A Hybrid MPI–OpenMP Parallel Algorithm and Performance Analysis for an Ensemble Square Root Filter Designed for Multiscale Observations

A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communic...

Full description

Saved in:
Bibliographic Details
Published inJournal of atmospheric and oceanic technology Vol. 30; no. 7; pp. 1382 - 1397
Main Authors Wang, Yunheng, Jung, Youngsun, Supinie, Timothy A., Xue, Ming
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.07.2013
Subjects
Online AccessGet full text
ISSN0739-0572
1520-0426
DOI10.1175/JTECH-D-12-00165.1

Cover

Abstract A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multiprocessing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii. The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm.
AbstractList A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multiprocessing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii.The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm.
A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multiprocessing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii. The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm.
A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense observational networks such as those of radar, is developed based on the domain decomposition strategy. The scheme handles internode communication through a message passing interface (MPI) and the communication within shared-memory nodes via Open Multi-processing (OpenMP) threads. It also supports pure MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional observations that usually have larger covariance localization radii. The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel program shows good scalability in pure MPI and hybrid MPI-OpenMP modes, while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is found that in MPI mode, better parallel performance is achieved with domain decomposition configurations in which the leading dimension of the state variable arrays is larger, because this configuration allows for more efficient memory access. Given a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on super-computers with nodes containing shared-memory cores. The overall performance is also affected by factors such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with a large number of radars confirm that the parallel data assimilation can be done on a multicore supercomputer with a significant speedup compared to the serial data assimilation algorithm. [PUBLICATION ABSTRACT]
Author Wang, Yunheng
Xue, Ming
Supinie, Timothy A.
Jung, Youngsun
Author_xml – sequence: 1
  givenname: Yunheng
  surname: Wang
  fullname: Wang, Yunheng
  organization: Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
– sequence: 2
  givenname: Youngsun
  surname: Jung
  fullname: Jung, Youngsun
  organization: Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
– sequence: 3
  givenname: Timothy A.
  surname: Supinie
  fullname: Supinie, Timothy A.
  organization: Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
– sequence: 4
  givenname: Ming
  surname: Xue
  fullname: Xue, Ming
  organization: Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
BookMark eNp9kTFv2zAQhYkiAeok_QOdCHTpopRHSpQ4GrHTpIhho01ngpJOKQOKdEipgLesmfMP80sqO50yZDrg7nsP9_BOyJEPHgn5DOwcoCy-_bhdXlxliwx4xhjI4hw-kBkUnGUs5_KIzFgpVMaKkn8kJynds4kSIGfkaU6vdnW0LV1trl8en9db9KsN3ZhonENH5-4uRDv86anxLd1g7ELsjW-Qzr1xu2QTnTbTkS59wr52SH89jCYi_RnCQC-tGzDSBSZ757E9sKvRDTY1ZkLXdcL41ww2-HRGjjvjEn76P0_J78vl7ZTqZv39-mJ-kzVCyCFTlaxZg0YA61TdNMbkZS542wmpqrKT2FSdlLxlLMcaDFMCjDIqL7taFaJW4pR8ffXdxvAwYhp0P32DzhmPYUwaclBCSgkwoV_eoPdhjFPupHnFJc9ZDuV7FOR8ek6C2ntVr1QTQ0oRO93Y4ZB8iMY6DUzvm9SHJvVCA9eHJvVeyt9It9H2Ju7eE_0DMVOkPQ
CitedBy_id crossref_primary_10_1175_WAF_D_19_0165_1
crossref_primary_10_1109_JSTARS_2021_3085893
crossref_primary_10_1175_JTECH_D_16_0140_1
crossref_primary_10_1016_j_cageo_2017_08_002
crossref_primary_10_1175_MWR_D_15_0171_1
crossref_primary_10_1080_16000870_2018_1445364
crossref_primary_10_1175_MWR_D_13_00262_1
crossref_primary_10_1175_WAF_D_16_0159_1
crossref_primary_10_1109_MGRS_2022_3145478
crossref_primary_10_1002_qj_3038
crossref_primary_10_1175_WAF_D_16_0178_1
crossref_primary_10_1175_MWR_D_18_0022_1
crossref_primary_10_1175_MWR_D_18_0236_1
crossref_primary_10_1016_j_procs_2015_08_308
crossref_primary_10_3390_info11100467
Cites_doi 10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2
10.1175/MWR3021.1
10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
10.1175/MWR-D-11-00032.1
10.1175/JTECH2049.1
10.1175/2009MWR3017.1
10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2
10.1002/qj.593
10.1111/j.1600-0870.2007.00274.x
10.1175/JAS3534.1
10.1175/2007MWR2288.1
10.1109/TPDS.2007.1038
10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
10.1175/MWR3024.1
10.1002/qj.453
10.1007/s007030170027
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1175/MWR-D-10-05053.1
10.1002/qj.1987
10.1175/1520-0493(1996)124<0085:AOGADF>2.0.CO;2
10.1175/2010MWR3438.1
10.1175/2007MWR2071.1
10.1007/s007030070003
10.1029/94JC00572
10.1007/s10236-003-0036-9
10.1016/S0167-8191(97)80002-6
10.1111/j.1600-0870.2009.00417.x
10.1175/1520-0469(1981)038<1643:TMOSTS>2.0.CO;2
10.1175/MWR3105.1
10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
10.1175/2010MWR3456.1
10.1007/s00703-001-0595-6
10.1175/JTECH1835.1
10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
10.1175/2009MWR3158.1
10.1175//2555.1
10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
10.1175/1520-0493(2002)130<2951:ITOAMP>2.0.CO;2
10.1111/j.1600-0870.1986.tb00459.x
10.1002/qj.49711347813
10.1175/MWR2898.1
10.1007/s00703-011-0130-3
ContentType Journal Article
Copyright Copyright American Meteorological Society Jul 2013
Copyright American Meteorological Society 2013
Copyright_xml – notice: Copyright American Meteorological Society Jul 2013
– notice: Copyright American Meteorological Society 2013
DBID AAYXX
CITATION
3V.
7TG
7TN
7UA
7XB
88F
88I
8AF
8FD
8FE
8FG
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
L.G
L7M
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
S0X
PRINS
7TB
FR3
DOI 10.1175/JTECH-D-12-00165.1
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Military Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
ProQuest Central China
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
ProQuest Central Basic
ProQuest Science Journals
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
ProQuest Central China
Engineering Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Research Library Prep
CrossRef
Aerospace Database
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1520-0426
EndPage 1397
ExternalDocumentID 3053188441
10_1175_JTECH_D_12_00165_1
Genre Feature
GroupedDBID .4S
.DC
29J
2WC
4.4
5GY
7XC
88I
8AF
8CJ
8FE
8FG
8FH
8G5
8R4
8R5
AAYXX
ABDBF
ABDNZ
ABUWG
ACGFO
ACGOD
ACUHS
AENEX
AEUYN
AFKRA
AFRAH
AGFAN
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
CS3
D1J
D1K
DU5
DWQXO
E3Z
EAD
EAP
EBS
EDH
EDO
EJD
EMK
EPL
EST
ESX
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
I-F
K6-
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PUEGO
PYCSY
Q2X
QF4
QM1
QN7
QO4
RWA
RWE
RWL
RXW
S0X
TAE
TUS
U5U
UNMZH
3V.
7TG
7TN
7UA
7XB
8FD
8FK
C1K
F1W
H8D
H96
KL.
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
Q9U
PRINS
7TB
FR3
ID FETCH-LOGICAL-c336t-986b0cea310f9bccaa47432df36987f6ec8f662d004eb1a0931a9a947fb953b93
IEDL.DBID BENPR
ISSN 0739-0572
IngestDate Thu Oct 02 06:44:48 EDT 2025
Sat Aug 23 13:03:21 EDT 2025
Sat Aug 23 12:48:30 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Wed Oct 01 05:11:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-986b0cea310f9bccaa47432df36987f6ec8f662d004eb1a0931a9a947fb953b93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1427436191
PQPubID 33207
PageCount 16
ParticipantIDs proquest_miscellaneous_1419366611
proquest_journals_2826240417
proquest_journals_1427436191
crossref_citationtrail_10_1175_JTECH_D_12_00165_1
crossref_primary_10_1175_JTECH_D_12_00165_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of atmospheric and oceanic technology
PublicationYear 2013
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Sathye (2020061220490596000_bib31) 1997; 23
Jung (2020061220490596000_bib20) 2008; 136
Tong (2020061220490596000_bib37) 2005; 133
Anderson (2020061220490596000_bib2) 2003; 131
Xue (2020061220490596000_bib44) 2001; 76
Anderson (2020061220490596000_bib3) 2007; 24
Zhang (2020061220490596000_bib51) 2005; 133
Xue (2020061220490596000_bib47) 2007
Tong (2020061220490596000_bib38) 2008; 136
Burgers (2020061220490596000_bib7) 1998; 126
Bishop (2020061220490596000_bib4) 2001; 129
Houtekamer (2020061220490596000_bib19) 1998; 126
Xue (2020061220490596000_bib46) 2006; 23
Xue (2020061220490596000_bib45) 2003; 82
Jung (2020061220490596000_bib21) 2012; 140
2020061220490596000_bib50
Campbell (2020061220490596000_bib8) 2010; 138
Hamill (2020061220490596000_bib18) 2011; 139
Liu (2020061220490596000_bib25) 2006; 134
Xue (2020061220490596000_bib48) 2009; 135
Gao (2020061220490596000_bib17) 1998
Anderson (2020061220490596000_bib1) 2001; 129
Dong (2020061220490596000_bib11) 2011; 112
Courtier (2020061220490596000_bib10) 1987; 113
Li (2020061220490596000_bib24) 2007; 18
Xue (2020061220490596000_bib43) 2000; 75
Wang (2020061220490596000_bib39) 2013; 139
Xue (2020061220490596000_bib49) 2010; 136
Xue (2020061220490596000_bib42) 1996
Dowell (2020061220490596000_bib12) 2004; 132
Michalakes (2020061220490596000_bib26) 2004
Tippett (2020061220490596000_bib36) 2003; 131
Snook (2020061220490596000_bib32) 2011; 139
2020061220490596000_bib5
Le Dimet (2020061220490596000_bib23) 1986; 38A
Keppenne (2020061220490596000_bib22) 2002; 130
Parashar (2020061220490596000_bib28) 2010
Buehner (2020061220490596000_bib6) 2010; 138
Dowell (2020061220490596000_bib13) 2011; 139
Whitaker (2020061220490596000_bib40) 2002; 130
Wu (2020061220490596000_bib41) 2000; 57
Milbrandt (2020061220490596000_bib27) 2005; 62
Snyder (2020061220490596000_bib33) 2003; 131
Caya (2020061220490596000_bib9) 2005; 133
Evensen (2020061220490596000_bib15) 2003; 53
Evensen (2020061220490596000_bib14) 1994; 99
Sakov (2020061220490596000_bib30) 2010; 62
Sun (2020061220490596000_bib34) 1997; 54
Evensen (2020061220490596000_bib16) 1996; 124
Ray (2020061220490596000_bib29) 1981; 38
Szunyogh (2020061220490596000_bib35) 2008; 60A
References_xml – year: 2004
  ident: 2020061220490596000_bib26
– volume: 132
  start-page: 1982
  year: 2004
  ident: 2020061220490596000_bib12
  article-title: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2
– volume: 133
  start-page: 3081
  year: 2005
  ident: 2020061220490596000_bib9
  article-title: A comparison between the 4D-VAR and the ensemble Kalman filter techniques for radar data assimilation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3021.1
– volume: 131
  start-page: 634
  year: 2003
  ident: 2020061220490596000_bib2
  article-title: A local least square framework for ensemble filtering
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
– volume: 140
  start-page: 1457
  year: 2012
  ident: 2020061220490596000_bib21
  article-title: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric data
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00032.1
– volume: 24
  start-page: 1452
  year: 2007
  ident: 2020061220490596000_bib3
  article-title: Scalable implementations of ensemble filter algorithms for data assimilation
  publication-title: J. Atmos. Oceanic Technol.
  doi: 10.1175/JTECH2049.1
– volume: 138
  start-page: 282
  year: 2010
  ident: 2020061220490596000_bib8
  article-title: Vertical covariance localization for satellite radiances in ensemble Kalman filters
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2009MWR3017.1
– volume: 57
  start-page: 262
  year: 2000
  ident: 2020061220490596000_bib41
  article-title: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2
– volume: 136
  start-page: 685
  year: 2010
  ident: 2020061220490596000_bib49
  article-title: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.593
– volume: 60A
  start-page: 113
  year: 2008
  ident: 2020061220490596000_bib35
  article-title: A local ensemble tranform Kalman filter data assimilation system for the NCEP global model
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.2007.00274.x
– volume: 62
  start-page: 3051
  year: 2005
  ident: 2020061220490596000_bib27
  article-title: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3534.1
– volume: 136
  start-page: 2246
  year: 2008
  ident: 2020061220490596000_bib20
  article-title: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2007MWR2288.1
– volume: 18
  start-page: 1202
  year: 2007
  ident: 2020061220490596000_bib24
  article-title: Hybrid runtime management of space-time heterogeneity for parallel structured adaptive applications
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2007.1038
– volume: 129
  start-page: 420
  year: 2001
  ident: 2020061220490596000_bib4
  article-title: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
– volume: 133
  start-page: 3176
  year: 2005
  ident: 2020061220490596000_bib51
  article-title: Initialization of an ENSO forecast system using a parallelized ensemble filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3024.1
– volume: 135
  start-page: 1409
  year: 2009
  ident: 2020061220490596000_bib48
  article-title: Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated data
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.453
– volume: 76
  start-page: 143
  year: 2001
  ident: 2020061220490596000_bib44
  article-title: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications
  publication-title: Meteor. Atmos. Phys.
  doi: 10.1007/s007030170027
– volume: 129
  start-page: 2884
  year: 2001
  ident: 2020061220490596000_bib1
  article-title: An ensemble adjustment Kalman filter for data assimilation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– year: 1998
  ident: 2020061220490596000_bib17
– volume: 139
  start-page: 3446
  year: 2011
  ident: 2020061220490596000_bib32
  article-title: Analysis of a tornadic meoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-10-05053.1
– volume: 139
  start-page: 805
  year: 2013
  ident: 2020061220490596000_bib39
  article-title: A four-dimensional asynchronous ensemble square-root filter (4DEnSRF) algorithm and tests with simulated radar data
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.1987
– year: 1996
  ident: 2020061220490596000_bib42
– volume: 124
  start-page: 85
  year: 1996
  ident: 2020061220490596000_bib16
  article-title: Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble Kalman filter with a quasigeostrophic model
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1996)124<0085:AOGADF>2.0.CO;2
– volume: 139
  start-page: 272
  year: 2011
  ident: 2020061220490596000_bib13
  article-title: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influence of reflectivity observations on storm-scale analysis
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2010MWR3438.1
– year: 2007
  ident: 2020061220490596000_bib47
– volume: 136
  start-page: 1649
  year: 2008
  ident: 2020061220490596000_bib38
  article-title: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2007MWR2071.1
– volume: 75
  start-page: 161
  year: 2000
  ident: 2020061220490596000_bib43
  article-title: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification
  publication-title: Meteor. Atmos. Phys.
  doi: 10.1007/s007030070003
– volume: 99
  start-page: 10 143
  issue: C5
  year: 1994
  ident: 2020061220490596000_bib14
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JC00572
– volume: 53
  start-page: 343
  year: 2003
  ident: 2020061220490596000_bib15
  article-title: The ensemble Kalman filter: Theoretical formulation and practical implementation
  publication-title: Ocean Dyn.
  doi: 10.1007/s10236-003-0036-9
– volume: 23
  start-page: 2243
  year: 1997
  ident: 2020061220490596000_bib31
  article-title: Parallel weather modeling with the Advanced Regional Prediction System
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(97)80002-6
– volume: 62
  start-page: 24
  year: 2010
  ident: 2020061220490596000_bib30
  article-title: Asynchronous data assimilation with the EnKF
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.2009.00417.x
– volume: 38
  start-page: 1643
  year: 1981
  ident: 2020061220490596000_bib29
  article-title: The morphology of several tornadic storms on 20 May 1977
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1981)038<1643:TMOSTS>2.0.CO;2
– volume: 134
  start-page: 933
  year: 2006
  ident: 2020061220490596000_bib25
  article-title: Retrieval of moisture from slant-path water vapor observations of a hypothetical GPS network using a three-dimensional variational scheme with anisotropic background error
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3105.1
– volume: 126
  start-page: 796
  year: 1998
  ident: 2020061220490596000_bib19
  article-title: Data assimilation using an ensemble Kalman filter technique
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
– volume: 130
  start-page: 1913
  year: 2002
  ident: 2020061220490596000_bib40
  article-title: Ensemble data assimilation without perturbed observations
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
– volume: 139
  start-page: 668
  year: 2011
  ident: 2020061220490596000_bib18
  article-title: Global ensemble predictions of 2009's tropical cyclones initialized with an ensemble Kalman filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2010MWR3456.1
– ident: 2020061220490596000_bib5
– volume: 82
  start-page: 139
  year: 2003
  ident: 2020061220490596000_bib45
  article-title: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation
  publication-title: Meteor. Atmos. Phys.
  doi: 10.1007/s00703-001-0595-6
– volume: 23
  start-page: 46
  year: 2006
  ident: 2020061220490596000_bib46
  article-title: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting
  publication-title: J. Atmos. Oceanic Technol.
  doi: 10.1175/JTECH1835.1
– volume: 131
  start-page: 1485
  year: 2003
  ident: 2020061220490596000_bib36
  article-title: Ensemble square root filters
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
– volume: 138
  start-page: 1567
  year: 2010
  ident: 2020061220490596000_bib6
  article-title: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2009MWR3158.1
– volume: 131
  start-page: 1663
  year: 2003
  ident: 2020061220490596000_bib33
  article-title: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175//2555.1
– volume: 126
  start-page: 1719
  year: 1998
  ident: 2020061220490596000_bib7
  article-title: Analysis scheme in the ensemble Kalman filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
– volume: 54
  start-page: 1642
  year: 1997
  ident: 2020061220490596000_bib34
  article-title: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
– volume: 130
  start-page: 2951
  year: 2002
  ident: 2020061220490596000_bib22
  article-title: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2002)130<2951:ITOAMP>2.0.CO;2
– volume: 38A
  start-page: 97
  year: 1986
  ident: 2020061220490596000_bib23
  article-title: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.1986.tb00459.x
– year: 2010
  ident: 2020061220490596000_bib28
– volume: 113
  start-page: 1329
  year: 1987
  ident: 2020061220490596000_bib10
  article-title: Variational assimilation of meteorological observations with the adjoint equation. Part II: Numerical results
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49711347813
– volume: 133
  start-page: 1789
  year: 2005
  ident: 2020061220490596000_bib37
  article-title: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR2898.1
– volume: 112
  start-page: 41
  year: 2011
  ident: 2020061220490596000_bib11
  article-title: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter
  publication-title: Meteor. Atmos. Phys.
  doi: 10.1007/s00703-011-0130-3
– ident: 2020061220490596000_bib50
SSID ssj0001316
Score 2.1547854
Snippet A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of multiscale observations, including those from dense...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1382
SubjectTerms Algorithms
Analysis
Communication
Communication satellites
Computer memory
Configurations
Data assimilation
Data collection
Decomposition
Distributed shared memory
Domain decomposition
Localization
Marine
Message passing
Multiprocessing
Multiprocessing (computers)
Nodes
Parallel programming
Radar
Radar data
Radar systems
Roots
Satellite observation
Supercomputers
Topology
Variables
Weather forecasting
Title A Hybrid MPI–OpenMP Parallel Algorithm and Performance Analysis for an Ensemble Square Root Filter Designed for Multiscale Observations
URI https://www.proquest.com/docview/1427436191
https://www.proquest.com/docview/2826240417
https://www.proquest.com/docview/1419366611
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1520-0426
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001316
  issn: 0739-0572
  databaseCode: ABDBF
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1520-0426
  dateEnd: 20231101
  omitProxy: true
  ssIdentifier: ssj0001316
  issn: 0739-0572
  databaseCode: BENPR
  dateStart: 20010202
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1520-0426
  dateEnd: 20231101
  omitProxy: true
  ssIdentifier: ssj0001316
  issn: 0739-0572
  databaseCode: 8FG
  dateStart: 20010202
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QtCQjBAFEZlJMQLCqtjJ7EfJtSuDWVSu2hs0t4sx3FgUpdsbfawv4B_m7OXdJqE9pg43_eR39l39wP4HIrICIy70L7zIuBGMrQ5I4KRA8c25yX3Fd6LZTw_58cX0cUOLLtaGJdW2flE76iL2rg58gPKMX5iCPfp9-ubwLFGudXVjkJDt9QKxaFvMbYL_dB1xupBfzJbZqdb30yZJ0N1y1MBIpWwK6NJooPjs9nRPJj6VAVX4_ONPv5VPfbU_veTvoQXLW4k43tBv4IdW-3BYIGQt177mXHyhRytLhF_-q09eH5irK7ahtSv4e-YzO9cdRZZZD8Dl0ayyEim145KBS-7-o3v2vy5IroqSPZQTEC6piUE9-AgmVUbe5WvLPl1g8plyWldNyS9dGvuZOqzQWzhj_WVvRvUAEtO8u3U7-YNnKezM_wELQlDYBiLm0CKOB_hAyMMLGWO8tYc5RAWJYulSMrYGlHGcVigsaHb1yPJqJZa8qTMZcRyyd5Cr6or-w5IzBzTNWdGRJoLI0U0YiWLUItcUx3DBkC7761M26HcEWWslI9Ukkh5GampoqHyMlJ0AF-351zf9-d48uj9ToyqtdWNetCs_w5jTBoj7OE0GcCn7TAaoVtZ0ZWtb90lEAdjIEjp-6fv8AGehZ5Pw-X77kOvWd_aj4hqmnwIuyL9MYT-eDKdpMNWcf8BgQD2cg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swELcQPGyahBjbtA7YPGnby5RRx44bP6CJ0VYtkBKxIvHm2Y4DSCWBJmjiE-xb7bPtbJIipIk3HhM7f-_s-519dz-EPoVxZGLwu2B86yxgRlAYcyYOug4cW81y5jO8kwkfnbD90-h0Cf1tc2FcWGU7J_qJOiuNWyPfJgz8Jwpwn3y_ug4ca5TbXW0pNFRDrZDt-BJjTWLHgb39DS5ctTPug7w_h-FwMN0bBQ3LQGAo5XUgYq67xirAObnQ8EGKwYPCLKcc_PGcWxPnnIcZaBPMa6orKFFCCdbLtYiodsWYwASsMMoEOH8rPwaT9HhhCwj15KtuOywAZBS2aTu9aHt_OoB36fvQCJdT9I08NI0PLYM3d8M1tNrgVLx7p1gv0ZIt1lEnAYhdzv1KPP6C92YXgHf90Tp6cQRfVzQFsF-hP7t4dOuywXCSjgMXtpKkOFVzR90Ct52dwb-tzy-xKjKc3icv4LZICoYz0IgHRWUv9czin9egzBYfl2WNhxdujx_3ffSJzXxfn0lcgcZZfKQXS83Va3TyJOJ4g5aLsrBvEebUMWszauJIsdiIOOrSnEagta6Ij6EdRNr_LU1TEd0Rc8yk94x6kfQykn1JQullJEkHfV1cc3VXD-TR3putGGUzN1TyXpP_2ww-MAeYxUivgz4ummHQu50cVdjyxt0CcDc4noS8e_wJH9Cz0TQ5lIfjycEGeh56Lg8Xa7yJluv5jd0CRFXr943aYvTrqUfKPznSMVs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISGEhGCAKBtgJOAFhdaxc3tAaFoa2o1uEWzS3oztOGxSl2xNJrRfwH_i13GOm3SahPa2x8SOneRc_B37XAh558eBicHuAvnWhSdMwkHmTOyNEBxbLUrhIrxn--HkSOweB8dr5G8fC4Nulb1OdIq6qA3ukQ-ZAPuJA9xnw7Jzi8jT7Mv5hYcVpPCktS-nsWSRPXv1G8y35vM0BVq_9_1sfLgz8boKA57hPGy9JA71yFgFGKdMNHyMEjCJX5Q8BFu8DK2JyzD0C-Ak0GkKrH-mEpWIqNRJwDUmYgL1fy_CLO4YpZ59Xa0CjLuyq3gQ5gEm8vuAnSgY7h6O4U1S5xSB0USf2M1F8eaa4Ba67DF51CFUur1kqSdkzVYbZDADcF0v3B48_UB35qeAdN3VBnl4AN9Wdamvn5I_23RyhXFgdJZPPXRYmeU0Vwss2gLDzn_Bn2xPzqiqCppfhy3QPj0KhTvQSMdVY8_03NIfF8DGln6v65Zmp3i6T1Pnd2IL19fFEDfAa5Ye6NUmc_OMHN0JMZ6T9aqu7AtCQ441tQU3caBEbJI4GPGSB8CvmL7H8AFh_f-WpsuFjiU55tLZRFEgHY1kKpkvHY0kG5CPq2fOl5lAbu291ZNRdlqhkdc8_N9msH5DAFiCRQPydtUM4o5nOKqy9SUOAYgbTE7GXt4-wxtyH-RDfpvu722SB74r4oFOxltkvV1c2lcApVr92vEsJT_vWkj-Ad0SLvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+MPI-OpenMP+Parallel+Algorithm+and+Performance+Analysis+for+an+Ensemble+Square+Root+Filter+Designed+for+Multiscale+Observations&rft.jtitle=Journal+of+atmospheric+and+oceanic+technology&rft.au=Wang%2C+Yunheng&rft.au=Jung%2C+Youngsun&rft.au=Supinie%2C+Timothy+A&rft.au=Xue%2C+Ming&rft.date=2013-07-01&rft.pub=American+Meteorological+Society&rft.issn=0739-0572&rft.eissn=1520-0426&rft.volume=30&rft.issue=7&rft.spage=1382&rft_id=info:doi/10.1175%2FJTECH-D-12-00165.1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3053188441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-0572&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-0572&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-0572&client=summon