A Hybrid PSO-DE Intelligent Algorithm for Solving Constrained Optimization Problems Based on Feasibility Rules

In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility rules. Establishing individual feasibility rules as a way to determine whether the position of an individual satisfies the constraint or violate...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 3; p. 522
Main Authors Guo, Eryang, Gao, Yuelin, Hu, Chenyang, Zhang, Jiaojiao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math11030522

Cover

Abstract In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility rules. Establishing individual feasibility rules as a way to determine whether the position of an individual satisfies the constraint or violates the degree of the constraint, which will determine the choice of the individual optimal position and the global optimal position in the particle population. First, particle swarm optimization (PSO) is used to act on the top 50% of individuals with higher degree of constraint violation to update their velocity and position. Second, Differential Evolution (DE) is applied to act on the individual optimal position of each individual to form a new population. The current individual optimal position and the global optimal position are updated using the feasibility rules, thus forming a hybrid PSO-DE intelligent algorithm. Analyzing the convergence and complexity of PSO-DE. Finally, the performance of the PSO-DE algorithm is tested with 12 benchmark functions of constrained optimization and 57 engineering optimization problems, the numerical results show that the proposed algorithm has good accuracy, effectiveness and robustness.
AbstractList In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility rules. Establishing individual feasibility rules as a way to determine whether the position of an individual satisfies the constraint or violates the degree of the constraint, which will determine the choice of the individual optimal position and the global optimal position in the particle population. First, particle swarm optimization (PSO) is used to act on the top 50% of individuals with higher degree of constraint violation to update their velocity and position. Second, Differential Evolution (DE) is applied to act on the individual optimal position of each individual to form a new population. The current individual optimal position and the global optimal position are updated using the feasibility rules, thus forming a hybrid PSO-DE intelligent algorithm. Analyzing the convergence and complexity of PSO-DE. Finally, the performance of the PSO-DE algorithm is tested with 12 benchmark functions of constrained optimization and 57 engineering optimization problems, the numerical results show that the proposed algorithm has good accuracy, effectiveness and robustness.
Audience Academic
Author Hu, Chenyang
Zhang, Jiaojiao
Guo, Eryang
Gao, Yuelin
Author_xml – sequence: 1
  givenname: Eryang
  surname: Guo
  fullname: Guo, Eryang
– sequence: 2
  givenname: Yuelin
  orcidid: 0000-0003-2021-2097
  surname: Gao
  fullname: Gao, Yuelin
– sequence: 3
  givenname: Chenyang
  surname: Hu
  fullname: Hu, Chenyang
– sequence: 4
  givenname: Jiaojiao
  surname: Zhang
  fullname: Zhang, Jiaojiao
BookMark eNqFkU1v3CAQhq0olZKmufUHIPVapxgw2MftNh8rRdooSc_W2IDDCsMW2FTbXx82rqqoqlQ4MJp530fDzPvi2HmniuJjhS8obfGXCdJTVWGKa0KOilNCiChFLhy_iU-K8xg3OJ-2og1rTwu3QDf7PhiJ7h7W5bdLtHJJWWtG5RJa2NEHk54mpH1AD94-GzeipXcxBTBOSbTeJjOZX5CMd-gu-N6qKaKvEHMtZ64URNMba9Ie3e-sih-KdxpsVOe_37Pi-9Xl4_KmvF1fr5aL23KglKeSUVYzDgRTDiBryiUZatlL2utKaAxkEEJLDS0HgaGRsqeKNC3ntKGSMUbPitXMlR423TaYCcK-82C614QPYwchmcGqbgDSiprTimWnzkROGdFVjxVVoq5lZpUza-e2sP8J1v4BVrg7zL57O_us_zTrt8H_2KmYuo3fBZe_2xEhWEs44XVWXcyqEXITxmmfZzrkK9VkhrxabXJ-IRhpmgw9YD_PhiH4GIPS_-uC_CUfTHrd02F39t-mF2T9tAg
CitedBy_id crossref_primary_10_1109_TII_2024_3435539
crossref_primary_10_3934_math_2024385
crossref_primary_10_1109_ACCESS_2024_3415813
crossref_primary_10_1007_s11581_024_05963_x
crossref_primary_10_1109_TSMC_2024_3489600
crossref_primary_10_1016_j_heliyon_2024_e38555
Cites_doi 10.1016/j.cma.2005.05.014
10.1016/j.rser.2020.110202
10.1016/j.engappai.2020.103771
10.1007/s13198-016-0539-7
10.1016/j.asoc.2017.04.018
10.1016/j.engappai.2006.03.003
10.1007/s11042-021-11016-6
10.1016/j.eswa.2020.113377
10.1007/s00500-018-3102-4
10.1109/TEVC.2004.836819
10.1016/j.eswa.2019.112882
10.1016/j.future.2019.02.028
10.1109/3477.484436
10.1109/4235.585893
10.1137/1018105
10.1016/j.amc.2009.03.090
10.1155/2014/617905
10.1109/TEVC.2008.919004
10.1109/CEC48606.2020.9185566
10.1109/CEC48606.2020.9185583
10.1007/s12530-019-09291-8
10.1016/j.engappai.2013.02.002
10.1007/12_2015_311
10.1016/j.tafmec.2021.103213
10.1016/j.knosys.2021.106937
10.1145/3377929.3398186
10.1007/s10898-009-9477-0
10.1080/03772063.2020.1754299
10.1016/j.asoc.2022.108928
10.1007/s00500-019-04601-3
10.1016/j.asoc.2015.09.045
10.1007/s00521-014-1577-1
10.1016/j.swevo.2020.100693
10.1016/j.ins.2010.11.033
10.1016/S0045-7825(99)00389-8
10.1016/j.asoc.2019.105865
10.1080/03052150500384759
10.1016/j.matcom.2021.08.013
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math11030522
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_ca29756314d44f96a6342f1b0e3e755d
10.3390/math11030522
A742882232
10_3390_math11030522
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c336t-434546a2036aad536d2c5dbd3bf17f0a2c77fdfa96a70a8ddb3e28966383d4443
IEDL.DBID UNPAY
ISSN 2227-7390
IngestDate Fri Oct 03 12:43:32 EDT 2025
Sun Oct 26 04:05:23 EDT 2025
Fri Jul 25 11:47:30 EDT 2025
Mon Oct 20 17:03:39 EDT 2025
Thu Oct 16 04:42:41 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-434546a2036aad536d2c5dbd3bf17f0a2c77fdfa96a70a8ddb3e28966383d4443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2021-2097
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-7390/11/3/522/pdf?version=1674043456
PQID 2774926265
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_ca29756314d44f96a6342f1b0e3e755d
unpaywall_primary_10_3390_math11030522
proquest_journals_2774926265
gale_infotracacademiconefile_A742882232
crossref_primary_10_3390_math11030522
crossref_citationtrail_10_3390_math11030522
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_1) 2021; 220
Kumar (ref_5) 2020; 24
Ridha (ref_8) 2021; 135
ref_13
Coello (ref_37) 2005; 9
ref_11
Sun (ref_36) 2011; 181
ref_10
Jadon (ref_31) 2017; 58
Yang (ref_45) 2011; 136
Heidari (ref_20) 2019; 97
Guedria (ref_46) 2016; 40
Long (ref_30) 2014; 25
ref_17
ref_38
Garg (ref_40) 2017; 8
Medjahed (ref_18) 2016; 40
Kumar (ref_41) 2020; 56
Hashim (ref_22) 2022; 192
Deb (ref_7) 2000; 186
He (ref_44) 2007; 20
Karaboga (ref_15) 2009; 214
Wolpert (ref_23) 1999; 1
Ang (ref_33) 2020; 140
Khatir (ref_24) 2022; 118
Pu (ref_28) 2022; 81
Gerdts (ref_6) 2010; 47
Faramarzi (ref_21) 2020; 152
Dorigo (ref_12) 1996; 26
ref_43
Ning (ref_4) 2021; 95
Eusuff (ref_14) 2006; 38
Arora (ref_19) 2019; 23
ref_42
Zhang (ref_27) 2022; 2022
Kohler (ref_35) 2019; 85
ref_2
Liu (ref_3) 2020; 95
Tawhid (ref_29) 2022; 11
Amirjanov (ref_39) 2006; 195
ref_9
Tsao (ref_26) 2022; 123
Dong (ref_32) 2014; 2014
Simon (ref_16) 2008; 12
Raval (ref_25) 2022; 68
Mazhoud (ref_34) 2013; 26
References_xml – volume: 195
  start-page: 2495
  year: 2006
  ident: ref_39
  article-title: The development a changing range genetic algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.05.014
– volume: 135
  start-page: 110202
  year: 2021
  ident: ref_8
  article-title: Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110202
– volume: 95
  start-page: 103771
  year: 2020
  ident: ref_3
  article-title: Improved whale optimization algorithm for solving constrained optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103771
– volume: 8
  start-page: 867
  year: 2017
  ident: ref_40
  article-title: Constrained Laplacian biogeography-based optimization algorithm
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-016-0539-7
– volume: 58
  start-page: 11
  year: 2017
  ident: ref_31
  article-title: Hybrid artificial bee colony algorithm with differential evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.018
– ident: ref_11
– volume: 20
  start-page: 89
  year: 2007
  ident: ref_44
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.03.003
– volume: 81
  start-page: 19321
  year: 2022
  ident: ref_28
  article-title: An efficient hybrid approach based on PSO, ABC and k-means for cluster analysis
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11016-6
– volume: 152
  start-page: 113377
  year: 2020
  ident: ref_21
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_19
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 9
  start-page: 1
  year: 2005
  ident: ref_37
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.836819
– volume: 140
  start-page: 112882
  year: 2020
  ident: ref_33
  article-title: A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112882
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_20
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 26
  start-page: 29
  year: 1996
  ident: ref_12
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/3477.484436
– volume: 1
  start-page: 67
  year: 1999
  ident: ref_23
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: ref_9
  doi: 10.1137/1018105
– volume: 214
  start-page: 108
  year: 2009
  ident: ref_15
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– volume: 2014
  start-page: 617905
  year: 2014
  ident: ref_32
  article-title: Composite differential evolution with modified oracle penalty method for constrained optimization problems
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/617905
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_16
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 40
  start-page: 455
  year: 2016
  ident: ref_46
  article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– ident: ref_43
  doi: 10.1109/CEC48606.2020.9185566
– volume: 2022
  start-page: 4673073
  year: 2022
  ident: ref_27
  article-title: Marker Classification Prediction of Rockburst in Railway Tunnel Based on Hybrid PSO-BP Neural Network
  publication-title: Geofluids
– ident: ref_42
  doi: 10.1109/CEC48606.2020.9185583
– volume: 11
  start-page: 65
  year: 2022
  ident: ref_29
  article-title: A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-019-09291-8
– ident: ref_10
– volume: 26
  start-page: 1263
  year: 2013
  ident: ref_34
  article-title: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.02.002
– volume: 95
  start-page: 103771
  year: 2021
  ident: ref_4
  article-title: An adaptive switchover hybrid particle swarm optimization algorithm with local search strategy for constrained optimization problems
  publication-title: Discret. Dyn. Nat. Soc.
– volume: 136
  start-page: 53
  year: 2011
  ident: ref_45
  article-title: Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications
  publication-title: Commun. Comput. Inf. Sci.
– ident: ref_17
  doi: 10.1007/12_2015_311
– volume: 118
  start-page: 103213
  year: 2022
  ident: ref_24
  article-title: A hybrid PSO and Grey Wolf Optimization algorithm for static and dynamic crack identification
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2021.103213
– volume: 220
  start-page: 106937
  year: 2021
  ident: ref_1
  article-title: Hybrid firefly algorithm with grouping attraction for constrained optimization problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106937
– ident: ref_2
  doi: 10.1145/3377929.3398186
– volume: 47
  start-page: 293
  year: 2010
  ident: ref_6
  article-title: The oracle penalty method
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-009-9477-0
– volume: 68
  start-page: 3086
  year: 2022
  ident: ref_25
  article-title: A hybrid PSO-ANN-based fault classification system for EHV transmission lines
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2020.1754299
– volume: 123
  start-page: 108928
  year: 2022
  ident: ref_26
  article-title: Marker planning problem in the apparel industry: Hybrid PSO-based heuristics
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108928
– volume: 24
  start-page: 11365
  year: 2020
  ident: ref_5
  article-title: A new QPSO based hybrid algorithm for constrained optimization problems via tournamenting process
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04601-3
– ident: ref_13
– volume: 40
  start-page: 178
  year: 2016
  ident: ref_18
  article-title: Gray wolf optimizer for hyperspectral band selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.09.045
– volume: 25
  start-page: 911
  year: 2014
  ident: ref_30
  article-title: An effective hybrid cuckoo search algorithm for constrained global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1577-1
– ident: ref_38
– volume: 56
  start-page: 100693
  year: 2020
  ident: ref_41
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100693
– volume: 181
  start-page: 1153
  year: 2011
  ident: ref_36
  article-title: An improved vector particle swarm optimization for constrained optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.11.033
– volume: 186
  start-page: 311
  year: 2000
  ident: ref_7
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 85
  start-page: 105865
  year: 2019
  ident: ref_35
  article-title: PSO+: A new particle swarm optimization algorithm for constrained problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105865
– volume: 38
  start-page: 129
  year: 2006
  ident: ref_14
  article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– volume: 192
  start-page: 84
  year: 2022
  ident: ref_22
  article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.08.013
SSID ssj0000913849
Score 2.262606
Snippet In this paper, we study swarm intelligence computation for constrained optimization problems and propose a new hybrid PSO-DE algorithm based on feasibility...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 522
SubjectTerms Algorithms
Birds
constraint optimizations
Constraints
Cooperation
differential evolution
engineering optimization problems
Evolutionary computation
Feasibility
feasibility rules
Feasibility studies
Genetic algorithms
Hybrid systems
Mathematical optimization
Particle swarm optimization
Robustness (mathematics)
Swarm intelligence
Tests, problems and exercises
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLi0HVKAVSwH5UOgBRSTxKzkuZdGCtCzqgsTNcvyAQ8gidldo_z0zSYi2qkovvUaWMp4Zj7-xPd8Q8l3aApC9gbSEMxVhL4coE15GSRZ8logAoAFvdEdXcnjLL-_E3UqrL3wT1tADN4o7sQZrPyVLuOM85NJIxtOQFLFnXgnhMPrGWb6STNUxOE9YxvPmpTuDvP4E8N9Dgj21RJr-tgfVVP1_BuR18nFRPZnliynLlR3n_DPZaKEi7TcibpIPvtoi66OOZ3W2Tao-HS6x5opeT8bR2YBedAybc9ov76eQ-j88UgCmdDIt8eyAYofOui-Ed3QM8eKxLcSk101rmRk9hY3NUfgC8LB9PLukvxaln30ht-eDm5_DqO2gEFnG5DzijAsuDV42GuMEky61whWOFSFRITapVSq4YECtKjaZcwXzkIEBCskYqJuzr2StmlZ-h1CRIzNY4mIrA1fS5gA8VAA0IUHPTokeOX7TqbYtvTjOptSQZqAF9KoFeuSwG_3U0Gr8Zdwpmqcbg2TY9QdwEd26iP6Xi_TIDzSuxiULIlnTVh7AxJD8SvcV5GAAlBj8bu_N_rpdyzOdAkJGVkUJczzqfOJdsXf_h9jfyCfsbd-c9-yRtfnzwu8DApoXB7WzvwJClgAu
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT9swFLZYedh4mNhN6waTH3Z5mCKa-JY-INSyom4SpYIh8RY5vsBDSDuaauq_55zEyZim8WpZie1jH3_H9vk-Qj5KkwOy1xCWcKYi1HKIUuFkFKfepbHwABrwRvd0JqeX_MeVuNoiszYXBp9Vtj6xdtR2YfCM_CABnILcdlIcLX9FqBqFt6uthIYO0gr2sKYYe0K2E2TG6pHt8WQ2P-9OXZAFM-XD5gU8g3j_AHDhTYxaWyJJ_tqbagr_fx31Dnm6Lpd681sXxYOd6GSXPA8Qko4am78gW658SXZOO_7V1StSjuh0g7lYdH5xFn2b0O8d82ZFR8U1dKy6uaUAWOnFosAzBYrKnbVehLP0DPzIbUjQpPNGcmZFx7DhWQolABvDo9oNPV8XbvWaXJ5Mfh5Po6CsEBnGZBVxxgWXGi8htbaCSZsYYXPLch8rP9CJUcpbr4dSq4FOrc2Zg8gM0EnKLOecvSG9clG6t4SKITKGxXZgpOdKmiEAEuUBZUgYZ6tEn3xtxzQzgXYce1NkEH6gBbKHFuiTT13tZUO38Z96YzRPVwdJsuuCxd11FtZcZjSmDUsWc2izh75IxhMf5wPHnBLC9skXNG6GSxmaZHTISICOISlWNlIQmwGAYvC7vdb-WVjjq-zPjOyTz92ceLTZ7x7_znvyDNXsmxOePdKr7tZuHzBPlX8IE_keN43-0g
  priority: 102
  providerName: ProQuest
Title A Hybrid PSO-DE Intelligent Algorithm for Solving Constrained Optimization Problems Based on Feasibility Rules
URI https://www.proquest.com/docview/2774926265
https://www.mdpi.com/2227-7390/11/3/522/pdf?version=1674043456
https://doaj.org/article/ca29756314d44f96a6342f1b0e3e755d
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R5AA98EYESrQHHgfkxva-nBNyICEgNY1aIpXTau31thVuEiUOKPx6ZuJNVEAgxNVa2zPa8ew345lvCHku8wyQvYGwhDMV4CyHIBGFDKLEFUkkHIAG_KN7NJLDCf94Js58wm3pyyohFL_cOGns0wwUROWdKOqwDkCFzty6N199JgkL6EPOAALskaYUgMUbpDkZjdPPOFFue29d7c7wKYABLyKcqyXi-KdzaEPX_7tT3ic3V9O5WX8zZXnt1BncIXorb11s8uVwVWWH-fdfqBz_X6G75LYHpDStLegeuVFM75P9ox2b6_IBmaZ0uMbOLjo-PQ7e9emHHY9nRdPyfLa4rC6uKMBfejorMUNBcQ7oZvpEYekxeKUr3-5Jx_UAmyXtwfFpKVwBEOpLdNf0ZFUWy4dkMuh_ejsM_JyGIGdMVgFKzKXBX5rGWMGkjXNhM8syFykXmjhXyllnutKo0CTWZqyAOA-wTsIs55w9Io3pbFo8JlR0kX8ssmEuHVcy7wK8UQ4wi0x41yrRIq-3u6ZzT2KO2pQaghncY319j1vkxW71vCbv-MO6HhrAbg1Sbm8uzBbn2n_BOjfYhCxZxEFmB7pIxmMXZWHBCiWEbZFXaD4aHQOIlBvf3wCKIcWWThVEegDHGLzuYGth2nuMpY4BhyN3owQdX-6s7q9iP_nXhU_JrRiwWZ05OiCNarEqngGWqrI22UsG79uk2euPxiftTUai7T-iH5snGZs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeyg9IJ5ioYAPFA4oahI_khwqtEu32qXd7aoPqbfgxE57SLNLk1W1f47fxkzihCJEb71GlmN77PE3tuf7CPko0wSQvYKwhLPAQS0HJxRGOl6YmdATGYAGvNGdTOXonH-_EBdr5FebC4PPKlufWDtqPU_xjHzXB5yC3HZSfF38dFA1Cm9XWwkNZaUV9F5NMWYTOw7N6hZCuHJvvA_23vH9g-HZt5FjVQaclDFZOZxxwaXCCzmltGBS-6nQiWZJ5gWZq_w0CDKdqUiqwFWh1gkzEKXATh0yzTlnUO8jsgHVRBD8bQyG09lJd8qDrJshj5oX94xF7i7g0CsPtb2E7_-1F9aSAf9uDFtkc1ks1OpW5fmdne_gKXliISvtN3PsGVkzxXOyNen4XssXpOjT0Qpzv-js9NjZH9Jxx_RZ0X5-CQNZXV1TAMj0dJ7jGQZFpdBan8Joegx-69omhNJZI3FT0gFssJrCF4Cp9hHvip4sc1O-JOcPMsavyHoxL8xrQkWEDGWedlOZ8UCmEQCgIANUI2GcdSB65Es7pnFqac6xN3kM4Q5aIL5rgR7Z6UovGnqP_5QboHm6MkjKXX-Y31zGdo3HqcI0Zck8Dm3OoC-ScT_zEtcwEwihe-QzGjdG1wFNSpXNgICOIQlX3A8gFgTAxuB32639Y-tTyvjPCuiRT92cuLfZb-6v5wPZHJ1NjuKj8fTwLXnsA35rTpe2yXp1szTvAG9VyXs7qSn58dDr6Ddn-jvz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEE-xpYAPFA4o2iR-JQeEtmyXXUrbFaVSb8GJ7faQZrfNrqr9a_w6ZvKiCNFbr5aV2J7xzDe25xtC3sosBWSvISzhTHlYy8GLhJVeEDkbBcIBaMAb3f0DOT7mX0_EyRr51ebC4LPK1iZWhtrMMjwj74eAU5DbToq-a55FTIejT_MLDytI4U1rW06jVpE9u7qC8K38OBmCrLfDcLT74_PYayoMeBljcuFxxgWXGi_jtDaCSRNmwqSGpS5QztdhppQzTsdSK19HxqTMQoQCXjpihnPO4Lt3yF2FLO6YpT760p3vIN9mxOP6rT1jsd8HBHoWYFUvEYZ_ecGqWMC_LmGD3F8Wc7260nl-zeeNHpGHDVilg1q7HpM1WzwhG_sd02v5lBQDOl5h1hedHh16w1066Tg-F3SQn8KyLc7OKUBjejTL8fSCYo3QqjKFNfQQLNZ5kwpKp3Vxm5LugGs1FFoAoDbPd1f0-zK35TNyfCsr_JysF7PCviBUxMhNFhg_k44rmcUAfZQDPCNhnY0SPfKhXdMkawjOcTZ5AoEOSiC5LoEe2e56z2tij__020HxdH2QjrtqmF2eJs3uTjKNCcqSBRzG7GAukvHQBalvmVVCmB55j8JN0GjAkDLd5D7AxJB-KxkoiAIBqjH43VYr_6SxJmXyR_d75F2nEzcOe_Pm77wh92D3JN8mB3svyYMQgFt9rLRF1heXS_sKgNYifV1pNCU_b3sL_QbEFTmN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4A98I0oDOQHPh5Q1iT-Sp9QBpsK0raKUWk8WY4dbxNZWjUpqPz13DVuNUAgxGvkJHfy-fw7--53hDyXtgBkbyAs4UxF2MshykQpoyTzZZYID6ABb3QPj-Rowj-citNw4NaEtEoIxS9WThrrNCMFUfkgSQZsAFBhMHP-zddwkoQJ9DFnAAGuky0pAIv3yNbkaJx_xo5y63e7bHeGXwEMeJ5gXy2Rpj_tQyu6_t-d8ja5sahnZvnNVNWVXefgNtFrebtkky-7i7bYtd9_oXL8f4XukFsBkNK8s6C75FpZ3yPbhxs21-Y-qXM6WmJlFx2fHEfv9un7DY9nS_PqbDq_aM8vKcBfejKt8ISCYh_QVfeJ0tFj8EqXodyTjrsGNg3dg-3TUXgCIDSk6C7px0VVNg_I5GD_09tRFPo0RJYx2UYoMZcGrzSNcYJJl1rhCscKnygfm9Qq5Z03Q2lUbDLnClZCnAdYJ2OOc84ekl49rctHhIoh8o8lLrbScyXtEOCN8oBZZMaHTok-eb2eNW0DiTlqU2kIZnCO9dU57pMXm9GzjrzjD-P20AA2Y5Bye_VgOj_TYQVra7AIWbKEg8wedJGMpz4p4pKVSgjXJ6_QfDQ6BhDJmlDfAIohxZbOFUR6AMcY_G5nbWE6eIxGp4DDkbtRgo4vN1b3V7Ef_-vAJ-RmCtisOznaIb12viifApZqi2dhwfwAxgsWJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+PSO-DE+Intelligent+Algorithm+for+Solving+Constrained+Optimization+Problems+Based+on+Feasibility+Rules&rft.jtitle=Mathematics+%28Basel%29&rft.au=Eryang+Guo&rft.au=Yuelin+Gao&rft.au=Chenyang+Hu&rft.au=Jiaojiao+Zhang&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=3&rft.spage=522&rft_id=info:doi/10.3390%2Fmath11030522&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ca29756314d44f96a6342f1b0e3e755d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon