Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation

Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Conse...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 249; no. B; p. 123645
Main Authors Saberi-Movahed, Farid, Biswas, Bitasta, Tiwari, Prayag, Lehmann, Jens, Vahdati, Sahar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
1873-6793
DOI10.1016/j.eswa.2024.123645

Cover

Abstract Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Consequently, a significant amount of the geometrical information within the data, present in each layer of the employed deep framework, can be overlooked by the model. This can lead to an information loss and a subsequent drop in performance. In this paper, we propose a novel deep non-negative matrix factorization method, Deep Non-Negative Matrix Factorization with Joint Global and Local Structure Preservation (dubbed Dn2MFGL), that ensures the preservation of both global and local structures within the data space. Dn2MFGL performs representation learning through a sequential embedding procedure which involves both the global data structure by accounting for the data variance, and the local data relationships by utilizing information from neighboring data points. Moreover, a regularization term that promotes sparsity by utilizing the concept of the inner product is applied to the matrices representing the lower dimensions. This aims to retain the fundamental data structure while discarding less crucial features. Simultaneously, the residual matrix of Dn2MFGL is subjected to the L2,1 norm, which ensures the robustness of the model against noisy data samples. An effective and multiplicative updating process also facilitates Dn2MFGL in solving the employed objective function. The clustering performance of the proposed deep NMF method is explored across various benchmarks of face datasets. The results point to Dn2MFGL outperforming several existing classical and state-of-the-art NMF methods. The source code is available at https://github.com/FaridSaberi/Dn2MFGO.git. •Dn2MFGL preserves global/local data structures at each layer.•Dn2MFGL uses the L2,1 norm for robust factorization outcome.•Dn2MFGL employs inner product sparsity for coefficient matrices.
AbstractList Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Consequently, a significant amount of the geometrical information within the data, present in each layer of the employed deep framework, can be overlooked by the model. This can lead to an information loss and a subsequent drop in performance. In this paper, we propose a novel deep non-negative matrix factorization method, Deep Non-Negative Matrix Factorization with Joint Global and Local Structure Preservation (dubbed Dn2MFGL), that ensures the preservation of both global and local structures within the data space. Dn2MFGL performs representation learning through a sequential embedding procedure which involves both the global data structure by accounting for the data variance, and the local data relationships by utilizing information from neighboring data points. Moreover, a regularization term that promotes sparsity by utilizing the concept of the inner product is applied to the matrices representing the lower dimensions. This aims to retain the fundamental data structure while discarding less crucial features. Simultaneously, the residual matrix of Dn2MFGL is subjected to the L2,1 norm, which ensures the robustness of the model against noisy data samples. An effective and multiplicative updating process also facilitates Dn2MFGL in solving the employed objective function. The clustering performance of the proposed deep NMF method is explored across various benchmarks of face datasets. The results point to Dn2MFGL outperforming several existing classical and state-of-the-art NMF methods. The source code is available at https://github.com/FaridSaberi/Dn2MFGO.git. © 2024 Elsevier Ltd
Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Consequently, a significant amount of the geometrical information within the data, present in each layer of the employed deep framework, can be overlooked by the model. This can lead to an information loss and a subsequent drop in performance. In this paper, we propose a novel deep non-negative matrix factorization method, Deep Non-Negative Matrix Factorization with Joint Global and Local Structure Preservation (dubbed Dn2MFGL), that ensures the preservation of both global and local structures within the data space. Dn2MFGL performs representation learning through a sequential embedding procedure which involves both the global data structure by accounting for the data variance, and the local data relationships by utilizing information from neighboring data points. Moreover, a regularization term that promotes sparsity by utilizing the concept of the inner product is applied to the matrices representing the lower dimensions. This aims to retain the fundamental data structure while discarding less crucial features. Simultaneously, the residual matrix of Dn2MFGL is subjected to the L2,1 norm, which ensures the robustness of the model against noisy data samples. An effective and multiplicative updating process also facilitates Dn2MFGL in solving the employed objective function. The clustering performance of the proposed deep NMF method is explored across various benchmarks of face datasets. The results point to Dn2MFGL outperforming several existing classical and state-of-the-art NMF methods. The source code is available at https://github.com/FaridSaberi/Dn2MFGO.git. •Dn2MFGL preserves global/local data structures at each layer.•Dn2MFGL uses the L2,1 norm for robust factorization outcome.•Dn2MFGL employs inner product sparsity for coefficient matrices.
ArticleNumber 123645
Author Tiwari, Prayag
Biswas, Bitasta
Saberi-Movahed, Farid
Lehmann, Jens
Vahdati, Sahar
Author_xml – sequence: 1
  givenname: Farid
  orcidid: 0000-0003-2718-229X
  surname: Saberi-Movahed
  fullname: Saberi-Movahed, Farid
  email: f.saberimovahed@kgut.ac.ir
  organization: Department of Applied Mathematics, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
– sequence: 2
  givenname: Bitasta
  orcidid: 0009-0008-4923-8673
  surname: Biswas
  fullname: Biswas, Bitasta
  email: bitasta.biswas@rwth-aachen.de
  organization: RWTH Aachen University, Aachen, Germany
– sequence: 3
  givenname: Prayag
  surname: Tiwari
  fullname: Tiwari, Prayag
  email: prayag.tiwari@ieee.org
  organization: School of Information Technology, Halmstad University, Sweden
– sequence: 4
  givenname: Jens
  surname: Lehmann
  fullname: Lehmann, Jens
  email: jens.lehmann@tu-dresden.de
  organization: Technische Universität Dresden, ScaDS.AI, Dresden, Germany
– sequence: 5
  givenname: Sahar
  surname: Vahdati
  fullname: Vahdati, Sahar
  email: sahar.vahdati@tu-dresden.de
  organization: Technische Universität Dresden, ScaDS.AI, Dresden, Germany
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52978$$DView record from Swedish Publication Index
BookMark eNp9kE1PAjEQhhuDiYj-AU-9m8W22213Ey8GBTX4kfgRb023OwsluCVtAfXXu4BePHiayeR9ZibPIeo0rgGETijpU0LF2awPYa37jDDepywVPNtDXZrLNBGySDuoS4pMJpxKfoAOQ5gRQiUhsoveLgEW-N41DUx0tCvAdzp6-4GH2kTn7Vc7dA1e2zjFt842EY_mrtRzrJsKj51pu6folyYuPeBHDwH8aoscof1azwMc_9QeehlePQ-uk_HD6GZwMU5MmoqYSG64YFIUjEOtjSyzrOQ8LziYItU5FFVVs1JQoSXJaQZVATWrKNVS1IzyMu2h093esIbFslQLb9-1_1ROW3VpXy-U8xM1naqMFTJv0_kubbwLwUOtjI3bf6PXdq4oURufaqY2PtXGp9r5bFH2B_099S90voOgVbCy4FUwFhoDlfVgoqqc_Q__BrF3knk
CitedBy_id crossref_primary_10_1007_s10489_025_06367_8
crossref_primary_10_1016_j_eswa_2025_126676
crossref_primary_10_1016_j_dsp_2024_104713
crossref_primary_10_1016_j_dsp_2024_104738
crossref_primary_10_1371_journal_pone_0317193
crossref_primary_10_1016_j_eswa_2025_126829
crossref_primary_10_1007_s10115_024_02203_6
crossref_primary_10_1016_j_knosys_2024_112597
crossref_primary_10_1016_j_patcog_2025_111427
crossref_primary_10_1016_j_neucom_2024_128718
Cites_doi 10.1038/nbt0308-303
10.1109/ACCESS.2021.3064631
10.1016/j.eswa.2023.122799
10.1145/3136625
10.1109/TKDE.2012.51
10.1016/j.patcog.2011.12.015
10.1016/j.cosrev.2021.100423
10.1109/34.927464
10.1109/ACCESS.2018.2873385
10.1109/34.598228
10.1016/j.neucom.2019.11.070
10.1016/j.knosys.2015.06.008
10.1109/ACV.1994.341300
10.1016/j.neucom.2021.08.152
10.1109/JSTARS.2019.2963749
10.1038/44565
10.1016/j.dsp.2022.103888
10.1016/j.neucom.2023.127041
10.1016/j.knosys.2023.110465
10.1016/j.jmva.2006.11.013
10.1145/2063576.2063621
10.3390/s21113680
10.1016/j.eswa.2021.115991
10.1007/s10462-019-09800-w
10.1126/science.290.5500.2323
10.1126/science.295.5552.7a
10.1016/j.engappai.2023.107136
10.1016/j.knosys.2022.109210
10.1016/j.eswa.2023.122556
10.1109/IGARSS.2019.8897876
10.1016/j.neucom.2019.12.054
10.1109/TSP.2023.3266939
10.1016/j.neunet.2023.06.018
10.1609/aaai.v28i1.8915
10.1016/j.asoc.2022.109806
10.1016/j.patcog.2022.108815
10.1016/j.neucom.2022.10.052
10.1016/0169-7439(87)80084-9
10.1109/TPAMI.2019.2962679
10.1109/TPAMI.2016.2554555
10.1016/j.patrec.2009.12.023
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
D8Z
DOI 10.1016/j.eswa.2024.123645
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Högskolan i Halmstad
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID oai_DiVA_org_hh_52978
10_1016_j_eswa_2024_123645
S0957417424005116
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ADTPV
AGCQF
AOWAS
D8Z
ID FETCH-LOGICAL-c336t-74c46276924efac7b55b44894ec93a8e9ddf2b616a70815ed9ef2d11a76f214b3
IEDL.DBID .~1
ISSN 0957-4174
1873-6793
IngestDate Tue Sep 09 23:39:42 EDT 2025
Wed Oct 01 04:45:27 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Sat Apr 27 15:44:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue B
Keywords Non-negative Matrix Factorization
Global structure
Local structure
Deep Non-negative Matrix Factorization
Sparsity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-74c46276924efac7b55b44894ec93a8e9ddf2b616a70815ed9ef2d11a76f214b3
ORCID 0000-0003-2718-229X
0009-0008-4923-8673
ParticipantIDs swepub_primary_oai_DiVA_org_hh_52978
crossref_citationtrail_10_1016_j_eswa_2024_123645
crossref_primary_10_1016_j_eswa_2024_123645
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lee, Seung (b25) 1999; 401
Wang, Zhang (b55) 2012; 25
Roweis, Saul (b43) 2000; 290
Ghojogh, Crowley, Karray, Ghodsi (b12) 2023
Lu, Leng, Li, Jiao, Basu (b35) 2023; 268
Rakhlin, Caponnetto (b41) 2007; vol. 19
Maaten, Hinton (b37) 2008; 9
Trigeorgis, Bousmalis, Zafeiriou, Schuller (b52) 2017; 39
Hancer, Xue, Zhang (b20) 2020; 53
Tian, L., Du, Q., Kopriva, I., & Younan, N. (2019). Orthogonal Graph-regularized Non-negative Matrix Factorization for Hyperspectral Image Clustering. In
Samaria, F., & Harter, A. (1994). Parameterisation of a stochastic model for human face identification. In
Yang, Xu (b57) 2021; 107236
Liang, Ding, Liu, Chen, Wen (b32) 2021; 21
Guo (b17) 2021; 9
Ringnér (b42) 2008; 26
Yu, Zhou, Cichocki, Xie (b58) 2018; 6
Wang, H., Huang, H., & Ding, C. (2011). Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization. In
Gillis (b14) 2020
Berahmand, Mohammadi, Sheikhpour, Li, Xu (b5) 2024; 566
Shu, Zhou, Tong, Bai, Zhao (b48) 2015
.
Diaz, Steele (b10) 2021
Wang, H., Nie, F., & Huang, H. (2014). Globally and locally consistent unsupervised projection.
Karami, Saberi-Movahed, Tiwari, Marttinen, Vahdati (b23) 2023; 166
Lee, Seung (b26) 2001; vol. 13
Shang, Jiao, Wang (b46) 2012; 45
Tong, Zhou, Qian, Yu, Xiao (b51) 2020; 13
Sun, Kong, Xu (b49) 2022; 251
Wold, Esbensen, Geladi (b56) 1987; 2
Shao, Chen, Yuan, Wang (b47) 2023; 517
Graham, Allinson (b15) 1998
Meilă (b39) 2007; 98
Moslemi (b40) 2023; 126
In
Balasubramanian, Schwartz (b2) 2002; 295
Huang, Xu, Kang, Ren (b21) 2020; 382
Berahmand, Li, Xu (b4) 2023
(pp. 138–142).
Zhao, Wang, Pei (b60) 2021; 43
Han, Sun, Hao (b19) 2015; 86
(pp. 279–284).
Georghiades, Belhumeur, Kriegman (b11) 2001; 23
Zeng, Qu, Wu (b59) 2016; Vol. 10033
Li, Zhou, Qiu, Wang, Zhang, Xie (b31) 2020; 390
(pp. 795–798).
Chen, Zeng, Pan (b8) 2022; 491
Samareh-Jahani, Saberi-Movahed, Eftekhari, Aghamollaei, Tiwari (b44) 2024; 240
Liu, Ding, Xu, Wang (b33) 2023; 132
Li, Wu, Peng (b30) 2010; 31
Hamilton (b18) 2020
Kong, Ding, Huang (b24) 2011
Chen, Wang, Fang, Jiang (b7) 2022; 188
Li, Wei, Tong, Shen, Liu, Li, Qi, Yao, Teng (b29) 2022
Balakrishnama, Ganapathiraju (b1) 1998; 18
De Handschutter, Gillis, Siebert (b9) 2021; 42
Li, Leng, Cheng, Basu, Jiao (b28) 2022
Cai, He, Han (b6) 2010; 33
Gillis (b13) 2014; Vol. 12
Gu, Zhou (b16) 2009
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b27) 2018; 50
Belhumeur, Hespanha, Kriegman (b3) 1996; 19
Liu, Song (b34) 2023; 133
Marmin, de Morais Goulart, Févotte (b38) 2023
Luong, Nayak, Balasubramaniam, Bashar (b36) 2022; 131
Jannesari, Keshvari, Berahmand (b22) 2024; 242
Li (10.1016/j.eswa.2024.123645_b27) 2018; 50
Samareh-Jahani (10.1016/j.eswa.2024.123645_b44) 2024; 240
Lu (10.1016/j.eswa.2024.123645_b35) 2023; 268
Roweis (10.1016/j.eswa.2024.123645_b43) 2000; 290
De Handschutter (10.1016/j.eswa.2024.123645_b9) 2021; 42
Liu (10.1016/j.eswa.2024.123645_b33) 2023; 132
Berahmand (10.1016/j.eswa.2024.123645_b4) 2023
Moslemi (10.1016/j.eswa.2024.123645_b40) 2023; 126
Gillis (10.1016/j.eswa.2024.123645_b14) 2020
Luong (10.1016/j.eswa.2024.123645_b36) 2022; 131
Hamilton (10.1016/j.eswa.2024.123645_b18) 2020
Li (10.1016/j.eswa.2024.123645_b28) 2022
Balakrishnama (10.1016/j.eswa.2024.123645_b1) 1998; 18
Belhumeur (10.1016/j.eswa.2024.123645_b3) 1996; 19
Tong (10.1016/j.eswa.2024.123645_b51) 2020; 13
Trigeorgis (10.1016/j.eswa.2024.123645_b52) 2017; 39
Hancer (10.1016/j.eswa.2024.123645_b20) 2020; 53
Karami (10.1016/j.eswa.2024.123645_b23) 2023; 166
Yang (10.1016/j.eswa.2024.123645_b57) 2021; 107236
Shao (10.1016/j.eswa.2024.123645_b47) 2023; 517
Shang (10.1016/j.eswa.2024.123645_b46) 2012; 45
Wang (10.1016/j.eswa.2024.123645_b55) 2012; 25
Han (10.1016/j.eswa.2024.123645_b19) 2015; 86
Liu (10.1016/j.eswa.2024.123645_b34) 2023; 133
Graham (10.1016/j.eswa.2024.123645_b15) 1998
Cai (10.1016/j.eswa.2024.123645_b6) 2010; 33
Marmin (10.1016/j.eswa.2024.123645_b38) 2023
Shu (10.1016/j.eswa.2024.123645_b48) 2015
10.1016/j.eswa.2024.123645_b45
Zeng (10.1016/j.eswa.2024.123645_b59) 2016; Vol. 10033
Li (10.1016/j.eswa.2024.123645_b29) 2022
Lee (10.1016/j.eswa.2024.123645_b26) 2001; vol. 13
10.1016/j.eswa.2024.123645_b53
Lee (10.1016/j.eswa.2024.123645_b25) 1999; 401
10.1016/j.eswa.2024.123645_b54
Jannesari (10.1016/j.eswa.2024.123645_b22) 2024; 242
Ghojogh (10.1016/j.eswa.2024.123645_b12) 2023
Li (10.1016/j.eswa.2024.123645_b30) 2010; 31
Li (10.1016/j.eswa.2024.123645_b31) 2020; 390
10.1016/j.eswa.2024.123645_b50
Ringnér (10.1016/j.eswa.2024.123645_b42) 2008; 26
Kong (10.1016/j.eswa.2024.123645_b24) 2011
Berahmand (10.1016/j.eswa.2024.123645_b5) 2024; 566
Guo (10.1016/j.eswa.2024.123645_b17) 2021; 9
Chen (10.1016/j.eswa.2024.123645_b7) 2022; 188
Wold (10.1016/j.eswa.2024.123645_b56) 1987; 2
Yu (10.1016/j.eswa.2024.123645_b58) 2018; 6
Liang (10.1016/j.eswa.2024.123645_b32) 2021; 21
Diaz (10.1016/j.eswa.2024.123645_b10) 2021
Sun (10.1016/j.eswa.2024.123645_b49) 2022; 251
Gu (10.1016/j.eswa.2024.123645_b16) 2009
Gillis (10.1016/j.eswa.2024.123645_b13) 2014; Vol. 12
Rakhlin (10.1016/j.eswa.2024.123645_b41) 2007; vol. 19
Balasubramanian (10.1016/j.eswa.2024.123645_b2) 2002; 295
Georghiades (10.1016/j.eswa.2024.123645_b11) 2001; 23
Chen (10.1016/j.eswa.2024.123645_b8) 2022; 491
Huang (10.1016/j.eswa.2024.123645_b21) 2020; 382
Maaten (10.1016/j.eswa.2024.123645_b37) 2008; 9
Zhao (10.1016/j.eswa.2024.123645_b60) 2021; 43
Meilă (10.1016/j.eswa.2024.123645_b39) 2007; 98
References_xml – volume: 33
  start-page: 1548
  year: 2010
  end-page: 1560
  ident: b6
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b25
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 50
  start-page: 94
  year: 2018
  ident: b27
  article-title: Feature selection: A data perspective
  publication-title: ACM Computing Surveys
– year: 2023
  ident: b38
  article-title: Majorization-minimization for sparse nonnegative matrix factorization with the
  publication-title: IEEE Transactions on Signal Processing
– volume: 43
  start-page: 1897
  year: 2021
  end-page: 1913
  ident: b60
  article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2023
  end-page: 13
  ident: b4
  article-title: A deep semi-supervised community detection based on point-wise mutual information
  publication-title: IEEE Transactions on Computational Social Systems
– volume: 131
  year: 2022
  ident: b36
  article-title: Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering
  publication-title: Pattern Recognition
– volume: 31
  start-page: 905
  year: 2010
  end-page: 911
  ident: b30
  article-title: Nonnegative matrix factorization on orthogonal subspace
  publication-title: Pattern Recognition Letters
– year: 2023
  ident: b12
  article-title: Elements of dimensionality reduction and manifold learning
– volume: 19
  start-page: 711
  year: 1996
  end-page: 720
  ident: b3
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 42
  year: 2021
  ident: b9
  article-title: A survey on deep matrix factorizations
  publication-title: Computer Science Review
– volume: 295
  start-page: 7
  year: 2002
  ident: b2
  article-title: The isomap algorithm and topological stability
  publication-title: Science
– volume: 45
  start-page: 2237
  year: 2012
  end-page: 2250
  ident: b46
  article-title: Graph dual regularization non-negative matrix factorization for co-clustering
  publication-title: Pattern Recognition
– volume: 86
  start-page: 210
  year: 2015
  end-page: 223
  ident: b19
  article-title: Selecting feature subset with sparsity and low redundancy for unsupervised learning
  publication-title: Knowledge-Based Systems
– start-page: 673
  year: 2011
  end-page: 682
  ident: b24
  article-title: Robust nonnegative matrix factorization using L21-norm
  publication-title: Proceedings of the 20th ACM international conference on information and knowledge management
– volume: 240
  year: 2024
  ident: b44
  article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization
  publication-title: Expert Systems with Applications
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: b43
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 268
  year: 2023
  ident: b35
  article-title: Robust dual-graph discriminative NMF for data classification
  publication-title: Knowledge-Based Systems
– reference: Samaria, F., & Harter, A. (1994). Parameterisation of a stochastic model for human face identification. In
– volume: 251
  year: 2022
  ident: b49
  article-title: Deep alternating non-negative matrix factorisation
  publication-title: Knowledge-Based Systems
– reference: (pp. 138–142).
– volume: 39
  start-page: 417
  year: 2017
  end-page: 429
  ident: b52
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 18
  start-page: 1
  year: 1998
  end-page: 8
  ident: b1
  article-title: Linear discriminant analysis-a brief tutorial
  publication-title: Institute for Signal and Information Processing
– reference: (pp. 279–284).
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b37
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: Wang, H., Huang, H., & Ding, C. (2011). Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization. In
– start-page: 1
  year: 2022
  end-page: 14
  ident: b28
  article-title: Dual-graph global and local concept factorization for data clustering
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 126
  year: 2023
  ident: b40
  article-title: A tutorial-based survey on feature selection: Recent advancements on feature selection
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 21
  year: 2021
  ident: b32
  article-title: Feature extraction using sparse kernel non-negative matrix factorization for rolling element bearing diagnosis
  publication-title: Sensors
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: b56
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– reference: Wang, H., Nie, F., & Huang, H. (2014). Globally and locally consistent unsupervised projection.
– volume: 566
  year: 2024
  ident: b5
  article-title: WSNMF: Weighted symmetric nonnegative matrix factorization for attributed graph clustering
  publication-title: Neurocomputing
– year: 2022
  ident: b29
  article-title: Subspace nonnegative matrix factorization for feature representation
– volume: 491
  start-page: 305
  year: 2022
  end-page: 320
  ident: b8
  article-title: A survey of deep nonnegative matrix factorization
  publication-title: Neurocomputing
– start-page: 446
  year: 1998
  end-page: 456
  ident: b15
  article-title: Characterising virtual eigensignatures for general purpose face recognition
  publication-title: Face recognition: from theory to applications
– volume: vol. 19
  start-page: 216
  year: 2007
  end-page: 222
  ident: b41
  article-title: Stability of
  publication-title: Advances in neural information processing systems
– volume: 53
  start-page: 4519
  year: 2020
  end-page: 4545
  ident: b20
  article-title: A survey on feature selection approaches for clustering
  publication-title: Artificial Intelligence Review
– volume: 242
  year: 2024
  ident: b22
  article-title: A novel nonnegative matrix factorization-based model for attributed graph clustering by incorporating complementary information
  publication-title: Expert Systems with Applications
– volume: 133
  year: 2023
  ident: b34
  article-title: Virtual label guided multi-view non-negative matrix factorization for data clustering
  publication-title: Digital Signal Processing
– reference: (pp. 795–798).
– volume: 6
  start-page: 58096
  year: 2018
  end-page: 58105
  ident: b58
  article-title: Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization
  publication-title: IEEE Access
– volume: 13
  start-page: 434
  year: 2020
  end-page: 447
  ident: b51
  article-title: Adaptive graph regularized multilayer nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 382
  start-page: 196
  year: 2020
  end-page: 209
  ident: b21
  article-title: Regularized nonnegative matrix factorization with adaptive local structure learning
  publication-title: Neurocomputing
– volume: 166
  start-page: 188
  year: 2023
  end-page: 203
  ident: b23
  article-title: Unsupervised feature selection based on variance–covariance subspace distance
  publication-title: Neural Networks
– volume: 188
  year: 2022
  ident: b7
  article-title: Link prediction by deep non-negative matrix factorization
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 303
  year: 2008
  end-page: 304
  ident: b42
  article-title: What is principal component analysis?
  publication-title: Nature biotechnology
– volume: 517
  start-page: 62
  year: 2023
  end-page: 70
  ident: b47
  article-title: Projection concept factorization with self-representation for data clustering
  publication-title: Neurocomputing
– year: 2020
  ident: b14
  article-title: Nonnegative Matrix Factorization
– reference: Tian, L., Du, Q., Kopriva, I., & Younan, N. (2019). Orthogonal Graph-regularized Non-negative Matrix Factorization for Hyperspectral Image Clustering. In
– volume: 23
  start-page: 643
  year: 2001
  end-page: 660
  ident: b11
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 9
  start-page: 39926
  year: 2021
  end-page: 39938
  ident: b17
  article-title: Sparse dual graph-regularized deep nonnegative matrix factorization for image clustering
  publication-title: IEEE Access
– volume: 390
  start-page: 108
  year: 2020
  end-page: 116
  ident: b31
  article-title: Deep graph regularized nonnegative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
– year: 2021
  ident: b10
  article-title: Analysis of the robustness of NMF algorithms
– volume: Vol. 12
  year: 2014
  ident: b13
  article-title: The why and how of nonnegative matrix factorization
  publication-title: Regularization, Optimization, Kernels, and Support Vector Machines
– start-page: 2174
  year: 2015
  end-page: 2178
  ident: b48
  article-title: Multilayer manifold and sparsity constrained nonnegative matrix factorization for hyperspectral unmixing
  publication-title: 2015 IEEE international conference on image processing
– volume: 107236
  year: 2021
  ident: b57
  article-title: Orthogonal nonnegative matrix factorization using a novel deep autoencoder network
  publication-title: Knowledge-Based Systems
– volume: 132
  year: 2023
  ident: b33
  article-title: Deep manifold regularized semi-nonnegative matrix factorization for multi-view clustering
  publication-title: Applied Soft Computing
– reference: , In
– reference: .
– volume: 25
  start-page: 1336
  year: 2012
  end-page: 1353
  ident: b55
  article-title: Nonnegative matrix factorization: A comprehensive review
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 359
  year: 2009
  end-page: 368
  ident: b16
  article-title: Co-clustering on manifolds
  publication-title: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining
– volume: Vol. 10033
  start-page: 1126
  year: 2016
  end-page: 1130
  ident: b59
  article-title: Graph regularized deep semi-nonnegative matrix factorization for clustering
  publication-title: Eighth international conference on digital image processing
– volume: vol. 13
  start-page: 556
  year: 2001
  end-page: 562
  ident: b26
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Advances in neural information processing systems
– year: 2020
  ident: b18
  article-title: Graph representation learning
– volume: 98
  start-page: 873
  year: 2007
  end-page: 895
  ident: b39
  article-title: Comparing clusterings—an information based distance
  publication-title: Journal of Multivariate Analysis
– volume: 18
  start-page: 1
  year: 1998
  ident: 10.1016/j.eswa.2024.123645_b1
  article-title: Linear discriminant analysis-a brief tutorial
  publication-title: Institute for Signal and Information Processing
– year: 2020
  ident: 10.1016/j.eswa.2024.123645_b18
– volume: 26
  start-page: 303
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2024.123645_b42
  article-title: What is principal component analysis?
  publication-title: Nature biotechnology
  doi: 10.1038/nbt0308-303
– volume: 9
  start-page: 39926
  year: 2021
  ident: 10.1016/j.eswa.2024.123645_b17
  article-title: Sparse dual graph-regularized deep nonnegative matrix factorization for image clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064631
– volume: 33
  start-page: 1548
  issue: 8
  year: 2010
  ident: 10.1016/j.eswa.2024.123645_b6
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 242
  year: 2024
  ident: 10.1016/j.eswa.2024.123645_b22
  article-title: A novel nonnegative matrix factorization-based model for attributed graph clustering by incorporating complementary information
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122799
– volume: 50
  start-page: 94
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2024.123645_b27
  article-title: Feature selection: A data perspective
  publication-title: ACM Computing Surveys
  doi: 10.1145/3136625
– year: 2022
  ident: 10.1016/j.eswa.2024.123645_b29
– volume: 25
  start-page: 1336
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2024.123645_b55
  article-title: Nonnegative matrix factorization: A comprehensive review
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.51
– volume: 45
  start-page: 2237
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2024.123645_b46
  article-title: Graph dual regularization non-negative matrix factorization for co-clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.12.015
– volume: 42
  year: 2021
  ident: 10.1016/j.eswa.2024.123645_b9
  article-title: A survey on deep matrix factorizations
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2021.100423
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 10.1016/j.eswa.2024.123645_b11
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.927464
– volume: 6
  start-page: 58096
  year: 2018
  ident: 10.1016/j.eswa.2024.123645_b58
  article-title: Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873385
– start-page: 673
  year: 2011
  ident: 10.1016/j.eswa.2024.123645_b24
  article-title: Robust nonnegative matrix factorization using L21-norm
– volume: 19
  start-page: 711
  issue: 7
  year: 1996
  ident: 10.1016/j.eswa.2024.123645_b3
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.598228
– volume: 382
  start-page: 196
  year: 2020
  ident: 10.1016/j.eswa.2024.123645_b21
  article-title: Regularized nonnegative matrix factorization with adaptive local structure learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.070
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b4
  article-title: A deep semi-supervised community detection based on point-wise mutual information
  publication-title: IEEE Transactions on Computational Social Systems
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.eswa.2024.123645_b37
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 86
  start-page: 210
  year: 2015
  ident: 10.1016/j.eswa.2024.123645_b19
  article-title: Selecting feature subset with sparsity and low redundancy for unsupervised learning
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.06.008
– ident: 10.1016/j.eswa.2024.123645_b45
  doi: 10.1109/ACV.1994.341300
– volume: 491
  start-page: 305
  year: 2022
  ident: 10.1016/j.eswa.2024.123645_b8
  article-title: A survey of deep nonnegative matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.152
– volume: vol. 13
  start-page: 556
  year: 2001
  ident: 10.1016/j.eswa.2024.123645_b26
  article-title: Algorithms for non-negative matrix factorization
– volume: 13
  start-page: 434
  year: 2020
  ident: 10.1016/j.eswa.2024.123645_b51
  article-title: Adaptive graph regularized multilayer nonnegative matrix factorization for hyperspectral unmixing
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2019.2963749
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.eswa.2024.123645_b25
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– start-page: 359
  year: 2009
  ident: 10.1016/j.eswa.2024.123645_b16
  article-title: Co-clustering on manifolds
– volume: 133
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b34
  article-title: Virtual label guided multi-view non-negative matrix factorization for data clustering
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2022.103888
– year: 2020
  ident: 10.1016/j.eswa.2024.123645_b14
– volume: 566
  year: 2024
  ident: 10.1016/j.eswa.2024.123645_b5
  article-title: WSNMF: Weighted symmetric nonnegative matrix factorization for attributed graph clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127041
– volume: 268
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b35
  article-title: Robust dual-graph discriminative NMF for data classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110465
– start-page: 2174
  year: 2015
  ident: 10.1016/j.eswa.2024.123645_b48
  article-title: Multilayer manifold and sparsity constrained nonnegative matrix factorization for hyperspectral unmixing
– volume: 98
  start-page: 873
  issue: 5
  year: 2007
  ident: 10.1016/j.eswa.2024.123645_b39
  article-title: Comparing clusterings—an information based distance
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2006.11.013
– ident: 10.1016/j.eswa.2024.123645_b53
  doi: 10.1145/2063576.2063621
– volume: 21
  issue: 11
  year: 2021
  ident: 10.1016/j.eswa.2024.123645_b32
  article-title: Feature extraction using sparse kernel non-negative matrix factorization for rolling element bearing diagnosis
  publication-title: Sensors
  doi: 10.3390/s21113680
– volume: 188
  year: 2022
  ident: 10.1016/j.eswa.2024.123645_b7
  article-title: Link prediction by deep non-negative matrix factorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115991
– volume: 53
  start-page: 4519
  year: 2020
  ident: 10.1016/j.eswa.2024.123645_b20
  article-title: A survey on feature selection approaches for clustering
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-019-09800-w
– volume: Vol. 10033
  start-page: 1126
  year: 2016
  ident: 10.1016/j.eswa.2024.123645_b59
  article-title: Graph regularized deep semi-nonnegative matrix factorization for clustering
– start-page: 446
  year: 1998
  ident: 10.1016/j.eswa.2024.123645_b15
  article-title: Characterising virtual eigensignatures for general purpose face recognition
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.eswa.2024.123645_b43
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 295
  start-page: 7
  issue: 5552
  year: 2002
  ident: 10.1016/j.eswa.2024.123645_b2
  article-title: The isomap algorithm and topological stability
  publication-title: Science
  doi: 10.1126/science.295.5552.7a
– volume: 126
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b40
  article-title: A tutorial-based survey on feature selection: Recent advancements on feature selection
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107136
– volume: 251
  year: 2022
  ident: 10.1016/j.eswa.2024.123645_b49
  article-title: Deep alternating non-negative matrix factorisation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109210
– volume: 240
  year: 2024
  ident: 10.1016/j.eswa.2024.123645_b44
  article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122556
– volume: 107236
  year: 2021
  ident: 10.1016/j.eswa.2024.123645_b57
  article-title: Orthogonal nonnegative matrix factorization using a novel deep autoencoder network
  publication-title: Knowledge-Based Systems
– volume: vol. 19
  start-page: 216
  year: 2007
  ident: 10.1016/j.eswa.2024.123645_b41
  article-title: Stability of k-means clustering
– ident: 10.1016/j.eswa.2024.123645_b50
  doi: 10.1109/IGARSS.2019.8897876
– volume: 390
  start-page: 108
  year: 2020
  ident: 10.1016/j.eswa.2024.123645_b31
  article-title: Deep graph regularized nonnegative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.054
– year: 2023
  ident: 10.1016/j.eswa.2024.123645_b38
  article-title: Majorization-minimization for sparse nonnegative matrix factorization with the β-divergence
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2023.3266939
– volume: 166
  start-page: 188
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b23
  article-title: Unsupervised feature selection based on variance–covariance subspace distance
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.06.018
– year: 2021
  ident: 10.1016/j.eswa.2024.123645_b10
– volume: Vol. 12
  year: 2014
  ident: 10.1016/j.eswa.2024.123645_b13
  article-title: The why and how of nonnegative matrix factorization
– ident: 10.1016/j.eswa.2024.123645_b54
  doi: 10.1609/aaai.v28i1.8915
– volume: 132
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b33
  article-title: Deep manifold regularized semi-nonnegative matrix factorization for multi-view clustering
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109806
– volume: 131
  year: 2022
  ident: 10.1016/j.eswa.2024.123645_b36
  article-title: Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.108815
– volume: 517
  start-page: 62
  year: 2023
  ident: 10.1016/j.eswa.2024.123645_b47
  article-title: Projection concept factorization with self-representation for data clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.052
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  ident: 10.1016/j.eswa.2024.123645_b56
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(87)80084-9
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.123645_b28
  article-title: Dual-graph global and local concept factorization for data clustering
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2023
  ident: 10.1016/j.eswa.2024.123645_b12
– volume: 43
  start-page: 1897
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2024.123645_b60
  article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2962679
– volume: 39
  start-page: 417
  year: 2017
  ident: 10.1016/j.eswa.2024.123645_b52
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2554555
– volume: 31
  start-page: 905
  issue: 9
  year: 2010
  ident: 10.1016/j.eswa.2024.123645_b30
  article-title: Nonnegative matrix factorization on orthogonal subspace
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.12.023
SSID ssj0017007
Score 2.531009
Snippet Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 123645
SubjectTerms Deep Non-negative Matrix Factorization
Global structure
Local structure
Non-negative Matrix Factorization
Sparsity
Title Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation
URI https://dx.doi.org/10.1016/j.eswa.2024.123645
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52978
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXrz4NuKD9MDNLGS77T6OBCSIwgUx3JrtYwFjFoIYPfnb7Wy7RA9y8NhNu7uZTufRfPMNQg0mhUxNWuHFoYo9mpp0J5YJDAOlYpWSREFx8nAU9id0MGXTCuqUtTAAq3S239r0wlq7Jy0nzdZqsWiNTXBg3KFJ7Sholg-028D-ZXS6-bWFeQD9XGT59iIPZrvCGYvx0m8fwD1EaBNISKCk6Q_n9JNFtPA8vSN04EJG3LZ_dYwqOj9Bh2U7BuxO5ymadrVe4REgV2YFnTceAv_-J-4VPXVcwSWGm1c8WC7yDbaE_zjNFX4En4bHBZvs-1pjgGaU97VnaNK7e-r0Pdc4wZNBEG68iEoakig0uZXOUhkJxoRJwxKqZRKksU6UyogI_TCNTETAtEp0RpTvp1GYEZ-K4BxV82WuLxBWSjGRiYDGgtBIBEJBqavJshITN9EgqyG_lBiXjlUcmlu88hI-9sJByhykzK2Ua-h2u2ZlOTV2zmblRvBfmsGN0d-5rmF3bfsNYNLuLp7bfLme8fmcM2JS6Mt_vv4K7cPIws2uUdXsj74x8clG1AsFrKO99v1Df_QNra_lNw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG_HGQzcUShLbScaqpWrpY-GhblYcO1CE0gqK4Ofji50KBhgYk9hJdOfc3efcfQfQYJnMUgMrvJir2KOpgTtxluBhqFSs0iBRWJw8GvPePb2ZsEkN2lUtDKZVOttvbXpprd2ZppNmcz6dNm9NcGDcoYF2FFeWz1dglTJjk-uw2uoPeuPlz4ToylZNm_EeTnC1MzbNS799IP1QQC-RhwSrmn7xT9-JREvn092CDRc1kpZ9sW2o6WIHNquODMR9oLsw6Wg9J2NMXnksGb3JCCn4P0m3bKvjai4Jbr6Sm9m0WBDL-U_SQpEhujVyWxLKvr9qgtkZ1ZbtHtx3r-_aPc_1TvCyMOQLL6IZ5UHEDbzSeZpFkjFpkFhCdZaEaawTpfJAcp-nkQkKmFaJzgPl-2nE88CnMtyHejEr9AEQpRSTuQxpLAMayVAqrHY1QCsxoRMN80PwK4mJzBGLY3-LF1FlkD0LlLJAKQsr5UO4WM6ZW1qNP0ezShHix-IQxu7_Oa9htbZ8BpJpd6YPLTF7fRRPT4IFBkUf_fP257DWuxsNxbA_HhzDOl6x2WcnUDe60qcmXFnIM7ccvwB_tOfi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Nonnegative+Matrix+Factorization+with+Joint+Global+and+Local+Structure+Preservation&rft.jtitle=Expert+systems+with+applications&rft.au=Saberi-Movahed%2C+Farid&rft.au=Biswas%2C+Bitasta&rft.au=Tiwari%2C+Prayag&rft.au=Lehmann%2C+Jens&rft.date=2024-09-01&rft.issn=0957-4174&rft.volume=249&rft.spage=123645&rft_id=info:doi/10.1016%2Fj.eswa.2024.123645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_123645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon