Vehicle and Pedestrian Detection Algorithm Based on Lightweight YOLOv3-Promote and Semi-Precision Acceleration
Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper reconstructs the target detection model YOLOv3, and proposes a new lightweight target detection network YOLOv3-promote: Firstly, the G-Module combi...
Saved in:
| Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 10; pp. 19760 - 19771 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1524-9050 1558-0016 1558-0016 |
| DOI | 10.1109/TITS.2021.3137253 |
Cover
| Abstract | Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper reconstructs the target detection model YOLOv3, and proposes a new lightweight target detection network YOLOv3-promote: Firstly, the G-Module combined with the Depth-Wise convolution is used to construct the backbone network of the entire model, and the attention mechanism is introduced and added to perform weighting operations on each channel to get more key features and remove redundant features, thereby strengthening the identification ability of feature network model's to distinguish target objects among background; Secondly, in order to delete some less important channels to achieve the effect of compressing the model size and improving the calculation speed, the size of the scaling factor gamma in the batch normalization layer is used; Finally, based on NVIDIA's TensorRT framework model conversion and half-precision acceleration were carried out, and the accelerated model was successfully deployed on the embedded platform Jetson Nano. The performed KITTI experimental results show that the inference speed of our proposed method is about 5 times that of the original model, the parameter volume is reduced to one tenth, the mAP is increased from 86.1% of the original model to 93.1%, and the FPS reaches 25.5fps, realizing the requirements of real-time detection with high precision. |
|---|---|
| AbstractList | Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper reconstructs the target detection model YOLOv3, and proposes a new lightweight target detection network YOLOv3-promote: Firstly, the G-Module combined with the Depth-Wise convolution is used to construct the backbone network of the entire model, and the attention mechanism is introduced and added to perform weighting operations on each channel to get more key features and remove redundant features, thereby strengthening the identification ability of feature network model’s to distinguish target objects among background; Secondly, in order to delete some less important channels to achieve the effect of compressing the model size and improving the calculation speed, the size of the scaling factor gamma in the batch normalization layer is used; Finally, based on NVIDIA’s TensorRT framework model conversion and half-precision acceleration were carried out, and the accelerated model was successfully deployed on the embedded platform Jetson Nano. The performed KITTI experimental results show that the inference speed of our proposed method is about 5 times that of the original model, the parameter volume is reduced to one tenth, the mAP is increased from 86.1% of the original model to 93.1%, and the FPS reaches 25.5fps, realizing the requirements of real-time detection with high precision. |
| Author | Xu, He Li, Peng Zhang, Jindan Guo, Mingtao Nedjah, Nadia |
| Author_xml | – sequence: 1 givenname: He orcidid: 0000-0003-2809-2237 surname: Xu fullname: Xu, He email: xuhe@njupt.edu.cn organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 2 givenname: Mingtao orcidid: 0000-0002-5592-2729 surname: Guo fullname: Guo, Mingtao email: 1219043832@njupt.edu.cn organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 3 givenname: Nadia orcidid: 0000-0002-1656-6397 surname: Nedjah fullname: Nedjah, Nadia email: nadia@eng.uerj.br organization: Department of Electronics Engineering and Telecommunications, Rio de Janeiro State University, Rio de Janeiro, Brazil – sequence: 4 givenname: Jindan orcidid: 0000-0002-1499-8460 surname: Zhang fullname: Zhang, Jindan email: zhangjindan83@163.com organization: Xianyang Vocational Technical College, Xianyang, China – sequence: 5 givenname: Peng orcidid: 0000-0001-5026-5347 surname: Li fullname: Li, Peng email: lipeng@njupt.edu.cn organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China |
| BookMark | eNptkV1rwjAUhsNwMHX7AWM3hV3X5aNt7KVzX4KgoBvsKsT0VCO1dUmc-O-XWvFCdpPkvJz34Zw3HdQqqxIQuie4RwhOn-aj-axHMSU9RhinMbtCbRLH_RBjkrTqN43CFMf4BnWsXXs1iglpo_ILVloVEMgyC6aQgXVGyzJ4AQfK6aoMBsWyMtqtNsGztJAFXhrr5crtoT6D78l48svCqak2lWswM9hoL4DS9ghQCgowsqbdoutcFhbuTncXfb69zocf4XjyPhoOxqFiLHHhgvNYQj9O80VGchllNIs5VTnLFn3mC5Jg8CsollCVcgqQs4hTmkPUTzFPJOsi2nB35VYe9rIoxNbojTQHQbCoExNOOyvqxMQpMW96bExbU_3sfBJiXe1M6ecUlFOWYuqz9F286VKmstZALpR2x-Wckbo48-sfueSTC-flTP95HhqPBoBzf5okKUki9gfsxpfl |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1109_TITS_2023_3267430 crossref_primary_10_3390_s22103636 crossref_primary_10_1109_TITS_2023_3235339 crossref_primary_10_3390_e25020381 crossref_primary_10_3389_fpls_2022_814681 crossref_primary_10_1016_j_atech_2024_100730 crossref_primary_10_1371_journal_pone_0314817 crossref_primary_10_3390_su151914326 crossref_primary_10_1109_TIV_2023_3323204 crossref_primary_10_3390_s25010194 crossref_primary_10_1016_j_asoc_2024_111366 crossref_primary_10_1109_TITS_2024_3394911 crossref_primary_10_1155_2022_9325803 crossref_primary_10_3390_s24217007 crossref_primary_10_1109_TITS_2024_3396915 crossref_primary_10_1109_TITS_2022_3225709 crossref_primary_10_32604_cmc_2023_040086 crossref_primary_10_3390_s23198080 crossref_primary_10_3934_mbe_2023342 crossref_primary_10_3934_mbe_2024255 crossref_primary_10_21595_mme_2023_23719 crossref_primary_10_1016_j_iot_2025_101526 crossref_primary_10_1109_JIOT_2024_3492801 crossref_primary_10_3390_e24081091 crossref_primary_10_1016_j_imavis_2024_105276 crossref_primary_10_1007_s42979_023_01740_1 crossref_primary_10_1016_j_measurement_2023_113442 crossref_primary_10_1155_2023_5349965 crossref_primary_10_4018_IJSWIS_330015 crossref_primary_10_1007_s11042_023_17245_1 crossref_primary_10_1061_JCCEE5_CPENG_5905 crossref_primary_10_1109_ACCESS_2024_3404623 crossref_primary_10_1115_1_4066188 crossref_primary_10_3390_s23063236 crossref_primary_10_1007_s11235_022_00930_1 crossref_primary_10_3390_electronics12194030 crossref_primary_10_1007_s11042_022_13153_y crossref_primary_10_3390_s23135881 crossref_primary_10_3390_app14167383 crossref_primary_10_32604_iasc_2023_039238 crossref_primary_10_1016_j_iot_2024_101115 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1142_S0218001423500027 crossref_primary_10_3934_mbe_2023557 |
| Cites_doi | 10.1109/ICCV.2019.00140 10.1109/TPAMI.2015.2389824 10.1109/TIP.2020.3011807 10.1109/CVPR.2018.00474 10.4018/IJSWIS.2020100101 10.1109/ICCV.2015.169 10.1007/s00500-019-04220-y 10.1109/CVPR.2015.7298935 10.4018/IJCAC.2020010101 10.1002/cpe.4946 10.1109/CVPR.2016.90 10.1109/CVPR.2012.6248074 10.1109/TMM.2017.2648498 10.1109/CVPR.2018.00442 10.1109/CVPR.2016.91 10.1109/CVPR.2014.81 10.1177/0278364913491297 10.1109/ICCV.2017.298 10.4018/IJSSCI.2019010104 10.1007/978-3-030-01252-6_24 10.1109/CVPR.2015.7298685 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.87 10.l007/978-3-319-46448-0_2 10.1109/CVPR.2017.690 10.2307/2346830 10.1007/978-3-030-01234-2_1 10.1109/TIP.2020.3037518 10.1109/CVPR.2018.00745 10.1109/CVPR42600.2020.00165 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/TITS.2021.3137253 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 19771 |
| ExternalDocumentID | 10.1109/tits.2021.3137253 10_1109_TITS_2021_3137253 9669164 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: 1311 Talent Plan of the Nanjing University of Posts and Telecommunications (NUPT) funderid: 10.13039/501100005374 – fundername: Major Natural Science Research Projects in Colleges and Universities of Jiangsu Province grantid: 18KJA520008 – fundername: National Key Research and Development Program of China grantid: 2019YFB2103003 funderid: 10.13039/501100012166 – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province grantid: KYCX_0973 – fundername: National Natural Science Foundation of China grantid: 61872196; 61872194; 61902196 funderid: 10.13039/501100001809 – fundername: Scientific and Technological Support Project of Jiangsu Province grantid: BE2017166; BE2019740 – fundername: Six Talent Peaks Project of Jiangsu Province grantid: RJFW-111 funderid: 10.13039/501100010014 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c336t-b775ae859fbd1fa4d2d572cf3db83d2d160e001c362c972eef34722fe489076a3 |
| IEDL.DBID | RIE |
| ISSN | 1524-9050 1558-0016 |
| IngestDate | Tue Aug 19 19:38:57 EDT 2025 Mon Jun 30 05:29:57 EDT 2025 Wed Oct 01 05:03:13 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Wed Aug 27 02:18:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-b775ae859fbd1fa4d2d572cf3db83d2d160e001c362c972eef34722fe489076a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1499-8460 0000-0002-5592-2729 0000-0003-2809-2237 0000-0001-5026-5347 0000-0002-1656-6397 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9669164 |
| PQID | 2723902016 |
| PQPubID | 75735 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TITS_2021_3137253 proquest_journals_2723902016 unpaywall_primary_10_1109_tits_2021_3137253 crossref_primary_10_1109_TITS_2021_3137253 ieee_primary_9669164 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 Li (ref10) 2017 ref12 ref34 ref37 ref36 Bochkovskiy (ref40) 2020 ref31 ref30 ref11 Redmon (ref13) 2018 ref33 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Simonyan (ref1) 2014 Zhang (ref14) 2019; 55 ref23 Yao (ref29) 2020; 29 ref26 ref25 ref20 ref22 Liu (ref21) 2020; 40 Howard (ref15) 2017 Stollenga (ref24) ref28 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Wang (ref27) 2019 |
| References_xml | – ident: ref17 doi: 10.1109/ICCV.2019.00140 – ident: ref3 doi: 10.1109/TPAMI.2015.2389824 – year: 2017 ident: ref15 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – volume: 40 start-page: 2225 issue: 8 year: 2020 ident: ref21 article-title: Gaussian-YOLO V3 target detection embedded with attention and feature interleaving module publication-title: Comput. Appl. – start-page: 3545 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Deep networks with internal selective attention through feedback connections – ident: ref38 doi: 10.1109/TIP.2020.3011807 – year: 2014 ident: ref1 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref16 doi: 10.1109/CVPR.2018.00474 – ident: ref37 doi: 10.4018/IJSWIS.2020100101 – volume: 29 start-page: 41 year: 2020 ident: ref29 article-title: Real-time drivers’ violation behaviors detection based on improved YOLOv3-tiny algorithm based on model pruning and half-precision acceleration publication-title: Comput. Syst. Appl. – ident: ref4 doi: 10.1109/ICCV.2015.169 – ident: ref33 doi: 10.1007/s00500-019-04220-y – ident: ref20 doi: 10.1109/CVPR.2015.7298935 – ident: ref36 doi: 10.4018/IJCAC.2020010101 – ident: ref34 doi: 10.1002/cpe.4946 – year: 2018 ident: ref13 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 – ident: ref19 doi: 10.1109/CVPR.2016.90 – ident: ref30 doi: 10.1109/CVPR.2012.6248074 – ident: ref22 doi: 10.1109/TMM.2017.2648498 – ident: ref8 doi: 10.1109/CVPR.2018.00442 – ident: ref11 doi: 10.1109/CVPR.2016.91 – ident: ref2 doi: 10.1109/CVPR.2014.81 – ident: ref31 doi: 10.1177/0278364913491297 – ident: ref28 doi: 10.1109/ICCV.2017.298 – ident: ref35 doi: 10.4018/IJSSCI.2019010104 – year: 2019 ident: ref27 article-title: ECA-Net: Efficient channel attention for deep convolutional neural networks publication-title: arXiv:1910.03151 – ident: ref7 doi: 10.1007/978-3-030-01252-6_24 – ident: ref23 doi: 10.1109/CVPR.2015.7298685 – ident: ref5 doi: 10.1109/TPAMI.2016.2577031 – ident: ref9 doi: 10.1109/CVPR.2017.87 – volume: 55 start-page: 12 issue: 2 year: 2019 ident: ref14 article-title: Fast vehicle detection method based on improved YOLOv3 publication-title: Comput. Eng. Appl. – ident: ref6 doi: 10.l007/978-3-319-46448-0_2 – ident: ref12 doi: 10.1109/CVPR.2017.690 – ident: ref32 doi: 10.2307/2346830 – ident: ref26 doi: 10.1007/978-3-030-01234-2_1 – ident: ref39 doi: 10.1109/TIP.2020.3037518 – year: 2020 ident: ref40 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv:2004.10934 – year: 2017 ident: ref10 article-title: FSSD: Feature fusion single shot multibox detector publication-title: arXiv:1712.00960 – ident: ref25 doi: 10.1109/CVPR.2018.00745 – ident: ref18 doi: 10.1109/CVPR42600.2020.00165 |
| SSID | ssj0014511 |
| Score | 2.568973 |
| Snippet | Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19760 |
| SubjectTerms | Acceleration Algorithms Computational modeling Computer networks Convolution Feature extraction Kernel Lightweight lightweight model model deployment model prune Object detection Real-time systems Scaling factors semi-precision acceleration Target detection Telecommunications |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wA88DUQHQP5gSdQ2sSO7Vg8lY9poLFVWos2CSlK7DOrlmXVSBnw13N20moFCQneHOcSJ7pL7nf2-XeEPC-cdYw7FhnBTZQqJ6KMAwI5ERf402RGOj818PFA7k3TD8fieIO8Wu2FAYCQfAYD3wxr-TOovquh1EoPPZpBHzpE4C2xmQ7m1t0gm1IgEO-RzenBeHQSGFJZGuk41GdFh5lFHtl0a5pJrH1lIU_VzRIMWbligq95pVBmZQ1x3lzU8-LHVVFV15zP7l3yefnYbc7J2WDRlAPz8zdGx_98r3vkTgdK6ai1ovtkA-oH5PY1qsItUn-CU3-SFrWlY7AQ6n3U9C00IZmrpqPqy8XlrDk9p6_RM1qKXfs-8r8Kk6_05HD_8BuPxiH9r73NEZzPsKOr8kNHxqAPbC3yIZnuvpu82Yu6Wg2R4Vw2UamUKCAT2pU2cUVqmRWKGcdtmXE8SGQMqASD_tJoxQAc9zSVDtIMw3NZ8EekV1_U8JhQI4yWJdMlor_USVtkcYk2w1MDCsGq6pN4qavcdETmvp5GlYeAJtb55P3kKPfqzTv19smL1SXzlsXjb8JbXkUrwU4lfbKzNIi8-86_5kwxrhFxJ7JPXq6M5I8xvL2tjbH9T9JPyC3md12EHMId0msuF_AUsVBTPuts_hdZOACJ priority: 102 providerName: Unpaywall |
| Title | Vehicle and Pedestrian Detection Algorithm Based on Lightweight YOLOv3-Promote and Semi-Precision Acceleration |
| URI | https://ieeexplore.ieee.org/document/9669164 https://www.proquest.com/docview/2723902016 https://ieeexplore.ieee.org/ielx7/6979/9916643/09669164.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPbQ90AdFXQrIh57aZknsOE6OSymiFY-V2K3gFCX2uKAuWQTZovbXM3ayEdtWVW-J42QSzTjzjT3-BuBtYY3lwvJAS6GDWFkZpAIJyMmwoJ8m14l1UwNHx8nBOP5yJs-W4EO3FwYRffIZ9t2hX8s3Uz1zU2U7BM0JzcTLsKzSpNmr1a0YOJ4tz43K4yAL5XwFMwqzndHn0SlFgjyiAFUoLsWCD_JFVRbw5eNZdV38vCsmkweuZv8ZHM1fsskw-d6f1WVf__qNv_F_v-I5rLaYkw0aI3kBS1i9hKcPmAjXoPqKF-4iKyrDhmjQl_Oo2B7WPlerYoPJt-nNZX1xxXbJ8RlGTYcusL_zc6vs_OTw5IcIhj67r3nMKV5dUkNbxIcNtCYX1xjcKxjvfxp9PAjaUgyBFiKpg1IpWWAqM1uayBax4UYqrq0wZSroJEpCJCVococ6UxzRCsdCaTFOKfpOCrEOK9W0wtfAtNRZUvKsJHAX28QUaViSSYhYoyIsqnoQzpWT65an3JXLmOQ-Xgmz3Okzd_rMW3324F13y3VD0vGvzmtOJ13HVh092JxbQN4O49ucKy4yAtRR0oP3nVX8IYPG9e2CjI2_y3gDT7jbPeFzATdhpb6Z4RZhmrrc9sa8DY_Gx8PB-T2Y7fOG |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gPqAPoqLxFHQffFJ7tPvRj8cTJYfeAQmHwaem3Z0V4tEj0JPIX-_sttdwaoxv7XbbaTOznd_szv4G4HVhjeXC8kAroQOZWBWkAgnIqbCgnybXsXVTA-P9eHgsP52okxV41-2FQUSffIZ9d-jX8s1Mz91U2TZBc0Iz8g7cVVJK1ezW6tYMHNOWZ0flMshCtVjDjMJse7I3OaJYkEcUooqEK7HkhXxZlSWEuTavLoqf18V0esvZ7K7DePGaTY7J9_68Lvv65jcGx__9jofwoEWdbNCYySNYweox3L_FRbgB1Rc8dRdZURl2iAZ9QY-KfcDaZ2tVbDD9Nrs8q0_P2XtyfYZR08iF9td-dpV9PRgd_BDBoc_vax5zhOdn1NCW8WEDrcnJNSb3BI53P052hkFbjCHQQsR1UCaJKjBVmS1NZAtpuFEJ11aYMhV0EsUhkhI0OUSdJRzRCsdDaVGmFH_HhXgKq9WswmfAtNJZXPKsJHgnbWyKNCzJKITUmBAaTXoQLpST65ap3BXMmOY-Ygmz3Okzd_rMW3324E13y0VD0_GvzhtOJ13HVh092FxYQN4O5KucJ1xkBKmjuAdvO6v4QwaN7KslGc__LuMVrA0n41E-2tv__ALucbeXwmcGbsJqfTnHLUI4dfnSG_Yv0hL1Iw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wA88DUQHQP5gSdQ2sSO7Vg8lY9poLFVWos2CSlK7DOrlmXVSBnw13N20moFCQneHOcSJ7pL7nf2-XeEPC-cdYw7FhnBTZQqJ6KMAwI5ERf402RGOj818PFA7k3TD8fieIO8Wu2FAYCQfAYD3wxr-TOovquh1EoPPZpBHzpE4C2xmQ7m1t0gm1IgEO-RzenBeHQSGFJZGuk41GdFh5lFHtl0a5pJrH1lIU_VzRIMWbligq95pVBmZQ1x3lzU8-LHVVFV15zP7l3yefnYbc7J2WDRlAPz8zdGx_98r3vkTgdK6ai1ovtkA-oH5PY1qsItUn-CU3-SFrWlY7AQ6n3U9C00IZmrpqPqy8XlrDk9p6_RM1qKXfs-8r8Kk6_05HD_8BuPxiH9r73NEZzPsKOr8kNHxqAPbC3yIZnuvpu82Yu6Wg2R4Vw2UamUKCAT2pU2cUVqmRWKGcdtmXE8SGQMqASD_tJoxQAc9zSVDtIMw3NZ8EekV1_U8JhQI4yWJdMlor_USVtkcYk2w1MDCsGq6pN4qavcdETmvp5GlYeAJtb55P3kKPfqzTv19smL1SXzlsXjb8JbXkUrwU4lfbKzNIi8-86_5kwxrhFxJ7JPXq6M5I8xvL2tjbH9T9JPyC3md12EHMId0msuF_AUsVBTPuts_hdZOACJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle+and+Pedestrian+Detection+Algorithm+Based+on+Lightweight+YOLOv3-Promote+and+Semi-Precision+Acceleration&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Xu%2C+He&rft.au=Guo%2C+Mingtao&rft.au=Nedjah%2C+Nadia&rft.au=Zhang%2C+Jindan&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=10&rft.spage=19760&rft.epage=19771&rft_id=info:doi/10.1109%2FTITS.2021.3137253&rft.externalDocID=9669164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |