A Hybrid MPI–OpenMP Parallel Algorithm and Performance Analysis for an Ensemble Square Root Filter Designed for Multiscale Observations
A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communic...
Saved in:
| Published in | Journal of atmospheric and oceanic technology Vol. 30; no. 7; pp. 1382 - 1397 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
American Meteorological Society
01.07.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0739-0572 1520-0426 |
| DOI | 10.1175/JTECH-D-12-00165.1 |
Cover
| Abstract | A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multiprocessing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii.
The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm. |
|---|---|
| AbstractList | A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multiprocessing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii.The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm. A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multiprocessing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii. The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm. A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multi-processing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii. The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI-OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on super-computers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm. [PUBLICATION ABSTRACT] |
| Author | Wang, Yunheng Xue, Ming Supinie, Timothy A. Jung, Youngsun |
| Author_xml | – sequence: 1 givenname: Yunheng surname: Wang fullname: Wang, Yunheng organization: Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma – sequence: 2 givenname: Youngsun surname: Jung fullname: Jung, Youngsun organization: Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma – sequence: 3 givenname: Timothy A. surname: Supinie fullname: Supinie, Timothy A. organization: Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma – sequence: 4 givenname: Ming surname: Xue fullname: Xue, Ming organization: Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma |
| BookMark | eNp9kTFv2zAQhYkiAeok_QOdCHTpopRHSpQ4GrHTpIhho01ngpJOKQOKdEipgLesmfMP80sqO50yZDrg7nsP9_BOyJEPHgn5DOwcoCy-_bhdXlxliwx4xhjI4hw-kBkUnGUs5_KIzFgpVMaKkn8kJynds4kSIGfkaU6vdnW0LV1trl8en9db9KsN3ZhonENH5-4uRDv86anxLd1g7ELsjW-Qzr1xu2QTnTbTkS59wr52SH89jCYi_RnCQC-tGzDSBSZ757E9sKvRDTY1ZkLXdcL41ww2-HRGjjvjEn76P0_J78vl7ZTqZv39-mJ-kzVCyCFTlaxZg0YA61TdNMbkZS542wmpqrKT2FSdlLxlLMcaDFMCjDIqL7taFaJW4pR8ffXdxvAwYhp0P32DzhmPYUwaclBCSgkwoV_eoPdhjFPupHnFJc9ZDuV7FOR8ek6C2ntVr1QTQ0oRO93Y4ZB8iMY6DUzvm9SHJvVCA9eHJvVeyt9It9H2Ju7eE_0DMVOkPQ |
| CitedBy_id | crossref_primary_10_1175_WAF_D_19_0165_1 crossref_primary_10_1109_JSTARS_2021_3085893 crossref_primary_10_1175_JTECH_D_16_0140_1 crossref_primary_10_1016_j_cageo_2017_08_002 crossref_primary_10_1175_MWR_D_15_0171_1 crossref_primary_10_1080_16000870_2018_1445364 crossref_primary_10_1175_MWR_D_13_00262_1 crossref_primary_10_1175_WAF_D_16_0159_1 crossref_primary_10_1109_MGRS_2022_3145478 crossref_primary_10_1002_qj_3038 crossref_primary_10_1175_WAF_D_16_0178_1 crossref_primary_10_1175_MWR_D_18_0022_1 crossref_primary_10_1175_MWR_D_18_0236_1 crossref_primary_10_1016_j_procs_2015_08_308 crossref_primary_10_3390_info11100467 |
| Cites_doi | 10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2 10.1175/MWR3021.1 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2 10.1175/MWR-D-11-00032.1 10.1175/JTECH2049.1 10.1175/2009MWR3017.1 10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2 10.1002/qj.593 10.1111/j.1600-0870.2007.00274.x 10.1175/JAS3534.1 10.1175/2007MWR2288.1 10.1109/TPDS.2007.1038 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 10.1175/MWR3024.1 10.1002/qj.453 10.1007/s007030170027 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1175/MWR-D-10-05053.1 10.1002/qj.1987 10.1175/1520-0493(1996)124<0085:AOGADF>2.0.CO;2 10.1175/2010MWR3438.1 10.1175/2007MWR2071.1 10.1007/s007030070003 10.1029/94JC00572 10.1007/s10236-003-0036-9 10.1016/S0167-8191(97)80002-6 10.1111/j.1600-0870.2009.00417.x 10.1175/1520-0469(1981)038<1643:TMOSTS>2.0.CO;2 10.1175/MWR3105.1 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 10.1175/2010MWR3456.1 10.1007/s00703-001-0595-6 10.1175/JTECH1835.1 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2 10.1175/2009MWR3158.1 10.1175//2555.1 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2 10.1175/1520-0493(2002)130<2951:ITOAMP>2.0.CO;2 10.1111/j.1600-0870.1986.tb00459.x 10.1002/qj.49711347813 10.1175/MWR2898.1 10.1007/s00703-011-0130-3 |
| ContentType | Journal Article |
| Copyright | Copyright American Meteorological Society Jul 2013 Copyright American Meteorological Society 2013 |
| Copyright_xml | – notice: Copyright American Meteorological Society Jul 2013 – notice: Copyright American Meteorological Society 2013 |
| DBID | AAYXX CITATION 3V. 7TG 7TN 7UA 7XB 88F 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H8D H96 HCIFZ KL. L.G L7M M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U S0X PRINS 7TB FR3 |
| DOI | 10.1175/JTECH-D-12-00165.1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic SIRS Editorial ProQuest Central China Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest Science Journals ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) ProQuest Central China Engineering Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Research Library Prep CrossRef Aerospace Database Research Library Prep |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Oceanography |
| EISSN | 1520-0426 |
| EndPage | 1397 |
| ExternalDocumentID | 3053188441 10_1175_JTECH_D_12_00165_1 |
| Genre | Feature |
| GroupedDBID | .4S .DC 29J 2WC 4.4 5GY 7XC 88I 8AF 8CJ 8FE 8FG 8FH 8G5 8R4 8R5 AAYXX ABDBF ABDNZ ABUWG ACGFO ACGOD ACUHS AENEX AEUYN AFKRA AFRAH AGFAN ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BENPR BES BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION CS3 D1J D1K DU5 DWQXO E3Z EAD EAP EBS EDH EDO EJD EMK EPL EST ESX F8P FRP GNUQQ GUQSH H13 HCIFZ I-F K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PUEGO PYCSY Q2X QF4 QM1 QN7 QO4 RWA RWE RWL RXW S0X TAE TUS U5U UNMZH 3V. 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M MBDVC PKEHL PQEST PQUKI Q9U PRINS 7TB FR3 |
| ID | FETCH-LOGICAL-c336t-986b0cea310f9bccaa47432df36987f6ec8f662d004eb1a0931a9a947fb953b93 |
| IEDL.DBID | BENPR |
| ISSN | 0739-0572 |
| IngestDate | Thu Oct 02 06:44:48 EDT 2025 Sat Aug 23 13:03:21 EDT 2025 Sat Aug 23 12:48:30 EDT 2025 Thu Apr 24 22:52:54 EDT 2025 Wed Oct 01 05:11:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-986b0cea310f9bccaa47432df36987f6ec8f662d004eb1a0931a9a947fb953b93 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1427436191 |
| PQPubID | 33207 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1419366611 proquest_journals_2826240417 proquest_journals_1427436191 crossref_citationtrail_10_1175_JTECH_D_12_00165_1 crossref_primary_10_1175_JTECH_D_12_00165_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Journal of atmospheric and oceanic technology |
| PublicationYear | 2013 |
| Publisher | American Meteorological Society |
| Publisher_xml | – name: American Meteorological Society |
| References | Sathye (2020061220490596000_bib31) 1997; 23 Jung (2020061220490596000_bib20) 2008; 136 Tong (2020061220490596000_bib37) 2005; 133 Anderson (2020061220490596000_bib2) 2003; 131 Xue (2020061220490596000_bib44) 2001; 76 Anderson (2020061220490596000_bib3) 2007; 24 Zhang (2020061220490596000_bib51) 2005; 133 Xue (2020061220490596000_bib47) 2007 Tong (2020061220490596000_bib38) 2008; 136 Burgers (2020061220490596000_bib7) 1998; 126 Bishop (2020061220490596000_bib4) 2001; 129 Houtekamer (2020061220490596000_bib19) 1998; 126 Xue (2020061220490596000_bib46) 2006; 23 Xue (2020061220490596000_bib45) 2003; 82 Jung (2020061220490596000_bib21) 2012; 140 2020061220490596000_bib50 Campbell (2020061220490596000_bib8) 2010; 138 Hamill (2020061220490596000_bib18) 2011; 139 Liu (2020061220490596000_bib25) 2006; 134 Xue (2020061220490596000_bib48) 2009; 135 Gao (2020061220490596000_bib17) 1998 Anderson (2020061220490596000_bib1) 2001; 129 Dong (2020061220490596000_bib11) 2011; 112 Courtier (2020061220490596000_bib10) 1987; 113 Li (2020061220490596000_bib24) 2007; 18 Xue (2020061220490596000_bib43) 2000; 75 Wang (2020061220490596000_bib39) 2013; 139 Xue (2020061220490596000_bib49) 2010; 136 Xue (2020061220490596000_bib42) 1996 Dowell (2020061220490596000_bib12) 2004; 132 Michalakes (2020061220490596000_bib26) 2004 Tippett (2020061220490596000_bib36) 2003; 131 Snook (2020061220490596000_bib32) 2011; 139 2020061220490596000_bib5 Le Dimet (2020061220490596000_bib23) 1986; 38A Keppenne (2020061220490596000_bib22) 2002; 130 Parashar (2020061220490596000_bib28) 2010 Buehner (2020061220490596000_bib6) 2010; 138 Dowell (2020061220490596000_bib13) 2011; 139 Whitaker (2020061220490596000_bib40) 2002; 130 Wu (2020061220490596000_bib41) 2000; 57 Milbrandt (2020061220490596000_bib27) 2005; 62 Snyder (2020061220490596000_bib33) 2003; 131 Caya (2020061220490596000_bib9) 2005; 133 Evensen (2020061220490596000_bib15) 2003; 53 Evensen (2020061220490596000_bib14) 1994; 99 Sakov (2020061220490596000_bib30) 2010; 62 Sun (2020061220490596000_bib34) 1997; 54 Evensen (2020061220490596000_bib16) 1996; 124 Ray (2020061220490596000_bib29) 1981; 38 Szunyogh (2020061220490596000_bib35) 2008; 60A |
| References_xml | – year: 2004 ident: 2020061220490596000_bib26 – volume: 132 start-page: 1982 year: 2004 ident: 2020061220490596000_bib12 article-title: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2 – volume: 133 start-page: 3081 year: 2005 ident: 2020061220490596000_bib9 article-title: A comparison between the 4D-VAR and the ensemble Kalman filter techniques for radar data assimilation publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3021.1 – volume: 131 start-page: 634 year: 2003 ident: 2020061220490596000_bib2 article-title: A local least square framework for ensemble filtering publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2 – volume: 140 start-page: 1457 year: 2012 ident: 2020061220490596000_bib21 article-title: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric data publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-11-00032.1 – volume: 24 start-page: 1452 year: 2007 ident: 2020061220490596000_bib3 article-title: Scalable implementations of ensemble filter algorithms for data assimilation publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/JTECH2049.1 – volume: 138 start-page: 282 year: 2010 ident: 2020061220490596000_bib8 article-title: Vertical covariance localization for satellite radiances in ensemble Kalman filters publication-title: Mon. Wea. Rev. doi: 10.1175/2009MWR3017.1 – volume: 57 start-page: 262 year: 2000 ident: 2020061220490596000_bib41 article-title: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2 – volume: 136 start-page: 685 year: 2010 ident: 2020061220490596000_bib49 article-title: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.593 – volume: 60A start-page: 113 year: 2008 ident: 2020061220490596000_bib35 article-title: A local ensemble tranform Kalman filter data assimilation system for the NCEP global model publication-title: Tellus doi: 10.1111/j.1600-0870.2007.00274.x – volume: 62 start-page: 3051 year: 2005 ident: 2020061220490596000_bib27 article-title: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter publication-title: J. Atmos. Sci. doi: 10.1175/JAS3534.1 – volume: 136 start-page: 2246 year: 2008 ident: 2020061220490596000_bib20 article-title: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis publication-title: Mon. Wea. Rev. doi: 10.1175/2007MWR2288.1 – volume: 18 start-page: 1202 year: 2007 ident: 2020061220490596000_bib24 article-title: Hybrid runtime management of space-time heterogeneity for parallel structured adaptive applications publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2007.1038 – volume: 129 start-page: 420 year: 2001 ident: 2020061220490596000_bib4 article-title: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 – volume: 133 start-page: 3176 year: 2005 ident: 2020061220490596000_bib51 article-title: Initialization of an ENSO forecast system using a parallelized ensemble filter publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3024.1 – volume: 135 start-page: 1409 year: 2009 ident: 2020061220490596000_bib48 article-title: Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated data publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.453 – volume: 76 start-page: 143 year: 2001 ident: 2020061220490596000_bib44 article-title: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications publication-title: Meteor. Atmos. Phys. doi: 10.1007/s007030170027 – volume: 129 start-page: 2884 year: 2001 ident: 2020061220490596000_bib1 article-title: An ensemble adjustment Kalman filter for data assimilation publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – year: 1998 ident: 2020061220490596000_bib17 – volume: 139 start-page: 3446 year: 2011 ident: 2020061220490596000_bib32 article-title: Analysis of a tornadic meoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-10-05053.1 – volume: 139 start-page: 805 year: 2013 ident: 2020061220490596000_bib39 article-title: A four-dimensional asynchronous ensemble square-root filter (4DEnSRF) algorithm and tests with simulated radar data publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.1987 – year: 1996 ident: 2020061220490596000_bib42 – volume: 124 start-page: 85 year: 1996 ident: 2020061220490596000_bib16 article-title: Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble Kalman filter with a quasigeostrophic model publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1996)124<0085:AOGADF>2.0.CO;2 – volume: 139 start-page: 272 year: 2011 ident: 2020061220490596000_bib13 article-title: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influence of reflectivity observations on storm-scale analysis publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3438.1 – year: 2007 ident: 2020061220490596000_bib47 – volume: 136 start-page: 1649 year: 2008 ident: 2020061220490596000_bib38 article-title: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments publication-title: Mon. Wea. Rev. doi: 10.1175/2007MWR2071.1 – volume: 75 start-page: 161 year: 2000 ident: 2020061220490596000_bib43 article-title: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification publication-title: Meteor. Atmos. Phys. doi: 10.1007/s007030070003 – volume: 99 start-page: 10 143 issue: C5 year: 1994 ident: 2020061220490596000_bib14 article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics publication-title: J. Geophys. Res. doi: 10.1029/94JC00572 – volume: 53 start-page: 343 year: 2003 ident: 2020061220490596000_bib15 article-title: The ensemble Kalman filter: Theoretical formulation and practical implementation publication-title: Ocean Dyn. doi: 10.1007/s10236-003-0036-9 – volume: 23 start-page: 2243 year: 1997 ident: 2020061220490596000_bib31 article-title: Parallel weather modeling with the Advanced Regional Prediction System publication-title: Parallel Comput. doi: 10.1016/S0167-8191(97)80002-6 – volume: 62 start-page: 24 year: 2010 ident: 2020061220490596000_bib30 article-title: Asynchronous data assimilation with the EnKF publication-title: Tellus doi: 10.1111/j.1600-0870.2009.00417.x – volume: 38 start-page: 1643 year: 1981 ident: 2020061220490596000_bib29 article-title: The morphology of several tornadic storms on 20 May 1977 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1981)038<1643:TMOSTS>2.0.CO;2 – volume: 134 start-page: 933 year: 2006 ident: 2020061220490596000_bib25 article-title: Retrieval of moisture from slant-path water vapor observations of a hypothetical GPS network using a three-dimensional variational scheme with anisotropic background error publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3105.1 – volume: 126 start-page: 796 year: 1998 ident: 2020061220490596000_bib19 article-title: Data assimilation using an ensemble Kalman filter technique publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 – volume: 130 start-page: 1913 year: 2002 ident: 2020061220490596000_bib40 article-title: Ensemble data assimilation without perturbed observations publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 – volume: 139 start-page: 668 year: 2011 ident: 2020061220490596000_bib18 article-title: Global ensemble predictions of 2009's tropical cyclones initialized with an ensemble Kalman filter publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3456.1 – ident: 2020061220490596000_bib5 – volume: 82 start-page: 139 year: 2003 ident: 2020061220490596000_bib45 article-title: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation publication-title: Meteor. Atmos. Phys. doi: 10.1007/s00703-001-0595-6 – volume: 23 start-page: 46 year: 2006 ident: 2020061220490596000_bib46 article-title: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/JTECH1835.1 – volume: 131 start-page: 1485 year: 2003 ident: 2020061220490596000_bib36 article-title: Ensemble square root filters publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2 – volume: 138 start-page: 1567 year: 2010 ident: 2020061220490596000_bib6 article-title: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations publication-title: Mon. Wea. Rev. doi: 10.1175/2009MWR3158.1 – volume: 131 start-page: 1663 year: 2003 ident: 2020061220490596000_bib33 article-title: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter publication-title: Mon. Wea. Rev. doi: 10.1175//2555.1 – volume: 126 start-page: 1719 year: 1998 ident: 2020061220490596000_bib7 article-title: Analysis scheme in the ensemble Kalman filter publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 – volume: 54 start-page: 1642 year: 1997 ident: 2020061220490596000_bib34 article-title: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2 – volume: 130 start-page: 2951 year: 2002 ident: 2020061220490596000_bib22 article-title: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2002)130<2951:ITOAMP>2.0.CO;2 – volume: 38A start-page: 97 year: 1986 ident: 2020061220490596000_bib23 article-title: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects publication-title: Tellus doi: 10.1111/j.1600-0870.1986.tb00459.x – year: 2010 ident: 2020061220490596000_bib28 – volume: 113 start-page: 1329 year: 1987 ident: 2020061220490596000_bib10 article-title: Variational assimilation of meteorological observations with the adjoint equation. Part II: Numerical results publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49711347813 – volume: 133 start-page: 1789 year: 2005 ident: 2020061220490596000_bib37 article-title: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments publication-title: Mon. Wea. Rev. doi: 10.1175/MWR2898.1 – volume: 112 start-page: 41 year: 2011 ident: 2020061220490596000_bib11 article-title: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter publication-title: Meteor. Atmos. Phys. doi: 10.1007/s00703-011-0130-3 – ident: 2020061220490596000_bib50 |
| SSID | ssj0001316 |
| Score | 2.1547854 |
| Snippet | A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1382 |
| SubjectTerms | Algorithms Analysis Communication Communication satellites Computer memory Configurations Data assimilation Data collection Decomposition Distributed shared memory Domain decomposition Localization Marine Message passing Multiprocessing Multiprocessing (computers) Nodes Parallel programming Radar Radar data Radar systems Roots Satellite observation Supercomputers Topology Variables Weather forecasting |
| Title | A Hybrid MPI–OpenMP Parallel Algorithm and Performance Analysis for an Ensemble Square Root Filter Designed for Multiscale Observations |
| URI | https://www.proquest.com/docview/1427436191 https://www.proquest.com/docview/2826240417 https://www.proquest.com/docview/1419366611 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1520-0426 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001316 issn: 0739-0572 databaseCode: ABDBF dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1520-0426 dateEnd: 20231101 omitProxy: true ssIdentifier: ssj0001316 issn: 0739-0572 databaseCode: BENPR dateStart: 20010202 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1520-0426 dateEnd: 20231101 omitProxy: true ssIdentifier: ssj0001316 issn: 0739-0572 databaseCode: 8FG dateStart: 20010202 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QtCQjBAFEZlJMQLCqtjJ7EfJtSuDWVSu2hs0t4sx3FgUpdsbfawv4B_m7OXdJqE9pg43_eR39l39wP4HIrICIy70L7zIuBGMrQ5I4KRA8c25yX3Fd6LZTw_58cX0cUOLLtaGJdW2flE76iL2rg58gPKMX5iCPfp9-ubwLFGudXVjkJDt9QKxaFvMbYL_dB1xupBfzJbZqdb30yZJ0N1y1MBIpWwK6NJooPjs9nRPJj6VAVX4_ONPv5VPfbU_veTvoQXLW4k43tBv4IdW-3BYIGQt177mXHyhRytLhF_-q09eH5irK7ahtSv4e-YzO9cdRZZZD8Dl0ayyEim145KBS-7-o3v2vy5IroqSPZQTEC6piUE9-AgmVUbe5WvLPl1g8plyWldNyS9dGvuZOqzQWzhj_WVvRvUAEtO8u3U7-YNnKezM_wELQlDYBiLm0CKOB_hAyMMLGWO8tYc5RAWJYulSMrYGlHGcVigsaHb1yPJqJZa8qTMZcRyyd5Cr6or-w5IzBzTNWdGRJoLI0U0YiWLUItcUx3DBkC7761M26HcEWWslI9Ukkh5GampoqHyMlJ0AF-351zf9-d48uj9ToyqtdWNetCs_w5jTBoj7OE0GcCn7TAaoVtZ0ZWtb90lEAdjIEjp-6fv8AGehZ5Pw-X77kOvWd_aj4hqmnwIuyL9MYT-eDKdpMNWcf8BgQD2cg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swELcQPGyahBjbtA7YPGnby5RRx44bP6CJ0VYtkBKxIvHm2Y4DSCWBJmjiE-xb7bPtbJIipIk3HhM7f-_s-519dz-EPoVxZGLwu2B86yxgRlAYcyYOug4cW81y5jO8kwkfnbD90-h0Cf1tc2FcWGU7J_qJOiuNWyPfJgz8Jwpwn3y_ug4ca5TbXW0pNFRDrZDt-BJjTWLHgb39DS5ctTPug7w_h-FwMN0bBQ3LQGAo5XUgYq67xirAObnQ8EGKwYPCLKcc_PGcWxPnnIcZaBPMa6orKFFCCdbLtYiodsWYwASsMMoEOH8rPwaT9HhhCwj15KtuOywAZBS2aTu9aHt_OoB36fvQCJdT9I08NI0PLYM3d8M1tNrgVLx7p1gv0ZIt1lEnAYhdzv1KPP6C92YXgHf90Tp6cQRfVzQFsF-hP7t4dOuywXCSjgMXtpKkOFVzR90Ct52dwb-tzy-xKjKc3icv4LZICoYz0IgHRWUv9czin9egzBYfl2WNhxdujx_3ffSJzXxfn0lcgcZZfKQXS83Va3TyJOJ4g5aLsrBvEebUMWszauJIsdiIOOrSnEagta6Ij6EdRNr_LU1TEd0Rc8yk94x6kfQykn1JQullJEkHfV1cc3VXD-TR3putGGUzN1TyXpP_2ww-MAeYxUivgz4ummHQu50cVdjyxt0CcDc4noS8e_wJH9Cz0TQ5lIfjycEGeh56Lg8Xa7yJluv5jd0CRFXr943aYvTrqUfKPznSMVs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISGEhGCAKBtgJOAFhdaxc3tAaFoa2o1uEWzS3oztOGxSl2xNJrRfwH_i13GOm3SahPa2x8SOneRc_B37XAh558eBicHuAvnWhSdMwkHmTOyNEBxbLUrhIrxn--HkSOweB8dr5G8fC4Nulb1OdIq6qA3ukQ-ZAPuJA9xnw7Jzi8jT7Mv5hYcVpPCktS-nsWSRPXv1G8y35vM0BVq_9_1sfLgz8boKA57hPGy9JA71yFgFGKdMNHyMEjCJX5Q8BFu8DK2JyzD0C-Ak0GkKrH-mEpWIqNRJwDUmYgL1fy_CLO4YpZ59Xa0CjLuyq3gQ5gEm8vuAnSgY7h6O4U1S5xSB0USf2M1F8eaa4Ba67DF51CFUur1kqSdkzVYbZDADcF0v3B48_UB35qeAdN3VBnl4AN9Wdamvn5I_23RyhXFgdJZPPXRYmeU0Vwss2gLDzn_Bn2xPzqiqCppfhy3QPj0KhTvQSMdVY8_03NIfF8DGln6v65Zmp3i6T1Pnd2IL19fFEDfAa5Ye6NUmc_OMHN0JMZ6T9aqu7AtCQ441tQU3caBEbJI4GPGSB8CvmL7H8AFh_f-WpsuFjiU55tLZRFEgHY1kKpkvHY0kG5CPq2fOl5lAbu291ZNRdlqhkdc8_N9msH5DAFiCRQPydtUM4o5nOKqy9SUOAYgbTE7GXt4-wxtyH-RDfpvu722SB74r4oFOxltkvV1c2lcApVr92vEsJT_vWkj-Ad0SLvU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+MPI-OpenMP+Parallel+Algorithm+and+Performance+Analysis+for+an+Ensemble+Square+Root+Filter+Designed+for+Multiscale+Observations&rft.jtitle=Journal+of+atmospheric+and+oceanic+technology&rft.au=Wang%2C+Yunheng&rft.au=Jung%2C+Youngsun&rft.au=Supinie%2C+Timothy+A&rft.au=Xue%2C+Ming&rft.date=2013-07-01&rft.pub=American+Meteorological+Society&rft.issn=0739-0572&rft.eissn=1520-0426&rft.volume=30&rft.issue=7&rft.spage=1382&rft_id=info:doi/10.1175%2FJTECH-D-12-00165.1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3053188441 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-0572&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-0572&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-0572&client=summon |