A Hybrid PSO-DE Intelligent Algorithm for Solving Constrained Optimization Problems Based on Feasibility Rules
In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility rules. Establishing individual feasibility rules as a way to determine whether the position of an individual satisfies the constraint or violate...
Saved in:
| Published in | Mathematics (Basel) Vol. 11; no. 3; p. 522 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math11030522 |
Cover
| Abstract | In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility rules. Establishing individual feasibility rules as a way to determine whether the position of an individual satisfies the constraint or violates the degree of the constraint, which will determine the choice of the individual optimal position and the global optimal position in the particle population. First, particle swarm optimization (PSO) is used to act on the top 50% of individuals with higher degree of constraint violation to update their velocity and position. Second, Differential Evolution (DE) is applied to act on the individual optimal position of each individual to form a new population. The current individual optimal position and the global optimal position are updated using the feasibility rules, thus forming a hybrid PSO-DE intelligent algorithm. Analyzing the convergence and complexity of PSO-DE. Finally, the performance of the PSO-DE algorithm is tested with 12 benchmark functions of constrained optimization and 57 engineering optimization problems, the numerical results show that the proposed algorithm has good accuracy, effectiveness and robustness. |
|---|---|
| AbstractList | In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility rules. Establishing individual feasibility rules as a way to determine whether the position of an individual satisfies the constraint or violates the degree of the constraint, which will determine the choice of the individual optimal position and the global optimal position in the particle population. First, particle swarm optimization (PSO) is used to act on the top 50% of individuals with higher degree of constraint violation to update their velocity and position. Second, Differential Evolution (DE) is applied to act on the individual optimal position of each individual to form a new population. The current individual optimal position and the global optimal position are updated using the feasibility rules, thus forming a hybrid PSO-DE intelligent algorithm. Analyzing the convergence and complexity of PSO-DE. Finally, the performance of the PSO-DE algorithm is tested with 12 benchmark functions of constrained optimization and 57 engineering optimization problems, the numerical results show that the proposed algorithm has good accuracy, effectiveness and robustness. |
| Audience | Academic |
| Author | Hu, Chenyang Zhang, Jiaojiao Guo, Eryang Gao, Yuelin |
| Author_xml | – sequence: 1 givenname: Eryang surname: Guo fullname: Guo, Eryang – sequence: 2 givenname: Yuelin orcidid: 0000-0003-2021-2097 surname: Gao fullname: Gao, Yuelin – sequence: 3 givenname: Chenyang surname: Hu fullname: Hu, Chenyang – sequence: 4 givenname: Jiaojiao surname: Zhang fullname: Zhang, Jiaojiao |
| BookMark | eNqFkU1v3CAQhq0olZKmufUHIPVapxgw2MftNh8rRdooSc_W2IDDCsMW2FTbXx82rqqoqlQ4MJp530fDzPvi2HmniuJjhS8obfGXCdJTVWGKa0KOilNCiChFLhy_iU-K8xg3OJ-2og1rTwu3QDf7PhiJ7h7W5bdLtHJJWWtG5RJa2NEHk54mpH1AD94-GzeipXcxBTBOSbTeJjOZX5CMd-gu-N6qKaKvEHMtZ64URNMba9Ie3e-sih-KdxpsVOe_37Pi-9Xl4_KmvF1fr5aL23KglKeSUVYzDgRTDiBryiUZatlL2utKaAxkEEJLDS0HgaGRsqeKNC3ntKGSMUbPitXMlR423TaYCcK-82C614QPYwchmcGqbgDSiprTimWnzkROGdFVjxVVoq5lZpUza-e2sP8J1v4BVrg7zL57O_us_zTrt8H_2KmYuo3fBZe_2xEhWEs44XVWXcyqEXITxmmfZzrkK9VkhrxabXJ-IRhpmgw9YD_PhiH4GIPS_-uC_CUfTHrd02F39t-mF2T9tAg |
| CitedBy_id | crossref_primary_10_1109_TII_2024_3435539 crossref_primary_10_3934_math_2024385 crossref_primary_10_1109_ACCESS_2024_3415813 crossref_primary_10_1007_s11581_024_05963_x crossref_primary_10_1109_TSMC_2024_3489600 crossref_primary_10_1016_j_heliyon_2024_e38555 |
| Cites_doi | 10.1016/j.cma.2005.05.014 10.1016/j.rser.2020.110202 10.1016/j.engappai.2020.103771 10.1007/s13198-016-0539-7 10.1016/j.asoc.2017.04.018 10.1016/j.engappai.2006.03.003 10.1007/s11042-021-11016-6 10.1016/j.eswa.2020.113377 10.1007/s00500-018-3102-4 10.1109/TEVC.2004.836819 10.1016/j.eswa.2019.112882 10.1016/j.future.2019.02.028 10.1109/3477.484436 10.1109/4235.585893 10.1137/1018105 10.1016/j.amc.2009.03.090 10.1155/2014/617905 10.1109/TEVC.2008.919004 10.1109/CEC48606.2020.9185566 10.1109/CEC48606.2020.9185583 10.1007/s12530-019-09291-8 10.1016/j.engappai.2013.02.002 10.1007/12_2015_311 10.1016/j.tafmec.2021.103213 10.1016/j.knosys.2021.106937 10.1145/3377929.3398186 10.1007/s10898-009-9477-0 10.1080/03772063.2020.1754299 10.1016/j.asoc.2022.108928 10.1007/s00500-019-04601-3 10.1016/j.asoc.2015.09.045 10.1007/s00521-014-1577-1 10.1016/j.swevo.2020.100693 10.1016/j.ins.2010.11.033 10.1016/S0045-7825(99)00389-8 10.1016/j.asoc.2019.105865 10.1080/03052150500384759 10.1016/j.matcom.2021.08.013 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math11030522 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_ca29756314d44f96a6342f1b0e3e755d 10.3390/math11030522 A742882232 10_3390_math11030522 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c336t-434546a2036aad536d2c5dbd3bf17f0a2c77fdfa96a70a8ddb3e28966383d4443 |
| IEDL.DBID | UNPAY |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:43:32 EDT 2025 Sun Oct 26 04:05:23 EDT 2025 Fri Jul 25 11:47:30 EDT 2025 Mon Oct 20 17:03:39 EDT 2025 Thu Oct 16 04:42:41 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-434546a2036aad536d2c5dbd3bf17f0a2c77fdfa96a70a8ddb3e28966383d4443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2021-2097 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-7390/11/3/522/pdf?version=1674043456 |
| PQID | 2774926265 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ca29756314d44f96a6342f1b0e3e755d unpaywall_primary_10_3390_math11030522 proquest_journals_2774926265 gale_infotracacademiconefile_A742882232 crossref_primary_10_3390_math11030522 crossref_citationtrail_10_3390_math11030522 |
| PublicationCentury | 2000 |
| PublicationDate | 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Cheng (ref_1) 2021; 220 Kumar (ref_5) 2020; 24 Ridha (ref_8) 2021; 135 ref_13 Coello (ref_37) 2005; 9 ref_11 Sun (ref_36) 2011; 181 ref_10 Jadon (ref_31) 2017; 58 Yang (ref_45) 2011; 136 Heidari (ref_20) 2019; 97 Guedria (ref_46) 2016; 40 Long (ref_30) 2014; 25 ref_17 ref_38 Garg (ref_40) 2017; 8 Medjahed (ref_18) 2016; 40 Kumar (ref_41) 2020; 56 Hashim (ref_22) 2022; 192 Deb (ref_7) 2000; 186 He (ref_44) 2007; 20 Karaboga (ref_15) 2009; 214 Wolpert (ref_23) 1999; 1 Ang (ref_33) 2020; 140 Khatir (ref_24) 2022; 118 Pu (ref_28) 2022; 81 Gerdts (ref_6) 2010; 47 Faramarzi (ref_21) 2020; 152 Dorigo (ref_12) 1996; 26 ref_43 Ning (ref_4) 2021; 95 Eusuff (ref_14) 2006; 38 Arora (ref_19) 2019; 23 ref_42 Zhang (ref_27) 2022; 2022 Kohler (ref_35) 2019; 85 ref_2 Liu (ref_3) 2020; 95 Tawhid (ref_29) 2022; 11 Amirjanov (ref_39) 2006; 195 ref_9 Tsao (ref_26) 2022; 123 Dong (ref_32) 2014; 2014 Simon (ref_16) 2008; 12 Raval (ref_25) 2022; 68 Mazhoud (ref_34) 2013; 26 |
| References_xml | – volume: 195 start-page: 2495 year: 2006 ident: ref_39 article-title: The development a changing range genetic algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.05.014 – volume: 135 start-page: 110202 year: 2021 ident: ref_8 article-title: Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110202 – volume: 95 start-page: 103771 year: 2020 ident: ref_3 article-title: Improved whale optimization algorithm for solving constrained optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103771 – volume: 8 start-page: 867 year: 2017 ident: ref_40 article-title: Constrained Laplacian biogeography-based optimization algorithm publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-016-0539-7 – volume: 58 start-page: 11 year: 2017 ident: ref_31 article-title: Hybrid artificial bee colony algorithm with differential evolution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.018 – ident: ref_11 – volume: 20 start-page: 89 year: 2007 ident: ref_44 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.03.003 – volume: 81 start-page: 19321 year: 2022 ident: ref_28 article-title: An efficient hybrid approach based on PSO, ABC and k-means for cluster analysis publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11016-6 – volume: 152 start-page: 113377 year: 2020 ident: ref_21 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 23 start-page: 715 year: 2019 ident: ref_19 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 9 start-page: 1 year: 2005 ident: ref_37 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.836819 – volume: 140 start-page: 112882 year: 2020 ident: ref_33 article-title: A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112882 – volume: 97 start-page: 849 year: 2019 ident: ref_20 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 26 start-page: 29 year: 1996 ident: ref_12 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/3477.484436 – volume: 1 start-page: 67 year: 1999 ident: ref_23 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: ref_9 doi: 10.1137/1018105 – volume: 214 start-page: 108 year: 2009 ident: ref_15 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 2014 start-page: 617905 year: 2014 ident: ref_32 article-title: Composite differential evolution with modified oracle penalty method for constrained optimization problems publication-title: Math. Probl. Eng. doi: 10.1155/2014/617905 – volume: 12 start-page: 702 year: 2008 ident: ref_16 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 40 start-page: 455 year: 2016 ident: ref_46 article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – ident: ref_43 doi: 10.1109/CEC48606.2020.9185566 – volume: 2022 start-page: 4673073 year: 2022 ident: ref_27 article-title: Marker Classification Prediction of Rockburst in Railway Tunnel Based on Hybrid PSO-BP Neural Network publication-title: Geofluids – ident: ref_42 doi: 10.1109/CEC48606.2020.9185583 – volume: 11 start-page: 65 year: 2022 ident: ref_29 article-title: A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems publication-title: Evol. Syst. doi: 10.1007/s12530-019-09291-8 – ident: ref_10 – volume: 26 start-page: 1263 year: 2013 ident: ref_34 article-title: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.02.002 – volume: 95 start-page: 103771 year: 2021 ident: ref_4 article-title: An adaptive switchover hybrid particle swarm optimization algorithm with local search strategy for constrained optimization problems publication-title: Discret. Dyn. Nat. Soc. – volume: 136 start-page: 53 year: 2011 ident: ref_45 article-title: Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications publication-title: Commun. Comput. Inf. Sci. – ident: ref_17 doi: 10.1007/12_2015_311 – volume: 118 start-page: 103213 year: 2022 ident: ref_24 article-title: A hybrid PSO and Grey Wolf Optimization algorithm for static and dynamic crack identification publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2021.103213 – volume: 220 start-page: 106937 year: 2021 ident: ref_1 article-title: Hybrid firefly algorithm with grouping attraction for constrained optimization problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106937 – ident: ref_2 doi: 10.1145/3377929.3398186 – volume: 47 start-page: 293 year: 2010 ident: ref_6 article-title: The oracle penalty method publication-title: J. Glob. Optim. doi: 10.1007/s10898-009-9477-0 – volume: 68 start-page: 3086 year: 2022 ident: ref_25 article-title: A hybrid PSO-ANN-based fault classification system for EHV transmission lines publication-title: IETE J. Res. doi: 10.1080/03772063.2020.1754299 – volume: 123 start-page: 108928 year: 2022 ident: ref_26 article-title: Marker planning problem in the apparel industry: Hybrid PSO-based heuristics publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108928 – volume: 24 start-page: 11365 year: 2020 ident: ref_5 article-title: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process publication-title: Soft Comput. doi: 10.1007/s00500-019-04601-3 – ident: ref_13 – volume: 40 start-page: 178 year: 2016 ident: ref_18 article-title: Gray wolf optimizer for hyperspectral band selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.09.045 – volume: 25 start-page: 911 year: 2014 ident: ref_30 article-title: An effective hybrid cuckoo search algorithm for constrained global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1577-1 – ident: ref_38 – volume: 56 start-page: 100693 year: 2020 ident: ref_41 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100693 – volume: 181 start-page: 1153 year: 2011 ident: ref_36 article-title: An improved vector particle swarm optimization for constrained optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.11.033 – volume: 186 start-page: 311 year: 2000 ident: ref_7 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – volume: 85 start-page: 105865 year: 2019 ident: ref_35 article-title: PSO+: A new particle swarm optimization algorithm for constrained problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105865 – volume: 38 start-page: 129 year: 2006 ident: ref_14 article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – volume: 192 start-page: 84 year: 2022 ident: ref_22 article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.08.013 |
| SSID | ssj0000913849 |
| Score | 2.262606 |
| Snippet | In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 522 |
| SubjectTerms | Algorithms Birds constraint optimizations Constraints Cooperation differential evolution engineering optimization problems Evolutionary computation Feasibility feasibility rules Feasibility studies Genetic algorithms Hybrid systems Mathematical optimization Particle swarm optimization Robustness (mathematics) Swarm intelligence Tests, problems and exercises Velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLi0HVKAVSwH5UOgBRSTxKzkuZdGCtCzqgsTNcvyAQ8gidldo_z0zSYi2qkovvUaWMp4Zj7-xPd8Q8l3aApC9gbSEMxVhL4coE15GSRZ8logAoAFvdEdXcnjLL-_E3UqrL3wT1tADN4o7sQZrPyVLuOM85NJIxtOQFLFnXgnhMPrGWb6STNUxOE9YxvPmpTuDvP4E8N9Dgj21RJr-tgfVVP1_BuR18nFRPZnliynLlR3n_DPZaKEi7TcibpIPvtoi66OOZ3W2Tao-HS6x5opeT8bR2YBedAybc9ov76eQ-j88UgCmdDIt8eyAYofOui-Ed3QM8eKxLcSk101rmRk9hY3NUfgC8LB9PLukvxaln30ht-eDm5_DqO2gEFnG5DzijAsuDV42GuMEky61whWOFSFRITapVSq4YECtKjaZcwXzkIEBCskYqJuzr2StmlZ-h1CRIzNY4mIrA1fS5gA8VAA0IUHPTokeOX7TqbYtvTjOptSQZqAF9KoFeuSwG_3U0Gr8Zdwpmqcbg2TY9QdwEd26iP6Xi_TIDzSuxiULIlnTVh7AxJD8SvcV5GAAlBj8bu_N_rpdyzOdAkJGVkUJczzqfOJdsXf_h9jfyCfsbd-c9-yRtfnzwu8DApoXB7WzvwJClgAu priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT9swFLZYedh4mNhN6waTH3Z5mCKa-JY-INSyom4SpYIh8RY5vsBDSDuaauq_55zEyZim8WpZie1jH3_H9vk-Qj5KkwOy1xCWcKYi1HKIUuFkFKfepbHwABrwRvd0JqeX_MeVuNoiszYXBp9Vtj6xdtR2YfCM_CABnILcdlIcLX9FqBqFt6uthIYO0gr2sKYYe0K2E2TG6pHt8WQ2P-9OXZAFM-XD5gU8g3j_AHDhTYxaWyJJ_tqbagr_fx31Dnm6Lpd681sXxYOd6GSXPA8Qko4am78gW658SXZOO_7V1StSjuh0g7lYdH5xFn2b0O8d82ZFR8U1dKy6uaUAWOnFosAzBYrKnbVehLP0DPzIbUjQpPNGcmZFx7DhWQolABvDo9oNPV8XbvWaXJ5Mfh5Po6CsEBnGZBVxxgWXGi8htbaCSZsYYXPLch8rP9CJUcpbr4dSq4FOrc2Zg8gM0EnKLOecvSG9clG6t4SKITKGxXZgpOdKmiEAEuUBZUgYZ6tEn3xtxzQzgXYce1NkEH6gBbKHFuiTT13tZUO38Z96YzRPVwdJsuuCxd11FtZcZjSmDUsWc2izh75IxhMf5wPHnBLC9skXNG6GSxmaZHTISICOISlWNlIQmwGAYvC7vdb-WVjjq-zPjOyTz92ceLTZ7x7_znvyDNXsmxOePdKr7tZuHzBPlX8IE_keN43-0g priority: 102 providerName: ProQuest |
| Title | A Hybrid PSO-DE Intelligent Algorithm for Solving Constrained Optimization Problems Based on Feasibility Rules |
| URI | https://www.proquest.com/docview/2774926265 https://www.mdpi.com/2227-7390/11/3/522/pdf?version=1674043456 https://doaj.org/article/ca29756314d44f96a6342f1b0e3e755d |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R5AA98EYESrQHHgfkxva-nBNyICEgNY1aIpXTau31thVuEiUOKPx6ZuJNVEAgxNVa2zPa8ew345lvCHku8wyQvYGwhDMV4CyHIBGFDKLEFUkkHIAG_KN7NJLDCf94Js58wm3pyyohFL_cOGns0wwUROWdKOqwDkCFzty6N199JgkL6EPOAALskaYUgMUbpDkZjdPPOFFue29d7c7wKYABLyKcqyXi-KdzaEPX_7tT3ic3V9O5WX8zZXnt1BncIXorb11s8uVwVWWH-fdfqBz_X6G75LYHpDStLegeuVFM75P9ox2b6_IBmaZ0uMbOLjo-PQ7e9emHHY9nRdPyfLa4rC6uKMBfejorMUNBcQ7oZvpEYekxeKUr3-5Jx_UAmyXtwfFpKVwBEOpLdNf0ZFUWy4dkMuh_ejsM_JyGIGdMVgFKzKXBX5rGWMGkjXNhM8syFykXmjhXyllnutKo0CTWZqyAOA-wTsIs55w9Io3pbFo8JlR0kX8ssmEuHVcy7wK8UQ4wi0x41yrRIq-3u6ZzT2KO2pQaghncY319j1vkxW71vCbv-MO6HhrAbg1Sbm8uzBbn2n_BOjfYhCxZxEFmB7pIxmMXZWHBCiWEbZFXaD4aHQOIlBvf3wCKIcWWThVEegDHGLzuYGth2nuMpY4BhyN3owQdX-6s7q9iP_nXhU_JrRiwWZ05OiCNarEqngGWqrI22UsG79uk2euPxiftTUai7T-iH5snGZs |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeyg9IJ5ioYAPFA4oahI_khwqtEu32qXd7aoPqbfgxE57SLNLk1W1f47fxkzihCJEb71GlmN77PE3tuf7CPko0wSQvYKwhLPAQS0HJxRGOl6YmdATGYAGvNGdTOXonH-_EBdr5FebC4PPKlufWDtqPU_xjHzXB5yC3HZSfF38dFA1Cm9XWwkNZaUV9F5NMWYTOw7N6hZCuHJvvA_23vH9g-HZt5FjVQaclDFZOZxxwaXCCzmltGBS-6nQiWZJ5gWZq_w0CDKdqUiqwFWh1gkzEKXATh0yzTlnUO8jsgHVRBD8bQyG09lJd8qDrJshj5oX94xF7i7g0CsPtb2E7_-1F9aSAf9uDFtkc1ks1OpW5fmdne_gKXliISvtN3PsGVkzxXOyNen4XssXpOjT0Qpzv-js9NjZH9Jxx_RZ0X5-CQNZXV1TAMj0dJ7jGQZFpdBan8Joegx-69omhNJZI3FT0gFssJrCF4Cp9hHvip4sc1O-JOcPMsavyHoxL8xrQkWEDGWedlOZ8UCmEQCgIANUI2GcdSB65Es7pnFqac6xN3kM4Q5aIL5rgR7Z6UovGnqP_5QboHm6MkjKXX-Y31zGdo3HqcI0Zck8Dm3OoC-ScT_zEtcwEwihe-QzGjdG1wFNSpXNgICOIQlX3A8gFgTAxuB32639Y-tTyvjPCuiRT92cuLfZb-6v5wPZHJ1NjuKj8fTwLXnsA35rTpe2yXp1szTvAG9VyXs7qSn58dDr6Ddn-jvz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEE-xpYAPFA4o2iR-JQeEtmyXXUrbFaVSb8GJ7faQZrfNrqr9a_w6ZvKiCNFbr5aV2J7xzDe25xtC3sosBWSvISzhTHlYy8GLhJVeEDkbBcIBaMAb3f0DOT7mX0_EyRr51ebC4LPK1iZWhtrMMjwj74eAU5DbToq-a55FTIejT_MLDytI4U1rW06jVpE9u7qC8K38OBmCrLfDcLT74_PYayoMeBljcuFxxgWXGi_jtDaCSRNmwqSGpS5QztdhppQzTsdSK19HxqTMQoQCXjpihnPO4Lt3yF2FLO6YpT760p3vIN9mxOP6rT1jsd8HBHoWYFUvEYZ_ecGqWMC_LmGD3F8Wc7260nl-zeeNHpGHDVilg1q7HpM1WzwhG_sd02v5lBQDOl5h1hedHh16w1066Tg-F3SQn8KyLc7OKUBjejTL8fSCYo3QqjKFNfQQLNZ5kwpKp3Vxm5LugGs1FFoAoDbPd1f0-zK35TNyfCsr_JysF7PCviBUxMhNFhg_k44rmcUAfZQDPCNhnY0SPfKhXdMkawjOcTZ5AoEOSiC5LoEe2e56z2tij__020HxdH2QjrtqmF2eJs3uTjKNCcqSBRzG7GAukvHQBalvmVVCmB55j8JN0GjAkDLd5D7AxJB-KxkoiAIBqjH43VYr_6SxJmXyR_d75F2nEzcOe_Pm77wh92D3JN8mB3svyYMQgFt9rLRF1heXS_sKgNYifV1pNCU_b3sL_QbEFTmN |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4A98I0oDOQHPh5Q1iT-Sp9QBpsK0raKUWk8WY4dbxNZWjUpqPz13DVuNUAgxGvkJHfy-fw7--53hDyXtgBkbyAs4UxF2MshykQpoyTzZZYID6ABb3QPj-Rowj-citNw4NaEtEoIxS9WThrrNCMFUfkgSQZsAFBhMHP-zddwkoQJ9DFnAAGuky0pAIv3yNbkaJx_xo5y63e7bHeGXwEMeJ5gXy2Rpj_tQyu6_t-d8ja5sahnZvnNVNWVXefgNtFrebtkky-7i7bYtd9_oXL8f4XukFsBkNK8s6C75FpZ3yPbhxs21-Y-qXM6WmJlFx2fHEfv9un7DY9nS_PqbDq_aM8vKcBfejKt8ISCYh_QVfeJ0tFj8EqXodyTjrsGNg3dg-3TUXgCIDSk6C7px0VVNg_I5GD_09tRFPo0RJYx2UYoMZcGrzSNcYJJl1rhCscKnygfm9Qq5Z03Q2lUbDLnClZCnAdYJ2OOc84ekl49rctHhIoh8o8lLrbScyXtEOCN8oBZZMaHTok-eb2eNW0DiTlqU2kIZnCO9dU57pMXm9GzjrzjD-P20AA2Y5Bye_VgOj_TYQVra7AIWbKEg8wedJGMpz4p4pKVSgjXJ6_QfDQ6BhDJmlDfAIohxZbOFUR6AMcY_G5nbWE6eIxGp4DDkbtRgo4vN1b3V7Ef_-vAJ-RmCtisOznaIb12viifApZqi2dhwfwAxgsWJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+PSO-DE+Intelligent+Algorithm+for+Solving+Constrained+Optimization+Problems+Based+on+Feasibility+Rules&rft.jtitle=Mathematics+%28Basel%29&rft.au=Eryang+Guo&rft.au=Yuelin+Gao&rft.au=Chenyang+Hu&rft.au=Jiaojiao+Zhang&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=3&rft.spage=522&rft_id=info:doi/10.3390%2Fmath11030522&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ca29756314d44f96a6342f1b0e3e755d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |