Automated Design of Metaheuristics Using Reinforcement Learning Within a Novel General Search Framework

Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 27; no. 4; pp. 1072 - 1084
Main Authors Yi, Wenjie, Qu, Rong, Jiao, Licheng, Niu, Ben
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
1941-0026
DOI10.1109/TEVC.2022.3197298

Cover

Abstract Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning.
AbstractList Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep [Formula Omitted]-network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning.
Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning.
Author Niu, Ben
Qu, Rong
Jiao, Licheng
Yi, Wenjie
Author_xml – sequence: 1
  givenname: Wenjie
  orcidid: 0000-0002-4764-0721
  surname: Yi
  fullname: Yi, Wenjie
  email: wenjie.yi@nottingham.ac.uk
  organization: Computational Optimisation and Learning Lab, School of Computer Science, University of Nottingham, Nottingham, U.K
– sequence: 2
  givenname: Rong
  orcidid: 0000-0001-8318-7509
  surname: Qu
  fullname: Qu, Rong
  email: rong.qu@nottingham.ac.uk
  organization: Computational Optimisation and Learning Lab, School of Computer Science, University of Nottingham, Nottingham, U.K
– sequence: 3
  givenname: Licheng
  orcidid: 0000-0003-3354-9617
  surname: Jiao
  fullname: Jiao, Licheng
  email: lchjiao@mail.xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 4
  givenname: Ben
  orcidid: 0000-0001-5822-8743
  surname: Niu
  fullname: Niu, Ben
  email: drniuben@gmail.com
  organization: College of Management, Shenzhen University, Shenzhen, China
BookMark eNp9kU1PGzEQhq0qSAXKD0C9WOp5g-111vYxSoEihVbio-W2mnVmE9ONndpeEP-ejRL1kEo9eeSZ552Zd07IyAePhJxzNuacmYuHy5-zsWBCjEtulDD6AznmRvKCMVGNhphpUyilnz6Sk5SeGeNyws0xWU77HNaQcUG_YnJLT0NLbzHDCvvoUnY20cfk_JLeofNtiBbX6DOdI0S__f7l8sp5CvR7eMGOXqPHCB29H_J2Ra8irPE1xN-fyFELXcKz_XtKHq8uH2bfivmP65vZdF7YsqxyAdCUVomFbmTTwEJMmtaIYUEw2jJZKcahUVYsGkDTSA0GK64EStaWgttWlqdE7HR7v4G3V-i6ehPdGuJbzVm9tarO-GLrrVX13qoB-rKDNjH86THl-jn00Q9z1kJLqQ2rmBiq-K7KxpBSxPYf5e0RDpXVAWNdhuyCzxFc91_y8450iPi3k9EToTQv3wGbKJZ-
CODEN ITEVF5
CitedBy_id crossref_primary_10_3390_biomimetics9060307
crossref_primary_10_1109_ACCESS_2024_3422479
crossref_primary_10_1109_TCDS_2023_3345735
crossref_primary_10_1016_j_inffus_2023_102135
crossref_primary_10_3390_fractalfract8040223
crossref_primary_10_1007_s40747_024_01600_2
crossref_primary_10_1007_s10515_023_00402_z
crossref_primary_10_1016_j_swevo_2024_101644
crossref_primary_10_1016_j_eswa_2025_127214
crossref_primary_10_1016_j_ins_2023_119639
crossref_primary_10_1016_j_eswa_2024_124929
crossref_primary_10_1109_TCYB_2024_3412997
Cites_doi 10.1109/CEC.2005.1554761
10.25080/Majora-8b375195-004
10.1016/j.orp.2016.09.002
10.1287/opre.35.2.254
10.1007/BF00992698
10.1145/3377929.3398123
10.1287/trsc.31.2.170
10.3390/app11062749
10.1038/nature14236
10.1007/978-3-642-25566-3_49
10.1007/978-3-322-97815-8_4
10.1007/BF01009452
10.1023/A:1013661617536
10.1145/3377929.3390026
10.1109/TSMCB.2011.2148710
10.1109/MCI.2018.2806988
10.1145/2598394.2605681
10.1109/CEC.2017.7969636
10.1016/j.ins.2018.01.005
10.1007/978-3-319-99253-2_5
10.1007/BF02430370
10.1007/978-3-642-25566-3_40
10.1016/j.ins.2014.03.105
10.1016/j.swevo.2021.100935
10.1080/03155986.1999.11732386
10.1109/MCI.2020.2976182
10.1016/j.eswa.2005.12.014
10.1109/SITIS.2010.22
10.1609/aaai.v24i1.7565
10.1109/CDC.2000.912220
10.1007/978-3-642-02538-9_13
10.1287/trsc.1030.0057
10.1109/TPAMI.2021.3077106
10.1016/S0305-0548(03)00163-1
10.1109/EMPDP.2002.994313
10.1007/s10732-018-9397-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TEVC.2022.3197298
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1084
ExternalDocumentID oai:nottingham-repository.worktribe.com:9907016
10_1109_TEVC_2022_3197298
9852781
Genre orig-research
GrantInformation_xml – fundername: School of Computer Science, University of Nottingham, U.K
  funderid: 10.13039/501100000837
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c336t-aab3c72d8b4bbad25bf92110a98c046701ab7c2dbae9b48a9e6172e40f321cf43
IEDL.DBID UNPAY
ISSN 1089-778X
1941-0026
IngestDate Sun Oct 26 04:02:37 EDT 2025
Sun Sep 07 03:27:13 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Wed Oct 01 02:39:37 EDT 2025
Wed Aug 27 02:25:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-aab3c72d8b4bbad25bf92110a98c046701ab7c2dbae9b48a9e6172e40f321cf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4764-0721
0000-0001-5822-8743
0000-0001-8318-7509
0000-0003-3354-9617
OpenAccessLink https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/9907016
PQID 2844890602
PQPubID 85418
PageCount 13
ParticipantIDs crossref_primary_10_1109_TEVC_2022_3197298
proquest_journals_2844890602
unpaywall_primary_10_1109_tevc_2022_3197298
crossref_citationtrail_10_1109_TEVC_2022_3197298
ieee_primary_9852781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
chen (ref33) 2016
ref32
schulman (ref10) 2017
ref2
ref1
lópez-ibáñez (ref13) 2016; 3
ref17
(ref39) 0
ref19
ref18
mnih (ref9) 2015; 518
schuchardt (ref30) 2019
van stein (ref16) 2018
sutton (ref4) 2018
ref24
ref46
ref23
ref45
ref26
ref25
ref47
cowling (ref21) 2000
ref20
ref42
ref41
ref22
ref44
ref43
ref28
hutter (ref11) 2007; 7
ref27
ref29
pettinger (ref7) 2002
chen (ref8) 2005; 1
ref3
ref6
singh (ref38) 1995
ref5
ref40
References_xml – start-page: 176
  year: 2000
  ident: ref21
  article-title: A hyperheuristic approach to scheduling a sales summit
  publication-title: Proc 2nd Int Conf Pract Theory Automated Timetabling
– ident: ref14
  doi: 10.1109/CEC.2005.1554761
– volume: 7
  start-page: 1152
  year: 2007
  ident: ref11
  article-title: Automatic algorithm configuration based on local search
  publication-title: Proc AAAI
– ident: ref17
  doi: 10.25080/Majora-8b375195-004
– volume: 3
  start-page: 43
  year: 2016
  ident: ref13
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Perspectives on Operations Research
  doi: 10.1016/j.orp.2016.09.002
– year: 2018
  ident: ref4
  publication-title: Reinforcement Learning An Introduction
– ident: ref35
  doi: 10.1287/opre.35.2.254
– ident: ref6
  doi: 10.1007/BF00992698
– start-page: 3
  year: 2016
  ident: ref33
  article-title: An investigation on compound neighborhoods for VRPTW
  publication-title: Proc Int Conf Oper Res Enterprise Syst
– ident: ref27
  doi: 10.1145/3377929.3398123
– year: 2019
  ident: ref30
  article-title: Learning to evolve
  publication-title: arXiv 1905 03389
– year: 2017
  ident: ref10
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv 1707 06347
– ident: ref44
  doi: 10.1287/trsc.31.2.170
– ident: ref20
  doi: 10.3390/app11062749
– volume: 518
  start-page: 529
  year: 2015
  ident: ref9
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref22
  doi: 10.1007/978-3-642-25566-3_49
– ident: ref42
  doi: 10.1007/978-3-322-97815-8_4
– ident: ref34
  doi: 10.1007/BF01009452
– ident: ref43
  doi: 10.1023/A:1013661617536
– ident: ref31
  doi: 10.1145/3377929.3390026
– ident: ref37
  doi: 10.1109/TSMCB.2011.2148710
– start-page: 692
  year: 2002
  ident: ref7
  article-title: Controlling genetic algorithms with reinforcement learning
  publication-title: Proc 4th Annu Conf Genet Evol Comput
– ident: ref1
  doi: 10.1109/MCI.2018.2806988
– ident: ref28
  doi: 10.1145/2598394.2605681
– ident: ref23
  doi: 10.1109/CEC.2017.7969636
– ident: ref5
  doi: 10.1016/j.ins.2018.01.005
– year: 0
  ident: ref39
  publication-title: Vrptw benchmark problems on the sintef transport optimisation portal
– ident: ref26
  doi: 10.1007/978-3-319-99253-2_5
– ident: ref40
  doi: 10.1007/BF02430370
– ident: ref15
  doi: 10.1007/978-3-642-25566-3_40
– year: 2018
  ident: ref16
  article-title: Automatic configuration of deep neural networks with EGO
  publication-title: arXiv 1810 05526
– ident: ref18
  doi: 10.1016/j.ins.2014.03.105
– ident: ref25
  doi: 10.1016/j.swevo.2021.100935
– ident: ref41
  doi: 10.1080/03155986.1999.11732386
– ident: ref3
  doi: 10.1109/MCI.2020.2976182
– start-page: 361
  year: 1995
  ident: ref38
  article-title: Reinforcement learning with soft state aggregation
  publication-title: Advances in neural information processing systems
– ident: ref46
  doi: 10.1016/j.eswa.2005.12.014
– ident: ref29
  doi: 10.1109/SITIS.2010.22
– ident: ref19
  doi: 10.1609/aaai.v24i1.7565
– volume: 1
  start-page: 1177
  year: 2005
  ident: ref8
  article-title: SCGA: Controlling genetic algorithms with SARSA (0)
  publication-title: Proc Int Conf Comput Intell Model Control Autom Int Conf Intell Agents Web Technol Internet Commerce (CIMCA-IAWTIC)
– ident: ref36
  doi: 10.1109/CDC.2000.912220
– ident: ref12
  doi: 10.1007/978-3-642-02538-9_13
– ident: ref32
  doi: 10.1287/trsc.1030.0057
– ident: ref2
  doi: 10.1109/TPAMI.2021.3077106
– ident: ref45
  doi: 10.1016/S0305-0548(03)00163-1
– ident: ref47
  doi: 10.1109/EMPDP.2002.994313
– ident: ref24
  doi: 10.1007/s10732-018-9397-6
SSID ssj0014519
Score 2.5695598
Snippet Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1072
SubjectTerms Adaptation models
Algorithms
Automated algorithm design
Automation
Combinatorial analysis
Evolutionary computation
general search framework
Heuristic algorithms
Heuristic methods
Machine learning
Machine learning algorithms
metaheuristic
Metaheuristics
Optimization
Reinforcement learning
Search problems
Vehicle routing
vehicle routing problem
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VXoADhRbE0hb5wAnI1us4iX2s2q4qpO0BtbC3yB-TtuoqqSApgl9f23GiLiDELQdHTjRjzxv7zRuAd4IaW5lMJAJnWeIjVCLcVpkYpk2qZEEx9QXOi7P89IJ_WmbLDfg41sIgYiCf4dQ_hrt825jOH5UdSJGxwtdZPypE3tdqjTcGXialJ9NLhxjFMt5gzqg8OD_5cuQyQcZcgiodmBRrMSg0VVnDl4-7-lb9_KFWqwehZr4Fi-Eje4bJzbRr9dT8-k2_8X__4jk8i5iTHPZO8gI2sN6GraGfA4nLexuePhAn3IHLw65tHJ5FS44DzYM0FVlgq66wi_LOJBAOyGcM8qsmnDSSqNh6Sb5et1fXNVHkrLnDFYkC16QnOJP5wAp7CRfzk_Oj0yS2ZUhMmuZtopROTcGs0FxrZVmmK-nTSCWFcdl2QWdKF4ZZrVBqLpREj5KQ0yplM1Px9BVs1k2Nr4EIa4Q_2pMOBvGqsjo3HJlHOTy3RaUnQAdDlSZqlvvWGasy5C5Ult62pbdtGW07gffjK7e9YMe_Bu94-4wDo2kmsDd4QxmX9PfSxXEuJM0pm8CH0UP-mKPFO7M2x5u_z7ELT3zn-p5LuAeb7bcO9x2-afXb4Nj3Hiz2oA
  priority: 102
  providerName: IEEE
Title Automated Design of Metaheuristics Using Reinforcement Learning Within a Novel General Search Framework
URI https://ieeexplore.ieee.org/document/9852781
https://www.proquest.com/docview/2844890602
https://nottingham-repository.worktribe.com/output/9907016
UnpaywallVersion submittedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH7aymHjABsMUWDIh502paSOk9jHilEhJKppolunHSLbcWi1LqnAAW2_HttxKgoSEtwdOZaf_b73_L3vAXyiocwLGdOAqn4cWA8VUHNVBhILGXGWhiqyBc7no-R0TM4m8cSzKm0tTFk5uu-U_w1s0vx6Zp-ae5ajZBtANfmlqtaLWh-ZezQ1gOU1rCWxweEdWBuPvg1-NYx6ZmAjnbgnZWLiZRNp-CfNfsiOtLqx6oUYm4iVGXRJV5yS67KyAjjf1OWC_7vl8_k93zPchN_tXzeUkz-9Woue_P9A0PFly3oHGx6SokFjQ-_hlSq3YLNt94D86d-C9XvahdtwOah1ZeCuytFXxwJBVYHOleZTVXv1Z-T4COi7cuqs0iUikRd0vUQ_Z3o6KxFHo-pGzZHXv0YN_xkNW9LYBxgPTy6OTwPftSGQUZTogHMRyRTnVBAheI5jUTAbZXJGpQnGzdq4SCXOBVdMEMqZsiBKkbCIcF8WJNqBTlmVahcQzSW1mT9mUBIpilwkkihsQRBJ8rQQXQjbbcuklzS3nTXmmQttQpZdnPw4zuxOZ36nu_B5-cmi0fN4avC2tYXlQEZjnNJ-Fw5a28j8ib_OjJsnlIVJiLvwZWkvj-awprcyx96zRu_DW9vvvmEgHkBHX9Xqo0FFWhy60sVDfwjuAK8vDMg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB1V5VA4UGhBXSjgAycgW6_jJPaxKl0t0N0D2sLeItuZtBWrpIKkCL4e23GiLiDELQdHTjRjzxv7zRuAl4KaojSJiAROkshFqEjYrTIyTJtYyYxi7Aqc54t0ds7fr5LVFrwZamEQ0ZPPcOwe_V1-UZvWHZUdSZGwzNVZ30k450lXrTXcGTihlI5OLy1mFKtwhzmh8mh5-unE5oKM2RRVWjgpNqKQb6uygTB32upa_fiu1utbwWa6C_P-MzuOyZdx2-ix-fmbguP__scDuB9QJznu3OQhbGG1B7t9RwcSFvge3LslT7gPF8dtU1tEiwV564kepC7JHBt1iW0QeCaeckA-ohdgNf6skQTN1gvy-aq5vKqIIov6BtckSFyTjuJMpj0v7BGcT0-XJ7MoNGaITBynTaSUjk3GCqG51qpgiS6lSySVFMbm2xmdKJ0ZVmiFUnOhJDqchJyWMZuYksePYbuqKzwAIgoj3OGetECIl2WhU8OROZzD0yIr9Qhob6jcBNVy1zxjnfvshcrc2TZ3ts2DbUfwanjlupPs-NfgfWefYWAwzQgOe2_Iw6L-lttIzoWkKWUjeD14yB9zNHhjNuZ48vc5XsDObDk_y8_eLT48hbuuj33HLDyE7eZri88s2mn0c-_kvwApkfnt
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wA8MPYDURjIDzxtSpc6TmI_VmPVhLQKoXUr2kNkO85aUZKKOUPw1-NLnGplEhK8X-RYPvu-O3_-DuA9D3Ve6JgH3AzjACNUwN1RGWiqdCRFGpoIHzifT5KzKfs4i2eeVYlvYcqqofvO5bcAi-a3C7xqHiBHCRtAtfWlqrar2h67czR1gOUxbCWxw-E92JpOPo2-tIx64WAjnzVXyszlyy7T8Feaw1AcW3OH6oWUuoxVOHTJN4JS02VlA3A-qcuV_PlDLpf3Ys94G667v24pJ18HtVUD_esPQcf_m9YLeO4hKRm1PrQDj0y5C9tduwfid_8uPLunXbgHN6PaVg7umpx8aFggpCrIubFybmqv_kwaPgL5bBp1Vt0UIokXdL0hVws7X5REkkl1Z5bE61-Tlv9Mxh1pbB-m49OLk7PAd20IdBQlNpBSRTqlOVdMKZnTWBUCs0wpuHbJuJubVKmmuZJGKMalMAiiDAuLiA51waKX0Cur0rwCwnPNsfInHEpiRZGrRDNDEQSxJE8L1YewW7ZMe0lz7KyxzJrUJhTZxenlSYYrnfmV7sPh-pNVq-fxN-M99IW1oeAxTfmwDwedb2R-x99mLswzLsIkpH04WvvLgzHQ9TbGeP1P1m_gKfa7bxmIB9Cz32vz1qEiq9559_8NaBALxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Design+of+Metaheuristics+Using+Reinforcement+Learning+Within+a+Novel+General+Search+Framework&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Yi%2C+Wenjie&rft.au=Qu%2C+Rong&rft.au=Jiao%2C+Licheng&rft.au=Niu%2C+Ben&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=4&rft.spage=1072&rft.epage=1084&rft_id=info:doi/10.1109%2FTEVC.2022.3197298&rft.externalDocID=9852781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon