Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential

Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 20; no. 1; pp. 16029 - 16045
Main Authors Tao, Tangfei, Jia, Yagang, Xu, Guanghua, Liang, Renghao, Zhang, Qiuxiang, Chen, Longting, Gao, Yuxiang, Chen, Ruiquan, Zheng, Xiaowei, Yu, Yunhui
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.02.2023
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/acb102

Cover

Abstract Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain–computer interface (BCI). Approach. A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments. Main results. The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments. Significance. Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.
AbstractList . Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain-computer interface (BCI). . A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments. . The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments. . Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.
Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain-computer interface (BCI).Approach. A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments.Main results. The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments.Significance. Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain-computer interface (BCI).Approach. A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments.Main results. The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments.Significance. Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.
Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain–computer interface (BCI). Approach. A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments. Main results. The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments. Significance. Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.
Author Zhang, Qiuxiang
Yu, Yunhui
Zheng, Xiaowei
Jia, Yagang
Tao, Tangfei
Xu, Guanghua
Chen, Longting
Liang, Renghao
Gao, Yuxiang
Chen, Ruiquan
Author_xml – sequence: 1
  givenname: Tangfei
  surname: Tao
  fullname: Tao, Tangfei
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 2
  givenname: Yagang
  orcidid: 0000-0003-2735-7539
  surname: Jia
  fullname: Jia, Yagang
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 3
  givenname: Guanghua
  orcidid: 0000-0002-7409-4068
  surname: Xu
  fullname: Xu, Guanghua
  organization: The First Affiliated Hospital of Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 4
  givenname: Renghao
  orcidid: 0000-0002-1974-7521
  surname: Liang
  fullname: Liang, Renghao
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 5
  givenname: Qiuxiang
  surname: Zhang
  fullname: Zhang, Qiuxiang
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 6
  givenname: Longting
  surname: Chen
  fullname: Chen, Longting
  organization: School of Mechanical and Electrical Engineering, Central South University , Changsha, People’s Republic of China
– sequence: 7
  givenname: Yuxiang
  surname: Gao
  fullname: Gao, Yuxiang
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 8
  givenname: Ruiquan
  surname: Chen
  fullname: Chen, Ruiquan
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 9
  givenname: Xiaowei
  orcidid: 0000-0002-8653-7129
  surname: Zheng
  fullname: Zheng, Xiaowei
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
– sequence: 10
  givenname: Yunhui
  surname: Yu
  fullname: Yu, Yunhui
  organization: School of Mechanical Engineering, Xi’an Jiaotong University , Xi’an, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36608339$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAURoMovveuJEsXjiZNm7RLkfEBghtdh9v0Zoy0SU0zyuz86XYcHUHQVcLN-W7gfHtk0wePhBxxdsZZWZ5zlfNJVhTZOZias2yD7K5Hm-u7ZDtkbxieGRNcVWyb7AgpWSlEtUvep_4JvMEOfaLB0i6kEKnrYIZxQVME552fUbTWGYfeLGi9oOBp8K3zSKGBPrlX_CF7iNC4WUedTziLkLChby49UYxx3Byx_Rz1IY0_OmgPyJaFdsDDr3OfPF5NHy5vJnf317eXF3cTI4RME5Ex1She1lUheFNJZrMaeC6KwjQ1hwK4raTI2fjKlQSOOVOmbJS0NsciQ7FPTlZ7-xhe5jgk3bnBYNuCxzAfdKYkr5RiKhvR4y90XnfY6D6OPuJCf1sbAbYCTAzDENGuEc70shi9NK-XLehVMWNE_ooYlyC54Jfm2v-Cp6ugC71-DvPoR0t_4x__vaE1
CODEN JNEOBH
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3330500
crossref_primary_10_3390_s23052750
crossref_primary_10_3390_s23052863
crossref_primary_10_1109_TIM_2023_3284926
crossref_primary_10_3389_fnins_2023_1274320
crossref_primary_10_1038_s41598_024_59278_y
crossref_primary_10_3389_fnbot_2023_1297990
crossref_primary_10_1016_j_bbr_2024_115295
crossref_primary_10_1109_TIM_2024_3384559
Cites_doi 10.1109/IJCNN.2008.4634130
10.1016/j.cogbrainres.2005.08.014
10.1109/ICPR.2010.904
10.1109/TBME.2014.2312397
10.3389/fneng.2014.00019
10.1007/s11571-021-09721-x
10.1111/j.1460-9568.2008.06271.x
10.1016/j.clinph.2013.03.006
10.1109/TNSRE.2010.2053387
10.3389/fnhum.2021.741709
10.1109/TNSRE.2017.2755018
10.1109/ACCESS.2019.2939623
10.3390/s19061423
10.1109/EMBC.2013.6610736
10.1016/j.neunet.2011.05.006
10.1016/j.neulet.2009.06.045
10.1109/TAI.2021.3097307
10.1016/j.neures.2017.10.002
10.1016/j.eswa.2020.114031
10.1016/j.clinph.2008.11.015
10.1049/el.2020.2509
10.1109/JAS.2017.7510616
10.1016/S1364-6613(99)01312-1
10.1109/tim.2020.3020682
10.1007/s10548-014-0382-6
10.1109/TCDS.2020.3040438
10.1016/S0301-0511(99)00031-9
10.3389/fnins.2014.00208
10.1016/j.artmed.2013.07.004
10.1080/2326263X.2017.1303253
10.1109/LRA.2021.3114418
10.1109/TBME.2004.827072
10.1038/s41598-017-17682-7
10.1145/3126686.3129334
10.1109/ACCESS.2021.3049469
10.1109/CBMS.2017.113
10.1088/1741-2552/aae069
10.1016/j.neuroimage.2010.03.022
10.1109/ACCESS.2019.2944067
10.1016/j.neuropsychologia.2018.04.016
10.1016/j.humov.2014.08.014
10.1371/journal.pone.0047048
10.1002/ana.23879
10.1016/j.cmpb.2016.02.020
10.1109/TBME.2007.908083
10.1016/S1388-2457(00)00457-0
10.1109/EMBC.2019.8857192
10.1007/s10916-012-9893-4
10.1109/86.895946
10.1109/TBME.2010.2082540
10.1016/j.bspc.2021.103342
10.3389/fnhum.2016.00692
10.1016/j.neuropsychologia.2019.107206
10.1109/ICARCV.2018.8581088
10.1016/j.jneumeth.2009.01.015
10.1016/j.clinph.2011.01.050
10.3390/s20185283
10.1109/TBME.2005.851521
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2023 IOP Publishing Ltd.
Copyright_xml – notice: 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2023 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/acb102
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 36608339
10_1088_1741_2552_acb102
jneacb102
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research and Development Program of Shaanxi
  grantid: 2020KWZ-003; 2021ZD0204300
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
HAK
NPM
7X8
ID FETCH-LOGICAL-c336t-3207d718b9531d960f2ba14355cdb1a5a1f96340531176a1e407c8d76ff4e52e3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Oct 02 10:08:02 EDT 2025
Thu Jan 02 22:54:22 EST 2025
Thu Oct 16 04:44:27 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Sat Oct 18 23:05:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords brain–computer interface
neural rehabilitation
online adaptive classification
error related potential
motor imagery training
Language English
License This article is available under the terms of the IOP-Standard License.
2023 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-3207d718b9531d960f2ba14355cdb1a5a1f96340531176a1e407c8d76ff4e52e3
Notes JNE-105704.R2
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-8653-7129
0000-0003-2735-7539
0000-0002-1974-7521
0000-0002-7409-4068
PMID 36608339
PQID 2761977072
PQPubID 23479
PageCount 17
ParticipantIDs iop_journals_10_1088_1741_2552_acb102
proquest_miscellaneous_2761977072
crossref_primary_10_1088_1741_2552_acb102
pubmed_primary_36608339
crossref_citationtrail_10_1088_1741_2552_acb102
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kumar (jneacb102bib38) 2019; 7
Ono (jneacb102bib22) 2013; 124
Lu (jneacb102bib53) 2010; 57
Yang (jneacb102bib52) 2016; 129
Schalk (jneacb102bib25) 2000; 111
Omedes (jneacb102bib46) 2013
Ramos-Murguialday (jneacb102bib17) 2012; 7
Lotte (jneacb102bib51) 2010
Llera (jneacb102bib47) 2011; 24
Yu (jneacb102bib59) 2021; 70
Ono (jneacb102bib15) 2018; 114
Rohm (jneacb102bib6) 2013; 59
Ang (jneacb102bib50) 2008
Liang (jneacb102bib36) 2021; 9
Ramoser (jneacb102bib48) 2000; 8
Blankertz (jneacb102bib12) 2010; 51
Sadiq (jneacb102bib58) 2020; 56
Ono (jneacb102bib8) 2014; 7
Yoxon (jneacb102bib55) 2019; 134
Sadiq (jneacb102bib5) 2021; 164
Schalk (jneacb102bib1) 2004; 51
Ehrlich (jneacb102bib27) 2018; 15
Guger (jneacb102bib11) 2009; 462
Lu (jneacb102bib54) 2011; 122
Ramos-Murguialday (jneacb102bib7) 2013; 74
Friesen (jneacb102bib16) 2016; 10
Kondo (jneacb102bib21) 2015; 43
Tani (jneacb102bib9) 2018; 133
Yuan (jneacb102bib2) 2014; 61
Bhattacharyya (jneacb102bib30) 2017; 4
Kim (jneacb102bib28) 2017; 7
Kalaganis (jneacb102bib33) 2017
Neuper (jneacb102bib18) 2009; 120
Ono (jneacb102bib23) 2015; 28
Hwang (jneacb102bib19) 2009; 179
di Rienzo (jneacb102bib14) 2021; 15
Cruz (jneacb102bib32) 2018; 26
Sadiq (jneacb102bib34) 2019; 7
Padfield (jneacb102bib42) 2019; 19
Neuper (jneacb102bib4) 2005; 25
Chavarriaga (jneacb102bib45) 2014; 8
Ferrez (jneacb102bib26) 2008; 55
Falkenstein (jneacb102bib37) 2000; 51
Xu (jneacb102bib57) 2022; 16
Chavarriaga (jneacb102bib39) 2010; 18
Lemm (jneacb102bib49) 2005; 52
Li (jneacb102bib56) 2022; 72
Sadiq (jneacb102bib20) 2020; 20
Orgs (jneacb102bib13) 2008; 27
Sadiq (jneacb102bib24) 2022; 14
Decety (jneacb102bib10) 1999; 3
Sadiq (jneacb102bib3) 2021; 2
Liang (jneacb102bib35) 2021; 7
Ferrez (jneacb102bib40) 2008
Rodriguez-Bermudez (jneacb102bib44) 2012; 36
Zhang (jneacb102bib29) 2018
Schiatti (jneacb102bib43) 2019
Mousavi (jneacb102bib31) 2017; 4
Oikonomou (jneacb102bib41) 2017
References_xml – start-page: 2390
  year: 2008
  ident: jneacb102bib50
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  doi: 10.1109/IJCNN.2008.4634130
– volume: 25
  start-page: 668
  year: 2005
  ident: jneacb102bib4
  article-title: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG
  publication-title: Brain Res. Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2005.08.014
– start-page: 3712
  year: 2010
  ident: jneacb102bib51
  article-title: Spatially regularized common spatial patterns for EEG classification
  doi: 10.1109/ICPR.2010.904
– volume: 61
  start-page: 1425
  year: 2014
  ident: jneacb102bib2
  article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2312397
– volume: 7
  start-page: 19
  year: 2014
  ident: jneacb102bib8
  article-title: Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00019
– volume: 16
  start-page: 379
  year: 2022
  ident: jneacb102bib57
  article-title: A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-021-09721-x
– volume: 27
  start-page: 3380
  year: 2008
  ident: jneacb102bib13
  article-title: Expertise in dance modulates alpha/beta event-related desynchronization during action observation
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06271.x
– volume: 124
  start-page: 1779
  year: 2013
  ident: jneacb102bib22
  article-title: Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.03.006
– volume: 18
  start-page: 381
  year: 2010
  ident: jneacb102bib39
  article-title: Learning from EEG error-related potentials in noninvasive brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2053387
– volume: 15
  year: 2021
  ident: jneacb102bib14
  article-title: Stabilometric correlates of motor and motor imagery expertise
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.741709
– volume: 26
  start-page: 26
  year: 2018
  ident: jneacb102bib32
  article-title: Double ErrP detection for automatic error correction in an ERP-based BCI speller
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2755018
– volume: 7
  start-page: 127678
  year: 2019
  ident: jneacb102bib34
  article-title: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939623
– volume: 19
  start-page: 1423
  year: 2019
  ident: jneacb102bib42
  article-title: EEG-based brain-computer interfaces using motor-imagery: techniques and challenges
  publication-title: Sensors
  doi: 10.3390/s19061423
– start-page: 5263
  year: 2013
  ident: jneacb102bib46
  article-title: Using frequency-domain features for the generalization of EEG error-related potentials among different tasks
  doi: 10.1109/EMBC.2013.6610736
– volume: 24
  start-page: 1120
  year: 2011
  ident: jneacb102bib47
  article-title: On the use of interaction error potentials for adaptive brain computer interfaces
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2011.05.006
– volume: 462
  start-page: 94
  year: 2009
  ident: jneacb102bib11
  article-title: How many people are able to control a P300-based brain-computer interface (BCI)?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.06.045
– volume: 2
  start-page: 314
  year: 2021
  ident: jneacb102bib3
  article-title: Toward the development of versatile brain–computer interfaces
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2021.3097307
– volume: 133
  start-page: 7
  year: 2018
  ident: jneacb102bib9
  article-title: Action observation facilitates motor cortical activity in patients with stroke and hemiplegia
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2017.10.002
– volume: 164
  year: 2021
  ident: jneacb102bib5
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114031
– volume: 120
  start-page: 239
  year: 2009
  ident: jneacb102bib18
  article-title: Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.11.015
– volume: 56
  start-page: 1367
  year: 2020
  ident: jneacb102bib58
  article-title: Motor imagery BCI classification based on novel two‐dimensional modelling in empirical wavelet transform
  publication-title: Electron. Lett.
  doi: 10.1049/el.2020.2509
– volume: 4
  start-page: 639
  year: 2017
  ident: jneacb102bib30
  article-title: Motor imagery and error related potential induced position control of a robotic arm
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510616
– volume: 3
  start-page: 172
  year: 1999
  ident: jneacb102bib10
  article-title: Neural mechanisms subserving the perception of human actions
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(99)01312-1
– volume: 70
  start-page: 1
  year: 2021
  ident: jneacb102bib59
  article-title: A new framework for automatic detection of motor and mental imagery EEG signals for robust BCI systems
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2020.3020682
– volume: 28
  start-page: 340
  year: 2015
  ident: jneacb102bib23
  article-title: Multimodal sensory feedback associated with motor attempts alters BOLD responses to paralyzed hand movement in chronic stroke patients
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0382-6
– volume: 14
  start-page: 375
  year: 2022
  ident: jneacb102bib24
  article-title: A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject-specific tasks
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.3040438
– volume: 51
  start-page: 87
  year: 2000
  ident: jneacb102bib37
  article-title: ERP components on reaction errors and their functional significance: a tutorial
  publication-title: Biol. Psychol.
  doi: 10.1016/S0301-0511(99)00031-9
– volume: 8
  start-page: 208
  year: 2014
  ident: jneacb102bib45
  article-title: Errare machinale est: the use of error-related potentials in brain-machine interfaces
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00208
– start-page: 197
  year: 2008
  ident: jneacb102bib40
  article-title: Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy
– volume: 59
  start-page: 133
  year: 2013
  ident: jneacb102bib6
  article-title: Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2013.07.004
– volume: 4
  start-page: 74
  year: 2017
  ident: jneacb102bib31
  article-title: Improving motor imagery BCI with user response to feedback
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2017.1303253
– volume: 7
  start-page: 1721
  year: 2021
  ident: jneacb102bib35
  article-title: Fusing topology optimization and pseudo-rigid-body method for the development of a finger exoskeleton
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3114418
– volume: 51
  start-page: 1034
  year: 2004
  ident: jneacb102bib1
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– volume: 7
  year: 2017
  ident: jneacb102bib28
  article-title: Intrinsic interactive reinforcement learning—using error-related potentials for real world human-robot interaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17682-7
– start-page: 262
  year: 2017
  ident: jneacb102bib33
  article-title: A collaborative representation approach to detecting error-related potentials in SSVEP-BCIs
  doi: 10.1145/3126686.3129334
– volume: 9
  start-page: 7814
  year: 2021
  ident: jneacb102bib36
  article-title: A general arthropod joint model and its applications in modeling human robotic joints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049469
– start-page: 781
  year: 2017
  ident: jneacb102bib41
  article-title: A comparison study on EEG signal processing techniques using motor imagery EEG data
  doi: 10.1109/CBMS.2017.113
– volume: 15
  year: 2018
  ident: jneacb102bib27
  article-title: Human-agent co-adaptation using error-related potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae069
– volume: 51
  start-page: 1303
  year: 2010
  ident: jneacb102bib12
  article-title: Neurophysiological predictor of SMR-based BCI performance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.022
– volume: 7
  start-page: 142451
  year: 2019
  ident: jneacb102bib38
  article-title: A review of error-related potential-based brain–computer interfaces for motor impaired people
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944067
– volume: 114
  start-page: 134
  year: 2018
  ident: jneacb102bib15
  article-title: Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2018.04.016
– volume: 43
  start-page: 239
  year: 2015
  ident: jneacb102bib21
  article-title: Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2014.08.014
– volume: 7
  year: 2012
  ident: jneacb102bib17
  article-title: Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047048
– volume: 74
  start-page: 100
  year: 2013
  ident: jneacb102bib7
  article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 129
  start-page: 21
  year: 2016
  ident: jneacb102bib52
  article-title: Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.02.020
– volume: 55
  start-page: 923
  year: 2008
  ident: jneacb102bib26
  article-title: Error-related EEG potentials generated during simulated brain-computer interaction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.908083
– volume: 111
  start-page: 2138
  year: 2000
  ident: jneacb102bib25
  article-title: EEG-based communication: presence of an error potential
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00457-0
– start-page: 6750
  year: 2019
  ident: jneacb102bib43
  article-title: The effect of vibrotactile feedback on ErrP-based adaptive classification of motor imagery
  doi: 10.1109/EMBC.2019.8857192
– volume: 36
  start-page: S51
  year: 2012
  ident: jneacb102bib44
  article-title: Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-012-9893-4
– volume: 8
  start-page: 441
  year: 2000
  ident: jneacb102bib48
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 57
  start-page: 2936
  year: 2010
  ident: jneacb102bib53
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082540
– volume: 72
  year: 2022
  ident: jneacb102bib56
  article-title: Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103342
– volume: 10
  start-page: 692
  year: 2016
  ident: jneacb102bib16
  article-title: Combined action observation and motor imagery neurofeedback for modulation of brain activity
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00692
– volume: 134
  year: 2019
  ident: jneacb102bib55
  article-title: Rapid motor cortical plasticity can be induced by motor imagery training
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2019.107206
– start-page: 1923
  year: 2018
  ident: jneacb102bib29
  article-title: Research on command confirmation unit based on motor imagery EEG signal decoding feedback in brain-computer interface
  doi: 10.1109/ICARCV.2018.8581088
– volume: 179
  start-page: 150
  year: 2009
  ident: jneacb102bib19
  article-title: Neurofeedback-based motor imagery training for brain-computer interface (BCI)
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.01.015
– volume: 122
  start-page: 1569
  year: 2011
  ident: jneacb102bib54
  article-title: Reorganization of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.01.050
– volume: 20
  start-page: 5283
  year: 2020
  ident: jneacb102bib20
  article-title: Identification of motor and mental imagery EEG in two and multiclass subject-dependent tasks using successive decomposition index
  publication-title: Sensors
  doi: 10.3390/s20185283
– volume: 52
  start-page: 1541
  year: 2005
  ident: jneacb102bib49
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851521
SSID ssj0031790
Score 2.4398415
Snippet Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the...
Objective . Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the...
. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16029
SubjectTerms Brain
Brain-Computer Interfaces
brain–computer interface
Electroencephalography - methods
error related potential
Humans
Imagery, Psychotherapy
Imagination
Motor Cortex
motor imagery training
neural rehabilitation
online adaptive classification
Title Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential
URI https://iopscience.iop.org/article/10.1088/1741-2552/acb102
https://www.ncbi.nlm.nih.gov/pubmed/36608339
https://www.proquest.com/docview/2761977072
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uFy_u-0IEFTx0ZtJMmwyeRBQRXA4KHoSSrSo67TB2DuPJn-57TTuiqIi3Ul6TZnlr3vtCyI7uMCXBSQsi25IB6GMdSK1FoDizRjljU4mFwucX8elN--w2uh0jB6NamLxXif4GPHqgYD-FVUKcbIINzQKwhMOmMpohkOQkl2AYY_Xe5VUthjlCT_lqSKSOW9UZ5XctfNJJ49Dvz-ZmqXZOZshd_cM-2-SpMSh0w7x-wXL854hmyXRljtJDTzpHxlw2TxYOM3DFu0O6R8sE0TLyvkDejrMH3CMYT6R5SmGR8z597CIKxpDWd01QV4JSYEUn1UOqMurBOKiyqoey9YMSYcft432XjjArLMW4MHX9PrRcltnAq15eYEqTel4kNyfH10enQXWBQ2A4j4uAhy1hQfnpDnC6BV8pDbVCAy0yVjMVKZYC_7dRDjARK-bAuzTSijhN2y4KHV8iE1meuRVCWWxMqvHUUWlwSaUSqeChNhbadSwMV0mzXsLEVOjmOJznpDxllzLBSU5wkhM_yatkf_RFzyN7_EK7C2uXVOz98gvddr1vEmBTPHtRmcsHL0mI4SIhWgJolv2GGvXK4xgMYd5Z-2Mv62QKL733ueMbZKLoD9wmmEaF3ipZ4B2eeQc9
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAXKBRKCwUjARKH7K6dTew9Vm1X5VV6oFJvxk-o2k2ibfawnPjpzNjJIhBUSNyiaGLHj3l5Zj4T8sJMmJbgpGWFG8kM9LHJpDEi0zlzVnvrgsRC4Q_H5dHp-O1ZcdbdcxprYeqmE_0DeExAwWkKu4Q4OQQbmmVgCfOhtgb047BxYY3cjDglWMH38aQXxTnCT6WKSPyiHHVxyj-18oteWoO-_25yRtUzvUs-9z-dMk4uBovWDOy33_Ac_2NUG-ROZ5bSvUR-j9zw1X2yuVeBSz5b0lc0JorGE_hN8v2w-op7Bc8VaR0oLHY9p-czRMNY0v7OCeojOAVWdlKzpLqiCZSDaqcblLE_KRF-3J1_mdEVdoWjeD5M_XwOLcdyG3jV1C2mNunLB-R0evhp_yjrLnLIbJ6XbZbzkXCgBM0EON6BzxS40WioFdYZpgvNAsiBMcoDJkrNPHiZVjpRhjD2Bff5Q7Je1ZV_RCgrrQ0Go4_agGsqtQgi58Y6aNczzrfJsF9GZTuUcxzOpYrRdikVTrTCiVZporfJ69UXTUL4uIb2Jayf6tj86hq65_3eUcCuGIPRla8XV4rjsZEQIwE0W2lTrXrNyxIM4nyy84-9PCO3Tg6m6v2b43ePyW0O1ldKJ39C1tv5wu-CtdSap5EjfgCNLgye
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+motor+imagery+training+efficiency+by+an+online+adaptive+training+paradigm+integrated+with+error+related+potential&rft.jtitle=Journal+of+neural+engineering&rft.au=Tao%2C+Tangfei&rft.au=Jia%2C+Yagang&rft.au=Xu%2C+Guanghua&rft.au=Liang%2C+Renghao&rft.date=2023-02-01&rft.eissn=1741-2552&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Facb102&rft_id=info%3Apmid%2F36608339&rft.externalDocID=36608339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon