Vehicle and Pedestrian Detection Algorithm Based on Lightweight YOLOv3-Promote and Semi-Precision Acceleration

Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper reconstructs the target detection model YOLOv3, and proposes a new lightweight target detection network YOLOv3-promote: Firstly, the G-Module combi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 10; pp. 19760 - 19771
Main Authors Xu, He, Guo, Mingtao, Nedjah, Nadia, Zhang, Jindan, Li, Peng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
1558-0016
DOI10.1109/TITS.2021.3137253

Cover

Abstract Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper reconstructs the target detection model YOLOv3, and proposes a new lightweight target detection network YOLOv3-promote: Firstly, the G-Module combined with the Depth-Wise convolution is used to construct the backbone network of the entire model, and the attention mechanism is introduced and added to perform weighting operations on each channel to get more key features and remove redundant features, thereby strengthening the identification ability of feature network model's to distinguish target objects among background; Secondly, in order to delete some less important channels to achieve the effect of compressing the model size and improving the calculation speed, the size of the scaling factor gamma in the batch normalization layer is used; Finally, based on NVIDIA's TensorRT framework model conversion and half-precision acceleration were carried out, and the accelerated model was successfully deployed on the embedded platform Jetson Nano. The performed KITTI experimental results show that the inference speed of our proposed method is about 5 times that of the original model, the parameter volume is reduced to one tenth, the mAP is increased from 86.1% of the original model to 93.1%, and the FPS reaches 25.5fps, realizing the requirements of real-time detection with high precision.
AbstractList Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper reconstructs the target detection model YOLOv3, and proposes a new lightweight target detection network YOLOv3-promote: Firstly, the G-Module combined with the Depth-Wise convolution is used to construct the backbone network of the entire model, and the attention mechanism is introduced and added to perform weighting operations on each channel to get more key features and remove redundant features, thereby strengthening the identification ability of feature network model’s to distinguish target objects among background; Secondly, in order to delete some less important channels to achieve the effect of compressing the model size and improving the calculation speed, the size of the scaling factor gamma in the batch normalization layer is used; Finally, based on NVIDIA’s TensorRT framework model conversion and half-precision acceleration were carried out, and the accelerated model was successfully deployed on the embedded platform Jetson Nano. The performed KITTI experimental results show that the inference speed of our proposed method is about 5 times that of the original model, the parameter volume is reduced to one tenth, the mAP is increased from 86.1% of the original model to 93.1%, and the FPS reaches 25.5fps, realizing the requirements of real-time detection with high precision.
Author Xu, He
Li, Peng
Zhang, Jindan
Guo, Mingtao
Nedjah, Nadia
Author_xml – sequence: 1
  givenname: He
  orcidid: 0000-0003-2809-2237
  surname: Xu
  fullname: Xu, He
  email: xuhe@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Mingtao
  orcidid: 0000-0002-5592-2729
  surname: Guo
  fullname: Guo, Mingtao
  email: 1219043832@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Nadia
  orcidid: 0000-0002-1656-6397
  surname: Nedjah
  fullname: Nedjah, Nadia
  email: nadia@eng.uerj.br
  organization: Department of Electronics Engineering and Telecommunications, Rio de Janeiro State University, Rio de Janeiro, Brazil
– sequence: 4
  givenname: Jindan
  orcidid: 0000-0002-1499-8460
  surname: Zhang
  fullname: Zhang, Jindan
  email: zhangjindan83@163.com
  organization: Xianyang Vocational Technical College, Xianyang, China
– sequence: 5
  givenname: Peng
  orcidid: 0000-0001-5026-5347
  surname: Li
  fullname: Li, Peng
  email: lipeng@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNptkV1rwjAUhsNwMHX7AWM3hV3X5aNt7KVzX4KgoBvsKsT0VCO1dUmc-O-XWvFCdpPkvJz34Zw3HdQqqxIQuie4RwhOn-aj-axHMSU9RhinMbtCbRLH_RBjkrTqN43CFMf4BnWsXXs1iglpo_ILVloVEMgyC6aQgXVGyzJ4AQfK6aoMBsWyMtqtNsGztJAFXhrr5crtoT6D78l48svCqak2lWswM9hoL4DS9ghQCgowsqbdoutcFhbuTncXfb69zocf4XjyPhoOxqFiLHHhgvNYQj9O80VGchllNIs5VTnLFn3mC5Jg8CsollCVcgqQs4hTmkPUTzFPJOsi2nB35VYe9rIoxNbojTQHQbCoExNOOyvqxMQpMW96bExbU_3sfBJiXe1M6ecUlFOWYuqz9F286VKmstZALpR2x-Wckbo48-sfueSTC-flTP95HhqPBoBzf5okKUki9gfsxpfl
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2023_3267430
crossref_primary_10_3390_s22103636
crossref_primary_10_1109_TITS_2023_3235339
crossref_primary_10_3390_e25020381
crossref_primary_10_3389_fpls_2022_814681
crossref_primary_10_1016_j_atech_2024_100730
crossref_primary_10_1371_journal_pone_0314817
crossref_primary_10_3390_su151914326
crossref_primary_10_1109_TIV_2023_3323204
crossref_primary_10_3390_s25010194
crossref_primary_10_1016_j_asoc_2024_111366
crossref_primary_10_1109_TITS_2024_3394911
crossref_primary_10_1155_2022_9325803
crossref_primary_10_3390_s24217007
crossref_primary_10_1109_TITS_2024_3396915
crossref_primary_10_1109_TITS_2022_3225709
crossref_primary_10_32604_cmc_2023_040086
crossref_primary_10_3390_s23198080
crossref_primary_10_3934_mbe_2023342
crossref_primary_10_3934_mbe_2024255
crossref_primary_10_21595_mme_2023_23719
crossref_primary_10_1016_j_iot_2025_101526
crossref_primary_10_1109_JIOT_2024_3492801
crossref_primary_10_3390_e24081091
crossref_primary_10_1016_j_imavis_2024_105276
crossref_primary_10_1007_s42979_023_01740_1
crossref_primary_10_1016_j_measurement_2023_113442
crossref_primary_10_1155_2023_5349965
crossref_primary_10_4018_IJSWIS_330015
crossref_primary_10_1007_s11042_023_17245_1
crossref_primary_10_1061_JCCEE5_CPENG_5905
crossref_primary_10_1109_ACCESS_2024_3404623
crossref_primary_10_1115_1_4066188
crossref_primary_10_3390_s23063236
crossref_primary_10_1007_s11235_022_00930_1
crossref_primary_10_3390_electronics12194030
crossref_primary_10_1007_s11042_022_13153_y
crossref_primary_10_3390_s23135881
crossref_primary_10_3390_app14167383
crossref_primary_10_32604_iasc_2023_039238
crossref_primary_10_1016_j_iot_2024_101115
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_1142_S0218001423500027
crossref_primary_10_3934_mbe_2023557
Cites_doi 10.1109/ICCV.2019.00140
10.1109/TPAMI.2015.2389824
10.1109/TIP.2020.3011807
10.1109/CVPR.2018.00474
10.4018/IJSWIS.2020100101
10.1109/ICCV.2015.169
10.1007/s00500-019-04220-y
10.1109/CVPR.2015.7298935
10.4018/IJCAC.2020010101
10.1002/cpe.4946
10.1109/CVPR.2016.90
10.1109/CVPR.2012.6248074
10.1109/TMM.2017.2648498
10.1109/CVPR.2018.00442
10.1109/CVPR.2016.91
10.1109/CVPR.2014.81
10.1177/0278364913491297
10.1109/ICCV.2017.298
10.4018/IJSSCI.2019010104
10.1007/978-3-030-01252-6_24
10.1109/CVPR.2015.7298685
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2017.87
10.l007/978-3-319-46448-0_2
10.1109/CVPR.2017.690
10.2307/2346830
10.1007/978-3-030-01234-2_1
10.1109/TIP.2020.3037518
10.1109/CVPR.2018.00745
10.1109/CVPR42600.2020.00165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TITS.2021.3137253
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 19771
ExternalDocumentID 10.1109/tits.2021.3137253
10_1109_TITS_2021_3137253
9669164
Genre orig-research
GrantInformation_xml – fundername: 1311 Talent Plan of the Nanjing University of Posts and Telecommunications (NUPT)
  funderid: 10.13039/501100005374
– fundername: Major Natural Science Research Projects in Colleges and Universities of Jiangsu Province
  grantid: 18KJA520008
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB2103003
  funderid: 10.13039/501100012166
– fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province
  grantid: KYCX_0973
– fundername: National Natural Science Foundation of China
  grantid: 61872196; 61872194; 61902196
  funderid: 10.13039/501100001809
– fundername: Scientific and Technological Support Project of Jiangsu Province
  grantid: BE2017166; BE2019740
– fundername: Six Talent Peaks Project of Jiangsu Province
  grantid: RJFW-111
  funderid: 10.13039/501100010014
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c336t-b775ae859fbd1fa4d2d572cf3db83d2d160e001c362c972eef34722fe489076a3
IEDL.DBID RIE
ISSN 1524-9050
1558-0016
IngestDate Tue Aug 19 19:38:57 EDT 2025
Mon Jun 30 05:29:57 EDT 2025
Wed Oct 01 05:03:13 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Wed Aug 27 02:18:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-b775ae859fbd1fa4d2d572cf3db83d2d160e001c362c972eef34722fe489076a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1499-8460
0000-0002-5592-2729
0000-0003-2809-2237
0000-0001-5026-5347
0000-0002-1656-6397
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9669164
PQID 2723902016
PQPubID 75735
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TITS_2021_3137253
proquest_journals_2723902016
unpaywall_primary_10_1109_tits_2021_3137253
crossref_primary_10_1109_TITS_2021_3137253
ieee_primary_9669164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
Li (ref10) 2017
ref12
ref34
ref37
ref36
Bochkovskiy (ref40) 2020
ref31
ref30
ref11
Redmon (ref13) 2018
ref33
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Simonyan (ref1) 2014
Zhang (ref14) 2019; 55
ref23
Yao (ref29) 2020; 29
ref26
ref25
ref20
ref22
Liu (ref21) 2020; 40
Howard (ref15) 2017
Stollenga (ref24)
ref28
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Wang (ref27) 2019
References_xml – ident: ref17
  doi: 10.1109/ICCV.2019.00140
– ident: ref3
  doi: 10.1109/TPAMI.2015.2389824
– year: 2017
  ident: ref15
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– volume: 40
  start-page: 2225
  issue: 8
  year: 2020
  ident: ref21
  article-title: Gaussian-YOLO V3 target detection embedded with attention and feature interleaving module
  publication-title: Comput. Appl.
– start-page: 3545
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Deep networks with internal selective attention through feedback connections
– ident: ref38
  doi: 10.1109/TIP.2020.3011807
– year: 2014
  ident: ref1
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref16
  doi: 10.1109/CVPR.2018.00474
– ident: ref37
  doi: 10.4018/IJSWIS.2020100101
– volume: 29
  start-page: 41
  year: 2020
  ident: ref29
  article-title: Real-time drivers’ violation behaviors detection based on improved YOLOv3-tiny algorithm based on model pruning and half-precision acceleration
  publication-title: Comput. Syst. Appl.
– ident: ref4
  doi: 10.1109/ICCV.2015.169
– ident: ref33
  doi: 10.1007/s00500-019-04220-y
– ident: ref20
  doi: 10.1109/CVPR.2015.7298935
– ident: ref36
  doi: 10.4018/IJCAC.2020010101
– ident: ref34
  doi: 10.1002/cpe.4946
– year: 2018
  ident: ref13
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– ident: ref19
  doi: 10.1109/CVPR.2016.90
– ident: ref30
  doi: 10.1109/CVPR.2012.6248074
– ident: ref22
  doi: 10.1109/TMM.2017.2648498
– ident: ref8
  doi: 10.1109/CVPR.2018.00442
– ident: ref11
  doi: 10.1109/CVPR.2016.91
– ident: ref2
  doi: 10.1109/CVPR.2014.81
– ident: ref31
  doi: 10.1177/0278364913491297
– ident: ref28
  doi: 10.1109/ICCV.2017.298
– ident: ref35
  doi: 10.4018/IJSSCI.2019010104
– year: 2019
  ident: ref27
  article-title: ECA-Net: Efficient channel attention for deep convolutional neural networks
  publication-title: arXiv:1910.03151
– ident: ref7
  doi: 10.1007/978-3-030-01252-6_24
– ident: ref23
  doi: 10.1109/CVPR.2015.7298685
– ident: ref5
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref9
  doi: 10.1109/CVPR.2017.87
– volume: 55
  start-page: 12
  issue: 2
  year: 2019
  ident: ref14
  article-title: Fast vehicle detection method based on improved YOLOv3
  publication-title: Comput. Eng. Appl.
– ident: ref6
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref12
  doi: 10.1109/CVPR.2017.690
– ident: ref32
  doi: 10.2307/2346830
– ident: ref26
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref39
  doi: 10.1109/TIP.2020.3037518
– year: 2020
  ident: ref40
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv:2004.10934
– year: 2017
  ident: ref10
  article-title: FSSD: Feature fusion single shot multibox detector
  publication-title: arXiv:1712.00960
– ident: ref25
  doi: 10.1109/CVPR.2018.00745
– ident: ref18
  doi: 10.1109/CVPR42600.2020.00165
SSID ssj0014511
Score 2.568973
Snippet Aiming at the shortcomings of the current YOLOv3 model, such as large size, slow response speed, and difficulty in deploying to real devices, this paper...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19760
SubjectTerms Acceleration
Algorithms
Computational modeling
Computer networks
Convolution
Feature extraction
Kernel
Lightweight
lightweight model
model deployment
model prune
Object detection
Real-time systems
Scaling factors
semi-precision acceleration
Target detection
Telecommunications
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wA88DUQHQP5gSdQ2sSO7Vg8lY9poLFVWos2CSlK7DOrlmXVSBnw13N20moFCQneHOcSJ7pL7nf2-XeEPC-cdYw7FhnBTZQqJ6KMAwI5ERf402RGOj818PFA7k3TD8fieIO8Wu2FAYCQfAYD3wxr-TOovquh1EoPPZpBHzpE4C2xmQ7m1t0gm1IgEO-RzenBeHQSGFJZGuk41GdFh5lFHtl0a5pJrH1lIU_VzRIMWbligq95pVBmZQ1x3lzU8-LHVVFV15zP7l3yefnYbc7J2WDRlAPz8zdGx_98r3vkTgdK6ai1ovtkA-oH5PY1qsItUn-CU3-SFrWlY7AQ6n3U9C00IZmrpqPqy8XlrDk9p6_RM1qKXfs-8r8Kk6_05HD_8BuPxiH9r73NEZzPsKOr8kNHxqAPbC3yIZnuvpu82Yu6Wg2R4Vw2UamUKCAT2pU2cUVqmRWKGcdtmXE8SGQMqASD_tJoxQAc9zSVDtIMw3NZ8EekV1_U8JhQI4yWJdMlor_USVtkcYk2w1MDCsGq6pN4qavcdETmvp5GlYeAJtb55P3kKPfqzTv19smL1SXzlsXjb8JbXkUrwU4lfbKzNIi8-86_5kwxrhFxJ7JPXq6M5I8xvL2tjbH9T9JPyC3md12EHMId0msuF_AUsVBTPuts_hdZOACJ
  priority: 102
  providerName: Unpaywall
Title Vehicle and Pedestrian Detection Algorithm Based on Lightweight YOLOv3-Promote and Semi-Precision Acceleration
URI https://ieeexplore.ieee.org/document/9669164
https://www.proquest.com/docview/2723902016
https://ieeexplore.ieee.org/ielx7/6979/9916643/09669164.pdf
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPbQ90AdFXQrIh57aZknsOE6OSymiFY-V2K3gFCX2uKAuWQTZovbXM3ayEdtWVW-J42QSzTjzjT3-BuBtYY3lwvJAS6GDWFkZpAIJyMmwoJ8m14l1UwNHx8nBOP5yJs-W4EO3FwYRffIZ9t2hX8s3Uz1zU2U7BM0JzcTLsKzSpNmr1a0YOJ4tz43K4yAL5XwFMwqzndHn0SlFgjyiAFUoLsWCD_JFVRbw5eNZdV38vCsmkweuZv8ZHM1fsskw-d6f1WVf__qNv_F_v-I5rLaYkw0aI3kBS1i9hKcPmAjXoPqKF-4iKyrDhmjQl_Oo2B7WPlerYoPJt-nNZX1xxXbJ8RlGTYcusL_zc6vs_OTw5IcIhj67r3nMKV5dUkNbxIcNtCYX1xjcKxjvfxp9PAjaUgyBFiKpg1IpWWAqM1uayBax4UYqrq0wZSroJEpCJCVococ6UxzRCsdCaTFOKfpOCrEOK9W0wtfAtNRZUvKsJHAX28QUaViSSYhYoyIsqnoQzpWT65an3JXLmOQ-Xgmz3Okzd_rMW3324F13y3VD0vGvzmtOJ13HVh092JxbQN4O49ucKy4yAtRR0oP3nVX8IYPG9e2CjI2_y3gDT7jbPeFzATdhpb6Z4RZhmrrc9sa8DY_Gx8PB-T2Y7fOG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gPqAPoqLxFHQffFJ7tPvRj8cTJYfeAQmHwaem3Z0V4tEj0JPIX-_sttdwaoxv7XbbaTOznd_szv4G4HVhjeXC8kAroQOZWBWkAgnIqbCgnybXsXVTA-P9eHgsP52okxV41-2FQUSffIZ9d-jX8s1Mz91U2TZBc0Iz8g7cVVJK1ezW6tYMHNOWZ0flMshCtVjDjMJse7I3OaJYkEcUooqEK7HkhXxZlSWEuTavLoqf18V0esvZ7K7DePGaTY7J9_68Lvv65jcGx__9jofwoEWdbNCYySNYweox3L_FRbgB1Rc8dRdZURl2iAZ9QY-KfcDaZ2tVbDD9Nrs8q0_P2XtyfYZR08iF9td-dpV9PRgd_BDBoc_vax5zhOdn1NCW8WEDrcnJNSb3BI53P052hkFbjCHQQsR1UCaJKjBVmS1NZAtpuFEJ11aYMhV0EsUhkhI0OUSdJRzRCsdDaVGmFH_HhXgKq9WswmfAtNJZXPKsJHgnbWyKNCzJKITUmBAaTXoQLpST65ap3BXMmOY-Ygmz3Okzd_rMW3324E13y0VD0_GvzhtOJ13HVh092FxYQN4O5KucJ1xkBKmjuAdvO6v4QwaN7KslGc__LuMVrA0n41E-2tv__ALucbeXwmcGbsJqfTnHLUI4dfnSG_Yv0hL1Iw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wA88DUQHQP5gSdQ2sSO7Vg8lY9poLFVWos2CSlK7DOrlmXVSBnw13N20moFCQneHOcSJ7pL7nf2-XeEPC-cdYw7FhnBTZQqJ6KMAwI5ERf402RGOj818PFA7k3TD8fieIO8Wu2FAYCQfAYD3wxr-TOovquh1EoPPZpBHzpE4C2xmQ7m1t0gm1IgEO-RzenBeHQSGFJZGuk41GdFh5lFHtl0a5pJrH1lIU_VzRIMWbligq95pVBmZQ1x3lzU8-LHVVFV15zP7l3yefnYbc7J2WDRlAPz8zdGx_98r3vkTgdK6ai1ovtkA-oH5PY1qsItUn-CU3-SFrWlY7AQ6n3U9C00IZmrpqPqy8XlrDk9p6_RM1qKXfs-8r8Kk6_05HD_8BuPxiH9r73NEZzPsKOr8kNHxqAPbC3yIZnuvpu82Yu6Wg2R4Vw2UamUKCAT2pU2cUVqmRWKGcdtmXE8SGQMqASD_tJoxQAc9zSVDtIMw3NZ8EekV1_U8JhQI4yWJdMlor_USVtkcYk2w1MDCsGq6pN4qavcdETmvp5GlYeAJtb55P3kKPfqzTv19smL1SXzlsXjb8JbXkUrwU4lfbKzNIi8-86_5kwxrhFxJ7JPXq6M5I8xvL2tjbH9T9JPyC3md12EHMId0msuF_AUsVBTPuts_hdZOACJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle+and+Pedestrian+Detection+Algorithm+Based+on+Lightweight+YOLOv3-Promote+and+Semi-Precision+Acceleration&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Xu%2C+He&rft.au=Guo%2C+Mingtao&rft.au=Nedjah%2C+Nadia&rft.au=Zhang%2C+Jindan&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=10&rft.spage=19760&rft.epage=19771&rft_id=info:doi/10.1109%2FTITS.2021.3137253&rft.externalDocID=9669164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon