Automated Design of Metaheuristics Using Reinforcement Learning Within a Novel General Search Framework
Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search f...
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 27; no. 4; pp. 1072 - 1084 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 1941-0026 |
| DOI | 10.1109/TEVC.2022.3197298 |
Cover
| Abstract | Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning. |
|---|---|
| AbstractList | Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep [Formula Omitted]-network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning. Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning. |
| Author | Niu, Ben Qu, Rong Jiao, Licheng Yi, Wenjie |
| Author_xml | – sequence: 1 givenname: Wenjie orcidid: 0000-0002-4764-0721 surname: Yi fullname: Yi, Wenjie email: wenjie.yi@nottingham.ac.uk organization: Computational Optimisation and Learning Lab, School of Computer Science, University of Nottingham, Nottingham, U.K – sequence: 2 givenname: Rong orcidid: 0000-0001-8318-7509 surname: Qu fullname: Qu, Rong email: rong.qu@nottingham.ac.uk organization: Computational Optimisation and Learning Lab, School of Computer Science, University of Nottingham, Nottingham, U.K – sequence: 3 givenname: Licheng orcidid: 0000-0003-3354-9617 surname: Jiao fullname: Jiao, Licheng email: lchjiao@mail.xidian.edu.cn organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 4 givenname: Ben orcidid: 0000-0001-5822-8743 surname: Niu fullname: Niu, Ben email: drniuben@gmail.com organization: College of Management, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kU1PGzEQhq0qSAXKD0C9WOp5g-111vYxSoEihVbio-W2mnVmE9ONndpeEP-ejRL1kEo9eeSZ552Zd07IyAePhJxzNuacmYuHy5-zsWBCjEtulDD6AznmRvKCMVGNhphpUyilnz6Sk5SeGeNyws0xWU77HNaQcUG_YnJLT0NLbzHDCvvoUnY20cfk_JLeofNtiBbX6DOdI0S__f7l8sp5CvR7eMGOXqPHCB29H_J2Ra8irPE1xN-fyFELXcKz_XtKHq8uH2bfivmP65vZdF7YsqxyAdCUVomFbmTTwEJMmtaIYUEw2jJZKcahUVYsGkDTSA0GK64EStaWgttWlqdE7HR7v4G3V-i6ehPdGuJbzVm9tarO-GLrrVX13qoB-rKDNjH86THl-jn00Q9z1kJLqQ2rmBiq-K7KxpBSxPYf5e0RDpXVAWNdhuyCzxFc91_y8450iPi3k9EToTQv3wGbKJZ- |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_3390_biomimetics9060307 crossref_primary_10_1109_ACCESS_2024_3422479 crossref_primary_10_1109_TCDS_2023_3345735 crossref_primary_10_1016_j_inffus_2023_102135 crossref_primary_10_3390_fractalfract8040223 crossref_primary_10_1007_s40747_024_01600_2 crossref_primary_10_1007_s10515_023_00402_z crossref_primary_10_1016_j_swevo_2024_101644 crossref_primary_10_1016_j_eswa_2025_127214 crossref_primary_10_1016_j_ins_2023_119639 crossref_primary_10_1016_j_eswa_2024_124929 crossref_primary_10_1109_TCYB_2024_3412997 |
| Cites_doi | 10.1109/CEC.2005.1554761 10.25080/Majora-8b375195-004 10.1016/j.orp.2016.09.002 10.1287/opre.35.2.254 10.1007/BF00992698 10.1145/3377929.3398123 10.1287/trsc.31.2.170 10.3390/app11062749 10.1038/nature14236 10.1007/978-3-642-25566-3_49 10.1007/978-3-322-97815-8_4 10.1007/BF01009452 10.1023/A:1013661617536 10.1145/3377929.3390026 10.1109/TSMCB.2011.2148710 10.1109/MCI.2018.2806988 10.1145/2598394.2605681 10.1109/CEC.2017.7969636 10.1016/j.ins.2018.01.005 10.1007/978-3-319-99253-2_5 10.1007/BF02430370 10.1007/978-3-642-25566-3_40 10.1016/j.ins.2014.03.105 10.1016/j.swevo.2021.100935 10.1080/03155986.1999.11732386 10.1109/MCI.2020.2976182 10.1016/j.eswa.2005.12.014 10.1109/SITIS.2010.22 10.1609/aaai.v24i1.7565 10.1109/CDC.2000.912220 10.1007/978-3-642-02538-9_13 10.1287/trsc.1030.0057 10.1109/TPAMI.2021.3077106 10.1016/S0305-0548(03)00163-1 10.1109/EMPDP.2002.994313 10.1007/s10732-018-9397-6 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1109/TEVC.2022.3197298 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1084 |
| ExternalDocumentID | oai:nottingham-repository.worktribe.com:9907016 10_1109_TEVC_2022_3197298 9852781 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: School of Computer Science, University of Nottingham, U.K funderid: 10.13039/501100000837 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c336t-aab3c72d8b4bbad25bf92110a98c046701ab7c2dbae9b48a9e6172e40f321cf43 |
| IEDL.DBID | UNPAY |
| ISSN | 1089-778X 1941-0026 |
| IngestDate | Sun Oct 26 04:02:37 EDT 2025 Sun Sep 07 03:27:13 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Wed Oct 01 02:39:37 EDT 2025 Wed Aug 27 02:25:58 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-aab3c72d8b4bbad25bf92110a98c046701ab7c2dbae9b48a9e6172e40f321cf43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4764-0721 0000-0001-5822-8743 0000-0001-8318-7509 0000-0003-3354-9617 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/9907016 |
| PQID | 2844890602 |
| PQPubID | 85418 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2022_3197298 proquest_journals_2844890602 unpaywall_primary_10_1109_tevc_2022_3197298 crossref_citationtrail_10_1109_TEVC_2022_3197298 ieee_primary_9852781 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 chen (ref33) 2016 ref32 schulman (ref10) 2017 ref2 ref1 lópez-ibáñez (ref13) 2016; 3 ref17 (ref39) 0 ref19 ref18 mnih (ref9) 2015; 518 schuchardt (ref30) 2019 van stein (ref16) 2018 sutton (ref4) 2018 ref24 ref46 ref23 ref45 ref26 ref25 ref47 cowling (ref21) 2000 ref20 ref42 ref41 ref22 ref44 ref43 ref28 hutter (ref11) 2007; 7 ref27 ref29 pettinger (ref7) 2002 chen (ref8) 2005; 1 ref3 ref6 singh (ref38) 1995 ref5 ref40 |
| References_xml | – start-page: 176 year: 2000 ident: ref21 article-title: A hyperheuristic approach to scheduling a sales summit publication-title: Proc 2nd Int Conf Pract Theory Automated Timetabling – ident: ref14 doi: 10.1109/CEC.2005.1554761 – volume: 7 start-page: 1152 year: 2007 ident: ref11 article-title: Automatic algorithm configuration based on local search publication-title: Proc AAAI – ident: ref17 doi: 10.25080/Majora-8b375195-004 – volume: 3 start-page: 43 year: 2016 ident: ref13 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Perspectives on Operations Research doi: 10.1016/j.orp.2016.09.002 – year: 2018 ident: ref4 publication-title: Reinforcement Learning An Introduction – ident: ref35 doi: 10.1287/opre.35.2.254 – ident: ref6 doi: 10.1007/BF00992698 – start-page: 3 year: 2016 ident: ref33 article-title: An investigation on compound neighborhoods for VRPTW publication-title: Proc Int Conf Oper Res Enterprise Syst – ident: ref27 doi: 10.1145/3377929.3398123 – year: 2019 ident: ref30 article-title: Learning to evolve publication-title: arXiv 1905 03389 – year: 2017 ident: ref10 article-title: Proximal policy optimization algorithms publication-title: arXiv 1707 06347 – ident: ref44 doi: 10.1287/trsc.31.2.170 – ident: ref20 doi: 10.3390/app11062749 – volume: 518 start-page: 529 year: 2015 ident: ref9 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref22 doi: 10.1007/978-3-642-25566-3_49 – ident: ref42 doi: 10.1007/978-3-322-97815-8_4 – ident: ref34 doi: 10.1007/BF01009452 – ident: ref43 doi: 10.1023/A:1013661617536 – ident: ref31 doi: 10.1145/3377929.3390026 – ident: ref37 doi: 10.1109/TSMCB.2011.2148710 – start-page: 692 year: 2002 ident: ref7 article-title: Controlling genetic algorithms with reinforcement learning publication-title: Proc 4th Annu Conf Genet Evol Comput – ident: ref1 doi: 10.1109/MCI.2018.2806988 – ident: ref28 doi: 10.1145/2598394.2605681 – ident: ref23 doi: 10.1109/CEC.2017.7969636 – ident: ref5 doi: 10.1016/j.ins.2018.01.005 – year: 0 ident: ref39 publication-title: Vrptw benchmark problems on the sintef transport optimisation portal – ident: ref26 doi: 10.1007/978-3-319-99253-2_5 – ident: ref40 doi: 10.1007/BF02430370 – ident: ref15 doi: 10.1007/978-3-642-25566-3_40 – year: 2018 ident: ref16 article-title: Automatic configuration of deep neural networks with EGO publication-title: arXiv 1810 05526 – ident: ref18 doi: 10.1016/j.ins.2014.03.105 – ident: ref25 doi: 10.1016/j.swevo.2021.100935 – ident: ref41 doi: 10.1080/03155986.1999.11732386 – ident: ref3 doi: 10.1109/MCI.2020.2976182 – start-page: 361 year: 1995 ident: ref38 article-title: Reinforcement learning with soft state aggregation publication-title: Advances in neural information processing systems – ident: ref46 doi: 10.1016/j.eswa.2005.12.014 – ident: ref29 doi: 10.1109/SITIS.2010.22 – ident: ref19 doi: 10.1609/aaai.v24i1.7565 – volume: 1 start-page: 1177 year: 2005 ident: ref8 article-title: SCGA: Controlling genetic algorithms with SARSA (0) publication-title: Proc Int Conf Comput Intell Model Control Autom Int Conf Intell Agents Web Technol Internet Commerce (CIMCA-IAWTIC) – ident: ref36 doi: 10.1109/CDC.2000.912220 – ident: ref12 doi: 10.1007/978-3-642-02538-9_13 – ident: ref32 doi: 10.1287/trsc.1030.0057 – ident: ref2 doi: 10.1109/TPAMI.2021.3077106 – ident: ref45 doi: 10.1016/S0305-0548(03)00163-1 – ident: ref47 doi: 10.1109/EMPDP.2002.994313 – ident: ref24 doi: 10.1007/s10732-018-9397-6 |
| SSID | ssj0014519 |
| Score | 2.5695598 |
| Snippet | Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1072 |
| SubjectTerms | Adaptation models Algorithms Automated algorithm design Automation Combinatorial analysis Evolutionary computation general search framework Heuristic algorithms Heuristic methods Machine learning Machine learning algorithms metaheuristic Metaheuristics Optimization Reinforcement learning Search problems Vehicle routing vehicle routing problem |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VXoADhRbE0hb5wAnI1us4iX2s2q4qpO0BtbC3yB-TtuoqqSApgl9f23GiLiDELQdHTjRjzxv7zRuAd4IaW5lMJAJnWeIjVCLcVpkYpk2qZEEx9QXOi7P89IJ_WmbLDfg41sIgYiCf4dQ_hrt825jOH5UdSJGxwtdZPypE3tdqjTcGXialJ9NLhxjFMt5gzqg8OD_5cuQyQcZcgiodmBRrMSg0VVnDl4-7-lb9_KFWqwehZr4Fi-Eje4bJzbRr9dT8-k2_8X__4jk8i5iTHPZO8gI2sN6GraGfA4nLexuePhAn3IHLw65tHJ5FS44DzYM0FVlgq66wi_LOJBAOyGcM8qsmnDSSqNh6Sb5et1fXNVHkrLnDFYkC16QnOJP5wAp7CRfzk_Oj0yS2ZUhMmuZtopROTcGs0FxrZVmmK-nTSCWFcdl2QWdKF4ZZrVBqLpREj5KQ0yplM1Px9BVs1k2Nr4EIa4Q_2pMOBvGqsjo3HJlHOTy3RaUnQAdDlSZqlvvWGasy5C5Ult62pbdtGW07gffjK7e9YMe_Bu94-4wDo2kmsDd4QxmX9PfSxXEuJM0pm8CH0UP-mKPFO7M2x5u_z7ELT3zn-p5LuAeb7bcO9x2-afXb4Nj3Hiz2oA priority: 102 providerName: IEEE |
| Title | Automated Design of Metaheuristics Using Reinforcement Learning Within a Novel General Search Framework |
| URI | https://ieeexplore.ieee.org/document/9852781 https://www.proquest.com/docview/2844890602 https://nottingham-repository.worktribe.com/output/9907016 |
| UnpaywallVersion | submittedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH7aymHjABsMUWDIh502paSOk9jHilEhJKppolunHSLbcWi1LqnAAW2_HttxKgoSEtwdOZaf_b73_L3vAXyiocwLGdOAqn4cWA8VUHNVBhILGXGWhiqyBc7no-R0TM4m8cSzKm0tTFk5uu-U_w1s0vx6Zp-ae5ajZBtANfmlqtaLWh-ZezQ1gOU1rCWxweEdWBuPvg1-NYx6ZmAjnbgnZWLiZRNp-CfNfsiOtLqx6oUYm4iVGXRJV5yS67KyAjjf1OWC_7vl8_k93zPchN_tXzeUkz-9Woue_P9A0PFly3oHGx6SokFjQ-_hlSq3YLNt94D86d-C9XvahdtwOah1ZeCuytFXxwJBVYHOleZTVXv1Z-T4COi7cuqs0iUikRd0vUQ_Z3o6KxFHo-pGzZHXv0YN_xkNW9LYBxgPTy6OTwPftSGQUZTogHMRyRTnVBAheI5jUTAbZXJGpQnGzdq4SCXOBVdMEMqZsiBKkbCIcF8WJNqBTlmVahcQzSW1mT9mUBIpilwkkihsQRBJ8rQQXQjbbcuklzS3nTXmmQttQpZdnPw4zuxOZ36nu_B5-cmi0fN4avC2tYXlQEZjnNJ-Fw5a28j8ib_OjJsnlIVJiLvwZWkvj-awprcyx96zRu_DW9vvvmEgHkBHX9Xqo0FFWhy60sVDfwjuAK8vDMg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB1V5VA4UGhBXSjgAycgW6_jJPaxKl0t0N0D2sLeItuZtBWrpIKkCL4e23GiLiDELQdHTjRjzxv7zRuAl4KaojSJiAROkshFqEjYrTIyTJtYyYxi7Aqc54t0ds7fr5LVFrwZamEQ0ZPPcOwe_V1-UZvWHZUdSZGwzNVZ30k450lXrTXcGTihlI5OLy1mFKtwhzmh8mh5-unE5oKM2RRVWjgpNqKQb6uygTB32upa_fiu1utbwWa6C_P-MzuOyZdx2-ix-fmbguP__scDuB9QJznu3OQhbGG1B7t9RwcSFvge3LslT7gPF8dtU1tEiwV564kepC7JHBt1iW0QeCaeckA-ohdgNf6skQTN1gvy-aq5vKqIIov6BtckSFyTjuJMpj0v7BGcT0-XJ7MoNGaITBynTaSUjk3GCqG51qpgiS6lSySVFMbm2xmdKJ0ZVmiFUnOhJDqchJyWMZuYksePYbuqKzwAIgoj3OGetECIl2WhU8OROZzD0yIr9Qhob6jcBNVy1zxjnfvshcrc2TZ3ts2DbUfwanjlupPs-NfgfWefYWAwzQgOe2_Iw6L-lttIzoWkKWUjeD14yB9zNHhjNuZ48vc5XsDObDk_y8_eLT48hbuuj33HLDyE7eZri88s2mn0c-_kvwApkfnt |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wA8MPYDURjIDzxtSpc6TmI_VmPVhLQKoXUr2kNkO85aUZKKOUPw1-NLnGplEhK8X-RYPvu-O3_-DuA9D3Ve6JgH3AzjACNUwN1RGWiqdCRFGpoIHzifT5KzKfs4i2eeVYlvYcqqofvO5bcAi-a3C7xqHiBHCRtAtfWlqrar2h67czR1gOUxbCWxw-E92JpOPo2-tIx64WAjnzVXyszlyy7T8Feaw1AcW3OH6oWUuoxVOHTJN4JS02VlA3A-qcuV_PlDLpf3Ys94G667v24pJ18HtVUD_esPQcf_m9YLeO4hKRm1PrQDj0y5C9tduwfid_8uPLunXbgHN6PaVg7umpx8aFggpCrIubFybmqv_kwaPgL5bBp1Vt0UIokXdL0hVws7X5REkkl1Z5bE61-Tlv9Mxh1pbB-m49OLk7PAd20IdBQlNpBSRTqlOVdMKZnTWBUCs0wpuHbJuJubVKmmuZJGKMalMAiiDAuLiA51waKX0Cur0rwCwnPNsfInHEpiRZGrRDNDEQSxJE8L1YewW7ZMe0lz7KyxzJrUJhTZxenlSYYrnfmV7sPh-pNVq-fxN-M99IW1oeAxTfmwDwedb2R-x99mLswzLsIkpH04WvvLgzHQ9TbGeP1P1m_gKfa7bxmIB9Cz32vz1qEiq9559_8NaBALxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Design+of+Metaheuristics+Using+Reinforcement+Learning+Within+a+Novel+General+Search+Framework&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yi%2C+Wenjie&rft.au=Qu%2C+Rong&rft.au=Jiao%2C+Licheng&rft.au=Niu%2C+Ben&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=4&rft.spage=1072&rft.epage=1084&rft_id=info:doi/10.1109%2FTEVC.2022.3197298&rft.externalDocID=9852781 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |