9YQ4ZQlI2s0CQ7teAgPVNHSx75M5PlUfJ5lsy0Yr7gwxV0c7tr2Q8XiMrFXDVImzE043DyTSUD_XOqEJafmityn5GLy7Yz8wJwsquO6KLdhR2YBkw9gZzr5evK9rSzHFBFdlRXGuSCc6Vn_ezOlOmmqBaplpjoOoYdIBdt4oNqKKxvg88myqs3PezOfP3iHxntwuVpBl35yHS8bG7tff4g7_v8S9-FZD1Wjk863nsOWr17A0wcChgfw_lMY83pZR7dl1F2evohaTm-NLtn4aNKlmS9ewnR8dnF6TvriC8RxLhtitXM8c1y5ABCpNSgTY5Fmm2ZecyRvpaPS0WKkA6KUpkhR9kcY7q2ygpWGH8Kguq38K4iYcsbRUmdKUaE4UnGFsxqFf8JI1A6BrnY8d70yORbImOdthEJ1jpuQo5Hy3khD-LDuUneyHH9rfIBmXDcMQVx4t9MhHK3MmvcHd5EzBGg0Y0oO4ePa1I_mQK_ZmOP1P7V-A7sM4_Y27fcIBs3d0r8N4Kaxx73n_gY19O0i | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breakup+of+Directed+Multipartite+Networks&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Cai%2C+Qing&rft.au=Pratama%2C+Mahardhika&rft.au=Alam%2C+Sameer&rft.au=Ma%2C+Chunyao&rft.date=2020-07-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=7&rft.issue=3&rft.spage=947&rft.epage=960&rft_id=info:doi/10.1109%2FTNSE.2019.2894142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2019_2894142 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |