Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation
Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Conse...
Saved in:
Published in | Expert systems with applications Vol. 249; no. B; p. 123645 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 1873-6793 |
DOI | 10.1016/j.eswa.2024.123645 |
Cover
Abstract | Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Consequently, a significant amount of the geometrical information within the data, present in each layer of the employed deep framework, can be overlooked by the model. This can lead to an information loss and a subsequent drop in performance. In this paper, we propose a novel deep non-negative matrix factorization method, Deep Non-Negative Matrix Factorization with Joint Global and Local Structure Preservation (dubbed Dn2MFGL), that ensures the preservation of both global and local structures within the data space. Dn2MFGL performs representation learning through a sequential embedding procedure which involves both the global data structure by accounting for the data variance, and the local data relationships by utilizing information from neighboring data points. Moreover, a regularization term that promotes sparsity by utilizing the concept of the inner product is applied to the matrices representing the lower dimensions. This aims to retain the fundamental data structure while discarding less crucial features. Simultaneously, the residual matrix of Dn2MFGL is subjected to the L2,1 norm, which ensures the robustness of the model against noisy data samples. An effective and multiplicative updating process also facilitates Dn2MFGL in solving the employed objective function. The clustering performance of the proposed deep NMF method is explored across various benchmarks of face datasets. The results point to Dn2MFGL outperforming several existing classical and state-of-the-art NMF methods. The source code is available at https://github.com/FaridSaberi/Dn2MFGO.git.
•Dn2MFGL preserves global/local data structures at each layer.•Dn2MFGL uses the L2,1 norm for robust factorization outcome.•Dn2MFGL employs inner product sparsity for coefficient matrices. |
---|---|
AbstractList | Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Consequently, a significant amount of the geometrical information within the data, present in each layer of the employed deep framework, can be overlooked by the model. This can lead to an information loss and a subsequent drop in performance. In this paper, we propose a novel deep non-negative matrix factorization method, Deep Non-Negative Matrix Factorization with Joint Global and Local Structure Preservation (dubbed Dn2MFGL), that ensures the preservation of both global and local structures within the data space. Dn2MFGL performs representation learning through a sequential embedding procedure which involves both the global data structure by accounting for the data variance, and the local data relationships by utilizing information from neighboring data points. Moreover, a regularization term that promotes sparsity by utilizing the concept of the inner product is applied to the matrices representing the lower dimensions. This aims to retain the fundamental data structure while discarding less crucial features. Simultaneously, the residual matrix of Dn2MFGL is subjected to the L2,1 norm, which ensures the robustness of the model against noisy data samples. An effective and multiplicative updating process also facilitates Dn2MFGL in solving the employed objective function. The clustering performance of the proposed deep NMF method is explored across various benchmarks of face datasets. The results point to Dn2MFGL outperforming several existing classical and state-of-the-art NMF methods. The source code is available at https://github.com/FaridSaberi/Dn2MFGO.git. © 2024 Elsevier Ltd Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A limitation of such methods is that they cannot effectively preserve the local and global geometric structures of the data in each layer. Consequently, a significant amount of the geometrical information within the data, present in each layer of the employed deep framework, can be overlooked by the model. This can lead to an information loss and a subsequent drop in performance. In this paper, we propose a novel deep non-negative matrix factorization method, Deep Non-Negative Matrix Factorization with Joint Global and Local Structure Preservation (dubbed Dn2MFGL), that ensures the preservation of both global and local structures within the data space. Dn2MFGL performs representation learning through a sequential embedding procedure which involves both the global data structure by accounting for the data variance, and the local data relationships by utilizing information from neighboring data points. Moreover, a regularization term that promotes sparsity by utilizing the concept of the inner product is applied to the matrices representing the lower dimensions. This aims to retain the fundamental data structure while discarding less crucial features. Simultaneously, the residual matrix of Dn2MFGL is subjected to the L2,1 norm, which ensures the robustness of the model against noisy data samples. An effective and multiplicative updating process also facilitates Dn2MFGL in solving the employed objective function. The clustering performance of the proposed deep NMF method is explored across various benchmarks of face datasets. The results point to Dn2MFGL outperforming several existing classical and state-of-the-art NMF methods. The source code is available at https://github.com/FaridSaberi/Dn2MFGO.git. •Dn2MFGL preserves global/local data structures at each layer.•Dn2MFGL uses the L2,1 norm for robust factorization outcome.•Dn2MFGL employs inner product sparsity for coefficient matrices. |
ArticleNumber | 123645 |
Author | Tiwari, Prayag Biswas, Bitasta Saberi-Movahed, Farid Lehmann, Jens Vahdati, Sahar |
Author_xml | – sequence: 1 givenname: Farid orcidid: 0000-0003-2718-229X surname: Saberi-Movahed fullname: Saberi-Movahed, Farid email: f.saberimovahed@kgut.ac.ir organization: Department of Applied Mathematics, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran – sequence: 2 givenname: Bitasta orcidid: 0009-0008-4923-8673 surname: Biswas fullname: Biswas, Bitasta email: bitasta.biswas@rwth-aachen.de organization: RWTH Aachen University, Aachen, Germany – sequence: 3 givenname: Prayag surname: Tiwari fullname: Tiwari, Prayag email: prayag.tiwari@ieee.org organization: School of Information Technology, Halmstad University, Sweden – sequence: 4 givenname: Jens surname: Lehmann fullname: Lehmann, Jens email: jens.lehmann@tu-dresden.de organization: Technische Universität Dresden, ScaDS.AI, Dresden, Germany – sequence: 5 givenname: Sahar surname: Vahdati fullname: Vahdati, Sahar email: sahar.vahdati@tu-dresden.de organization: Technische Universität Dresden, ScaDS.AI, Dresden, Germany |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52978$$DView record from Swedish Publication Index |
BookMark | eNp9kE1PAjEQhhuDiYj-AU-9m8W22213Ey8GBTX4kfgRb023OwsluCVtAfXXu4BePHiayeR9ZibPIeo0rgGETijpU0LF2awPYa37jDDepywVPNtDXZrLNBGySDuoS4pMJpxKfoAOQ5gRQiUhsoveLgEW-N41DUx0tCvAdzp6-4GH2kTn7Vc7dA1e2zjFt842EY_mrtRzrJsKj51pu6folyYuPeBHDwH8aoscof1azwMc_9QeehlePQ-uk_HD6GZwMU5MmoqYSG64YFIUjEOtjSyzrOQ8LziYItU5FFVVs1JQoSXJaQZVATWrKNVS1IzyMu2h093esIbFslQLb9-1_1ROW3VpXy-U8xM1naqMFTJv0_kubbwLwUOtjI3bf6PXdq4oURufaqY2PtXGp9r5bFH2B_099S90voOgVbCy4FUwFhoDlfVgoqqc_Q__BrF3knk |
CitedBy_id | crossref_primary_10_1007_s10489_025_06367_8 crossref_primary_10_1016_j_eswa_2025_126676 crossref_primary_10_1016_j_dsp_2024_104713 crossref_primary_10_1016_j_dsp_2024_104738 crossref_primary_10_1371_journal_pone_0317193 crossref_primary_10_1016_j_eswa_2025_126829 crossref_primary_10_1007_s10115_024_02203_6 crossref_primary_10_1016_j_knosys_2024_112597 crossref_primary_10_1016_j_patcog_2025_111427 crossref_primary_10_1016_j_neucom_2024_128718 |
Cites_doi | 10.1038/nbt0308-303 10.1109/ACCESS.2021.3064631 10.1016/j.eswa.2023.122799 10.1145/3136625 10.1109/TKDE.2012.51 10.1016/j.patcog.2011.12.015 10.1016/j.cosrev.2021.100423 10.1109/34.927464 10.1109/ACCESS.2018.2873385 10.1109/34.598228 10.1016/j.neucom.2019.11.070 10.1016/j.knosys.2015.06.008 10.1109/ACV.1994.341300 10.1016/j.neucom.2021.08.152 10.1109/JSTARS.2019.2963749 10.1038/44565 10.1016/j.dsp.2022.103888 10.1016/j.neucom.2023.127041 10.1016/j.knosys.2023.110465 10.1016/j.jmva.2006.11.013 10.1145/2063576.2063621 10.3390/s21113680 10.1016/j.eswa.2021.115991 10.1007/s10462-019-09800-w 10.1126/science.290.5500.2323 10.1126/science.295.5552.7a 10.1016/j.engappai.2023.107136 10.1016/j.knosys.2022.109210 10.1016/j.eswa.2023.122556 10.1109/IGARSS.2019.8897876 10.1016/j.neucom.2019.12.054 10.1109/TSP.2023.3266939 10.1016/j.neunet.2023.06.018 10.1609/aaai.v28i1.8915 10.1016/j.asoc.2022.109806 10.1016/j.patcog.2022.108815 10.1016/j.neucom.2022.10.052 10.1016/0169-7439(87)80084-9 10.1109/TPAMI.2019.2962679 10.1109/TPAMI.2016.2554555 10.1016/j.patrec.2009.12.023 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION ADTPV AOWAS D8Z |
DOI | 10.1016/j.eswa.2024.123645 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Högskolan i Halmstad |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | oai_DiVA_org_hh_52978 10_1016_j_eswa_2024_123645 S0957417424005116 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD ADTPV AGCQF AOWAS D8Z |
ID | FETCH-LOGICAL-c336t-74c46276924efac7b55b44894ec93a8e9ddf2b616a70815ed9ef2d11a76f214b3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 1873-6793 |
IngestDate | Tue Sep 09 23:39:42 EDT 2025 Wed Oct 01 04:45:27 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Sat Apr 27 15:44:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B |
Keywords | Non-negative Matrix Factorization Global structure Local structure Deep Non-negative Matrix Factorization Sparsity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c336t-74c46276924efac7b55b44894ec93a8e9ddf2b616a70815ed9ef2d11a76f214b3 |
ORCID | 0000-0003-2718-229X 0009-0008-4923-8673 |
ParticipantIDs | swepub_primary_oai_DiVA_org_hh_52978 crossref_citationtrail_10_1016_j_eswa_2024_123645 crossref_primary_10_1016_j_eswa_2024_123645 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lee, Seung (b25) 1999; 401 Wang, Zhang (b55) 2012; 25 Roweis, Saul (b43) 2000; 290 Ghojogh, Crowley, Karray, Ghodsi (b12) 2023 Lu, Leng, Li, Jiao, Basu (b35) 2023; 268 Rakhlin, Caponnetto (b41) 2007; vol. 19 Maaten, Hinton (b37) 2008; 9 Trigeorgis, Bousmalis, Zafeiriou, Schuller (b52) 2017; 39 Hancer, Xue, Zhang (b20) 2020; 53 Tian, L., Du, Q., Kopriva, I., & Younan, N. (2019). Orthogonal Graph-regularized Non-negative Matrix Factorization for Hyperspectral Image Clustering. In Samaria, F., & Harter, A. (1994). Parameterisation of a stochastic model for human face identification. In Yang, Xu (b57) 2021; 107236 Liang, Ding, Liu, Chen, Wen (b32) 2021; 21 Guo (b17) 2021; 9 Ringnér (b42) 2008; 26 Yu, Zhou, Cichocki, Xie (b58) 2018; 6 Wang, H., Huang, H., & Ding, C. (2011). Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization. In Gillis (b14) 2020 Berahmand, Mohammadi, Sheikhpour, Li, Xu (b5) 2024; 566 Shu, Zhou, Tong, Bai, Zhao (b48) 2015 . Diaz, Steele (b10) 2021 Wang, H., Nie, F., & Huang, H. (2014). Globally and locally consistent unsupervised projection. Karami, Saberi-Movahed, Tiwari, Marttinen, Vahdati (b23) 2023; 166 Lee, Seung (b26) 2001; vol. 13 Shang, Jiao, Wang (b46) 2012; 45 Tong, Zhou, Qian, Yu, Xiao (b51) 2020; 13 Sun, Kong, Xu (b49) 2022; 251 Wold, Esbensen, Geladi (b56) 1987; 2 Shao, Chen, Yuan, Wang (b47) 2023; 517 Graham, Allinson (b15) 1998 Meilă (b39) 2007; 98 Moslemi (b40) 2023; 126 In Balasubramanian, Schwartz (b2) 2002; 295 Huang, Xu, Kang, Ren (b21) 2020; 382 Berahmand, Li, Xu (b4) 2023 (pp. 138–142). Zhao, Wang, Pei (b60) 2021; 43 Han, Sun, Hao (b19) 2015; 86 (pp. 279–284). Georghiades, Belhumeur, Kriegman (b11) 2001; 23 Zeng, Qu, Wu (b59) 2016; Vol. 10033 Li, Zhou, Qiu, Wang, Zhang, Xie (b31) 2020; 390 (pp. 795–798). Chen, Zeng, Pan (b8) 2022; 491 Samareh-Jahani, Saberi-Movahed, Eftekhari, Aghamollaei, Tiwari (b44) 2024; 240 Liu, Ding, Xu, Wang (b33) 2023; 132 Li, Wu, Peng (b30) 2010; 31 Hamilton (b18) 2020 Kong, Ding, Huang (b24) 2011 Chen, Wang, Fang, Jiang (b7) 2022; 188 Li, Wei, Tong, Shen, Liu, Li, Qi, Yao, Teng (b29) 2022 Balakrishnama, Ganapathiraju (b1) 1998; 18 De Handschutter, Gillis, Siebert (b9) 2021; 42 Li, Leng, Cheng, Basu, Jiao (b28) 2022 Cai, He, Han (b6) 2010; 33 Gillis (b13) 2014; Vol. 12 Gu, Zhou (b16) 2009 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b27) 2018; 50 Belhumeur, Hespanha, Kriegman (b3) 1996; 19 Liu, Song (b34) 2023; 133 Marmin, de Morais Goulart, Févotte (b38) 2023 Luong, Nayak, Balasubramaniam, Bashar (b36) 2022; 131 Jannesari, Keshvari, Berahmand (b22) 2024; 242 Li (10.1016/j.eswa.2024.123645_b27) 2018; 50 Samareh-Jahani (10.1016/j.eswa.2024.123645_b44) 2024; 240 Lu (10.1016/j.eswa.2024.123645_b35) 2023; 268 Roweis (10.1016/j.eswa.2024.123645_b43) 2000; 290 De Handschutter (10.1016/j.eswa.2024.123645_b9) 2021; 42 Liu (10.1016/j.eswa.2024.123645_b33) 2023; 132 Berahmand (10.1016/j.eswa.2024.123645_b4) 2023 Moslemi (10.1016/j.eswa.2024.123645_b40) 2023; 126 Gillis (10.1016/j.eswa.2024.123645_b14) 2020 Luong (10.1016/j.eswa.2024.123645_b36) 2022; 131 Hamilton (10.1016/j.eswa.2024.123645_b18) 2020 Li (10.1016/j.eswa.2024.123645_b28) 2022 Balakrishnama (10.1016/j.eswa.2024.123645_b1) 1998; 18 Belhumeur (10.1016/j.eswa.2024.123645_b3) 1996; 19 Tong (10.1016/j.eswa.2024.123645_b51) 2020; 13 Trigeorgis (10.1016/j.eswa.2024.123645_b52) 2017; 39 Hancer (10.1016/j.eswa.2024.123645_b20) 2020; 53 Karami (10.1016/j.eswa.2024.123645_b23) 2023; 166 Yang (10.1016/j.eswa.2024.123645_b57) 2021; 107236 Shao (10.1016/j.eswa.2024.123645_b47) 2023; 517 Shang (10.1016/j.eswa.2024.123645_b46) 2012; 45 Wang (10.1016/j.eswa.2024.123645_b55) 2012; 25 Han (10.1016/j.eswa.2024.123645_b19) 2015; 86 Liu (10.1016/j.eswa.2024.123645_b34) 2023; 133 Graham (10.1016/j.eswa.2024.123645_b15) 1998 Cai (10.1016/j.eswa.2024.123645_b6) 2010; 33 Marmin (10.1016/j.eswa.2024.123645_b38) 2023 Shu (10.1016/j.eswa.2024.123645_b48) 2015 10.1016/j.eswa.2024.123645_b45 Zeng (10.1016/j.eswa.2024.123645_b59) 2016; Vol. 10033 Li (10.1016/j.eswa.2024.123645_b29) 2022 Lee (10.1016/j.eswa.2024.123645_b26) 2001; vol. 13 10.1016/j.eswa.2024.123645_b53 Lee (10.1016/j.eswa.2024.123645_b25) 1999; 401 10.1016/j.eswa.2024.123645_b54 Jannesari (10.1016/j.eswa.2024.123645_b22) 2024; 242 Ghojogh (10.1016/j.eswa.2024.123645_b12) 2023 Li (10.1016/j.eswa.2024.123645_b30) 2010; 31 Li (10.1016/j.eswa.2024.123645_b31) 2020; 390 10.1016/j.eswa.2024.123645_b50 Ringnér (10.1016/j.eswa.2024.123645_b42) 2008; 26 Kong (10.1016/j.eswa.2024.123645_b24) 2011 Berahmand (10.1016/j.eswa.2024.123645_b5) 2024; 566 Guo (10.1016/j.eswa.2024.123645_b17) 2021; 9 Chen (10.1016/j.eswa.2024.123645_b7) 2022; 188 Wold (10.1016/j.eswa.2024.123645_b56) 1987; 2 Yu (10.1016/j.eswa.2024.123645_b58) 2018; 6 Liang (10.1016/j.eswa.2024.123645_b32) 2021; 21 Diaz (10.1016/j.eswa.2024.123645_b10) 2021 Sun (10.1016/j.eswa.2024.123645_b49) 2022; 251 Gu (10.1016/j.eswa.2024.123645_b16) 2009 Gillis (10.1016/j.eswa.2024.123645_b13) 2014; Vol. 12 Rakhlin (10.1016/j.eswa.2024.123645_b41) 2007; vol. 19 Balasubramanian (10.1016/j.eswa.2024.123645_b2) 2002; 295 Georghiades (10.1016/j.eswa.2024.123645_b11) 2001; 23 Chen (10.1016/j.eswa.2024.123645_b8) 2022; 491 Huang (10.1016/j.eswa.2024.123645_b21) 2020; 382 Maaten (10.1016/j.eswa.2024.123645_b37) 2008; 9 Zhao (10.1016/j.eswa.2024.123645_b60) 2021; 43 Meilă (10.1016/j.eswa.2024.123645_b39) 2007; 98 |
References_xml | – volume: 33 start-page: 1548 year: 2010 end-page: 1560 ident: b6 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b25 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 50 start-page: 94 year: 2018 ident: b27 article-title: Feature selection: A data perspective publication-title: ACM Computing Surveys – year: 2023 ident: b38 article-title: Majorization-minimization for sparse nonnegative matrix factorization with the publication-title: IEEE Transactions on Signal Processing – volume: 43 start-page: 1897 year: 2021 end-page: 1913 ident: b60 article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1 year: 2023 end-page: 13 ident: b4 article-title: A deep semi-supervised community detection based on point-wise mutual information publication-title: IEEE Transactions on Computational Social Systems – volume: 131 year: 2022 ident: b36 article-title: Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering publication-title: Pattern Recognition – volume: 31 start-page: 905 year: 2010 end-page: 911 ident: b30 article-title: Nonnegative matrix factorization on orthogonal subspace publication-title: Pattern Recognition Letters – year: 2023 ident: b12 article-title: Elements of dimensionality reduction and manifold learning – volume: 19 start-page: 711 year: 1996 end-page: 720 ident: b3 article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 42 year: 2021 ident: b9 article-title: A survey on deep matrix factorizations publication-title: Computer Science Review – volume: 295 start-page: 7 year: 2002 ident: b2 article-title: The isomap algorithm and topological stability publication-title: Science – volume: 45 start-page: 2237 year: 2012 end-page: 2250 ident: b46 article-title: Graph dual regularization non-negative matrix factorization for co-clustering publication-title: Pattern Recognition – volume: 86 start-page: 210 year: 2015 end-page: 223 ident: b19 article-title: Selecting feature subset with sparsity and low redundancy for unsupervised learning publication-title: Knowledge-Based Systems – start-page: 673 year: 2011 end-page: 682 ident: b24 article-title: Robust nonnegative matrix factorization using L21-norm publication-title: Proceedings of the 20th ACM international conference on information and knowledge management – volume: 240 year: 2024 ident: b44 article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization publication-title: Expert Systems with Applications – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: b43 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – volume: 268 year: 2023 ident: b35 article-title: Robust dual-graph discriminative NMF for data classification publication-title: Knowledge-Based Systems – reference: Samaria, F., & Harter, A. (1994). Parameterisation of a stochastic model for human face identification. In – volume: 251 year: 2022 ident: b49 article-title: Deep alternating non-negative matrix factorisation publication-title: Knowledge-Based Systems – reference: (pp. 138–142). – volume: 39 start-page: 417 year: 2017 end-page: 429 ident: b52 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 18 start-page: 1 year: 1998 end-page: 8 ident: b1 article-title: Linear discriminant analysis-a brief tutorial publication-title: Institute for Signal and Information Processing – reference: (pp. 279–284). – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b37 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – reference: Wang, H., Huang, H., & Ding, C. (2011). Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization. In – start-page: 1 year: 2022 end-page: 14 ident: b28 article-title: Dual-graph global and local concept factorization for data clustering publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 126 year: 2023 ident: b40 article-title: A tutorial-based survey on feature selection: Recent advancements on feature selection publication-title: Engineering Applications of Artificial Intelligence – volume: 21 year: 2021 ident: b32 article-title: Feature extraction using sparse kernel non-negative matrix factorization for rolling element bearing diagnosis publication-title: Sensors – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: b56 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – reference: Wang, H., Nie, F., & Huang, H. (2014). Globally and locally consistent unsupervised projection. – volume: 566 year: 2024 ident: b5 article-title: WSNMF: Weighted symmetric nonnegative matrix factorization for attributed graph clustering publication-title: Neurocomputing – year: 2022 ident: b29 article-title: Subspace nonnegative matrix factorization for feature representation – volume: 491 start-page: 305 year: 2022 end-page: 320 ident: b8 article-title: A survey of deep nonnegative matrix factorization publication-title: Neurocomputing – start-page: 446 year: 1998 end-page: 456 ident: b15 article-title: Characterising virtual eigensignatures for general purpose face recognition publication-title: Face recognition: from theory to applications – volume: vol. 19 start-page: 216 year: 2007 end-page: 222 ident: b41 article-title: Stability of publication-title: Advances in neural information processing systems – volume: 53 start-page: 4519 year: 2020 end-page: 4545 ident: b20 article-title: A survey on feature selection approaches for clustering publication-title: Artificial Intelligence Review – volume: 242 year: 2024 ident: b22 article-title: A novel nonnegative matrix factorization-based model for attributed graph clustering by incorporating complementary information publication-title: Expert Systems with Applications – volume: 133 year: 2023 ident: b34 article-title: Virtual label guided multi-view non-negative matrix factorization for data clustering publication-title: Digital Signal Processing – reference: (pp. 795–798). – volume: 6 start-page: 58096 year: 2018 end-page: 58105 ident: b58 article-title: Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization publication-title: IEEE Access – volume: 13 start-page: 434 year: 2020 end-page: 447 ident: b51 article-title: Adaptive graph regularized multilayer nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 382 start-page: 196 year: 2020 end-page: 209 ident: b21 article-title: Regularized nonnegative matrix factorization with adaptive local structure learning publication-title: Neurocomputing – volume: 166 start-page: 188 year: 2023 end-page: 203 ident: b23 article-title: Unsupervised feature selection based on variance–covariance subspace distance publication-title: Neural Networks – volume: 188 year: 2022 ident: b7 article-title: Link prediction by deep non-negative matrix factorization publication-title: Expert Systems with Applications – volume: 26 start-page: 303 year: 2008 end-page: 304 ident: b42 article-title: What is principal component analysis? publication-title: Nature biotechnology – volume: 517 start-page: 62 year: 2023 end-page: 70 ident: b47 article-title: Projection concept factorization with self-representation for data clustering publication-title: Neurocomputing – year: 2020 ident: b14 article-title: Nonnegative Matrix Factorization – reference: Tian, L., Du, Q., Kopriva, I., & Younan, N. (2019). Orthogonal Graph-regularized Non-negative Matrix Factorization for Hyperspectral Image Clustering. In – volume: 23 start-page: 643 year: 2001 end-page: 660 ident: b11 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 9 start-page: 39926 year: 2021 end-page: 39938 ident: b17 article-title: Sparse dual graph-regularized deep nonnegative matrix factorization for image clustering publication-title: IEEE Access – volume: 390 start-page: 108 year: 2020 end-page: 116 ident: b31 article-title: Deep graph regularized nonnegative matrix factorization for multi-view clustering publication-title: Neurocomputing – year: 2021 ident: b10 article-title: Analysis of the robustness of NMF algorithms – volume: Vol. 12 year: 2014 ident: b13 article-title: The why and how of nonnegative matrix factorization publication-title: Regularization, Optimization, Kernels, and Support Vector Machines – start-page: 2174 year: 2015 end-page: 2178 ident: b48 article-title: Multilayer manifold and sparsity constrained nonnegative matrix factorization for hyperspectral unmixing publication-title: 2015 IEEE international conference on image processing – volume: 107236 year: 2021 ident: b57 article-title: Orthogonal nonnegative matrix factorization using a novel deep autoencoder network publication-title: Knowledge-Based Systems – volume: 132 year: 2023 ident: b33 article-title: Deep manifold regularized semi-nonnegative matrix factorization for multi-view clustering publication-title: Applied Soft Computing – reference: , In – reference: . – volume: 25 start-page: 1336 year: 2012 end-page: 1353 ident: b55 article-title: Nonnegative matrix factorization: A comprehensive review publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 359 year: 2009 end-page: 368 ident: b16 article-title: Co-clustering on manifolds publication-title: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining – volume: Vol. 10033 start-page: 1126 year: 2016 end-page: 1130 ident: b59 article-title: Graph regularized deep semi-nonnegative matrix factorization for clustering publication-title: Eighth international conference on digital image processing – volume: vol. 13 start-page: 556 year: 2001 end-page: 562 ident: b26 article-title: Algorithms for non-negative matrix factorization publication-title: Advances in neural information processing systems – year: 2020 ident: b18 article-title: Graph representation learning – volume: 98 start-page: 873 year: 2007 end-page: 895 ident: b39 article-title: Comparing clusterings—an information based distance publication-title: Journal of Multivariate Analysis – volume: 18 start-page: 1 year: 1998 ident: 10.1016/j.eswa.2024.123645_b1 article-title: Linear discriminant analysis-a brief tutorial publication-title: Institute for Signal and Information Processing – year: 2020 ident: 10.1016/j.eswa.2024.123645_b18 – volume: 26 start-page: 303 issue: 3 year: 2008 ident: 10.1016/j.eswa.2024.123645_b42 article-title: What is principal component analysis? publication-title: Nature biotechnology doi: 10.1038/nbt0308-303 – volume: 9 start-page: 39926 year: 2021 ident: 10.1016/j.eswa.2024.123645_b17 article-title: Sparse dual graph-regularized deep nonnegative matrix factorization for image clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064631 – volume: 33 start-page: 1548 issue: 8 year: 2010 ident: 10.1016/j.eswa.2024.123645_b6 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 242 year: 2024 ident: 10.1016/j.eswa.2024.123645_b22 article-title: A novel nonnegative matrix factorization-based model for attributed graph clustering by incorporating complementary information publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122799 – volume: 50 start-page: 94 issue: 6 year: 2018 ident: 10.1016/j.eswa.2024.123645_b27 article-title: Feature selection: A data perspective publication-title: ACM Computing Surveys doi: 10.1145/3136625 – year: 2022 ident: 10.1016/j.eswa.2024.123645_b29 – volume: 25 start-page: 1336 issue: 6 year: 2012 ident: 10.1016/j.eswa.2024.123645_b55 article-title: Nonnegative matrix factorization: A comprehensive review publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.51 – volume: 45 start-page: 2237 issue: 6 year: 2012 ident: 10.1016/j.eswa.2024.123645_b46 article-title: Graph dual regularization non-negative matrix factorization for co-clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.12.015 – volume: 42 year: 2021 ident: 10.1016/j.eswa.2024.123645_b9 article-title: A survey on deep matrix factorizations publication-title: Computer Science Review doi: 10.1016/j.cosrev.2021.100423 – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 10.1016/j.eswa.2024.123645_b11 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.927464 – volume: 6 start-page: 58096 year: 2018 ident: 10.1016/j.eswa.2024.123645_b58 article-title: Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873385 – start-page: 673 year: 2011 ident: 10.1016/j.eswa.2024.123645_b24 article-title: Robust nonnegative matrix factorization using L21-norm – volume: 19 start-page: 711 issue: 7 year: 1996 ident: 10.1016/j.eswa.2024.123645_b3 article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.598228 – volume: 382 start-page: 196 year: 2020 ident: 10.1016/j.eswa.2024.123645_b21 article-title: Regularized nonnegative matrix factorization with adaptive local structure learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.070 – start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.123645_b4 article-title: A deep semi-supervised community detection based on point-wise mutual information publication-title: IEEE Transactions on Computational Social Systems – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.eswa.2024.123645_b37 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 86 start-page: 210 year: 2015 ident: 10.1016/j.eswa.2024.123645_b19 article-title: Selecting feature subset with sparsity and low redundancy for unsupervised learning publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.06.008 – ident: 10.1016/j.eswa.2024.123645_b45 doi: 10.1109/ACV.1994.341300 – volume: 491 start-page: 305 year: 2022 ident: 10.1016/j.eswa.2024.123645_b8 article-title: A survey of deep nonnegative matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.152 – volume: vol. 13 start-page: 556 year: 2001 ident: 10.1016/j.eswa.2024.123645_b26 article-title: Algorithms for non-negative matrix factorization – volume: 13 start-page: 434 year: 2020 ident: 10.1016/j.eswa.2024.123645_b51 article-title: Adaptive graph regularized multilayer nonnegative matrix factorization for hyperspectral unmixing publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2019.2963749 – volume: 401 start-page: 788 year: 1999 ident: 10.1016/j.eswa.2024.123645_b25 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – start-page: 359 year: 2009 ident: 10.1016/j.eswa.2024.123645_b16 article-title: Co-clustering on manifolds – volume: 133 year: 2023 ident: 10.1016/j.eswa.2024.123645_b34 article-title: Virtual label guided multi-view non-negative matrix factorization for data clustering publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2022.103888 – year: 2020 ident: 10.1016/j.eswa.2024.123645_b14 – volume: 566 year: 2024 ident: 10.1016/j.eswa.2024.123645_b5 article-title: WSNMF: Weighted symmetric nonnegative matrix factorization for attributed graph clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127041 – volume: 268 year: 2023 ident: 10.1016/j.eswa.2024.123645_b35 article-title: Robust dual-graph discriminative NMF for data classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110465 – start-page: 2174 year: 2015 ident: 10.1016/j.eswa.2024.123645_b48 article-title: Multilayer manifold and sparsity constrained nonnegative matrix factorization for hyperspectral unmixing – volume: 98 start-page: 873 issue: 5 year: 2007 ident: 10.1016/j.eswa.2024.123645_b39 article-title: Comparing clusterings—an information based distance publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2006.11.013 – ident: 10.1016/j.eswa.2024.123645_b53 doi: 10.1145/2063576.2063621 – volume: 21 issue: 11 year: 2021 ident: 10.1016/j.eswa.2024.123645_b32 article-title: Feature extraction using sparse kernel non-negative matrix factorization for rolling element bearing diagnosis publication-title: Sensors doi: 10.3390/s21113680 – volume: 188 year: 2022 ident: 10.1016/j.eswa.2024.123645_b7 article-title: Link prediction by deep non-negative matrix factorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115991 – volume: 53 start-page: 4519 year: 2020 ident: 10.1016/j.eswa.2024.123645_b20 article-title: A survey on feature selection approaches for clustering publication-title: Artificial Intelligence Review doi: 10.1007/s10462-019-09800-w – volume: Vol. 10033 start-page: 1126 year: 2016 ident: 10.1016/j.eswa.2024.123645_b59 article-title: Graph regularized deep semi-nonnegative matrix factorization for clustering – start-page: 446 year: 1998 ident: 10.1016/j.eswa.2024.123645_b15 article-title: Characterising virtual eigensignatures for general purpose face recognition – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.eswa.2024.123645_b43 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 295 start-page: 7 issue: 5552 year: 2002 ident: 10.1016/j.eswa.2024.123645_b2 article-title: The isomap algorithm and topological stability publication-title: Science doi: 10.1126/science.295.5552.7a – volume: 126 year: 2023 ident: 10.1016/j.eswa.2024.123645_b40 article-title: A tutorial-based survey on feature selection: Recent advancements on feature selection publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107136 – volume: 251 year: 2022 ident: 10.1016/j.eswa.2024.123645_b49 article-title: Deep alternating non-negative matrix factorisation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109210 – volume: 240 year: 2024 ident: 10.1016/j.eswa.2024.123645_b44 article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122556 – volume: 107236 year: 2021 ident: 10.1016/j.eswa.2024.123645_b57 article-title: Orthogonal nonnegative matrix factorization using a novel deep autoencoder network publication-title: Knowledge-Based Systems – volume: vol. 19 start-page: 216 year: 2007 ident: 10.1016/j.eswa.2024.123645_b41 article-title: Stability of k-means clustering – ident: 10.1016/j.eswa.2024.123645_b50 doi: 10.1109/IGARSS.2019.8897876 – volume: 390 start-page: 108 year: 2020 ident: 10.1016/j.eswa.2024.123645_b31 article-title: Deep graph regularized nonnegative matrix factorization for multi-view clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.054 – year: 2023 ident: 10.1016/j.eswa.2024.123645_b38 article-title: Majorization-minimization for sparse nonnegative matrix factorization with the β-divergence publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2023.3266939 – volume: 166 start-page: 188 year: 2023 ident: 10.1016/j.eswa.2024.123645_b23 article-title: Unsupervised feature selection based on variance–covariance subspace distance publication-title: Neural Networks doi: 10.1016/j.neunet.2023.06.018 – year: 2021 ident: 10.1016/j.eswa.2024.123645_b10 – volume: Vol. 12 year: 2014 ident: 10.1016/j.eswa.2024.123645_b13 article-title: The why and how of nonnegative matrix factorization – ident: 10.1016/j.eswa.2024.123645_b54 doi: 10.1609/aaai.v28i1.8915 – volume: 132 year: 2023 ident: 10.1016/j.eswa.2024.123645_b33 article-title: Deep manifold regularized semi-nonnegative matrix factorization for multi-view clustering publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2022.109806 – volume: 131 year: 2022 ident: 10.1016/j.eswa.2024.123645_b36 article-title: Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108815 – volume: 517 start-page: 62 year: 2023 ident: 10.1016/j.eswa.2024.123645_b47 article-title: Projection concept factorization with self-representation for data clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.052 – volume: 2 start-page: 37 issue: 1–3 year: 1987 ident: 10.1016/j.eswa.2024.123645_b56 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(87)80084-9 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2024.123645_b28 article-title: Dual-graph global and local concept factorization for data clustering publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2023 ident: 10.1016/j.eswa.2024.123645_b12 – volume: 43 start-page: 1897 issue: 6 year: 2021 ident: 10.1016/j.eswa.2024.123645_b60 article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2962679 – volume: 39 start-page: 417 year: 2017 ident: 10.1016/j.eswa.2024.123645_b52 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2554555 – volume: 31 start-page: 905 issue: 9 year: 2010 ident: 10.1016/j.eswa.2024.123645_b30 article-title: Nonnegative matrix factorization on orthogonal subspace publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.12.023 |
SSID | ssj0017007 |
Score | 2.531009 |
Snippet | Deep Non-Negative Matrix Factorization (DNMF) methods provide an efficient low-dimensional representation of given data through their layered architecture. A... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 123645 |
SubjectTerms | Deep Non-negative Matrix Factorization Global structure Local structure Non-negative Matrix Factorization Sparsity |
Title | Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation |
URI | https://dx.doi.org/10.1016/j.eswa.2024.123645 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52978 |
Volume | 249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXrz4NuKD9MDNLGS77T6OBCSIwgUx3JrtYwFjFoIYPfnb7Wy7RA9y8NhNu7uZTufRfPMNQg0mhUxNWuHFoYo9mpp0J5YJDAOlYpWSREFx8nAU9id0MGXTCuqUtTAAq3S239r0wlq7Jy0nzdZqsWiNTXBg3KFJ7Sholg-028D-ZXS6-bWFeQD9XGT59iIPZrvCGYvx0m8fwD1EaBNISKCk6Q_n9JNFtPA8vSN04EJG3LZ_dYwqOj9Bh2U7BuxO5ymadrVe4REgV2YFnTceAv_-J-4VPXVcwSWGm1c8WC7yDbaE_zjNFX4En4bHBZvs-1pjgGaU97VnaNK7e-r0Pdc4wZNBEG68iEoakig0uZXOUhkJxoRJwxKqZRKksU6UyogI_TCNTETAtEp0RpTvp1GYEZ-K4BxV82WuLxBWSjGRiYDGgtBIBEJBqavJshITN9EgqyG_lBiXjlUcmlu88hI-9sJByhykzK2Ua-h2u2ZlOTV2zmblRvBfmsGN0d-5rmF3bfsNYNLuLp7bfLme8fmcM2JS6Mt_vv4K7cPIws2uUdXsj74x8clG1AsFrKO99v1Df_QNra_lNw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG_HGQzcUShLbScaqpWrpY-GhblYcO1CE0gqK4Ofji50KBhgYk9hJdOfc3efcfQfQYJnMUgMrvJir2KOpgTtxluBhqFSs0iBRWJw8GvPePb2ZsEkN2lUtDKZVOttvbXpprd2ZppNmcz6dNm9NcGDcoYF2FFeWz1dglTJjk-uw2uoPeuPlz4ToylZNm_EeTnC1MzbNS799IP1QQC-RhwSrmn7xT9-JREvn092CDRc1kpZ9sW2o6WIHNquODMR9oLsw6Wg9J2NMXnksGb3JCCn4P0m3bKvjai4Jbr6Sm9m0WBDL-U_SQpEhujVyWxLKvr9qgtkZ1ZbtHtx3r-_aPc_1TvCyMOQLL6IZ5UHEDbzSeZpFkjFpkFhCdZaEaawTpfJAcp-nkQkKmFaJzgPl-2nE88CnMtyHejEr9AEQpRSTuQxpLAMayVAqrHY1QCsxoRMN80PwK4mJzBGLY3-LF1FlkD0LlLJAKQsr5UO4WM6ZW1qNP0ezShHix-IQxu7_Oa9htbZ8BpJpd6YPLTF7fRRPT4IFBkUf_fP257DWuxsNxbA_HhzDOl6x2WcnUDe60qcmXFnIM7ccvwB_tOfi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Nonnegative+Matrix+Factorization+with+Joint+Global+and+Local+Structure+Preservation&rft.jtitle=Expert+systems+with+applications&rft.au=Saberi-Movahed%2C+Farid&rft.au=Biswas%2C+Bitasta&rft.au=Tiwari%2C+Prayag&rft.au=Lehmann%2C+Jens&rft.date=2024-09-01&rft.issn=0957-4174&rft.volume=249&rft.spage=123645&rft_id=info:doi/10.1016%2Fj.eswa.2024.123645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_123645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |