Intrusion Detection in SCADA Based Power Grids: Recursive Feature Elimination Model With Majority Vote Ensemble Algorithm

We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme combines RFE-XGBoost (Recursive Feature Elimination-eXtreme Gradient Boosting) based feature selection with a majority vote ensemble method. RFE sel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 8; no. 3; pp. 2559 - 2574
Main Authors Upadhyay, Darshana, Manero, Jaume, Zaman, Marzia, Sampalli, Srinivas
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4697
2334-329X
2334-329X
DOI10.1109/TNSE.2021.3099371

Cover

Abstract We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme combines RFE-XGBoost (Recursive Feature Elimination-eXtreme Gradient Boosting) based feature selection with a majority vote ensemble method. RFE selects features recursively based on Weighted Feature Importance (WFI) scores during the training process, while the majority vote ensemble method predicts the output label based on a total of nine heterogeneous classifiers - three bagging ensembles, namely, Random Forest (RF), Extra Tree (ET), and Decision Tree (DT), three boosting ensembles, namely, XGBoost (XGB), Gradient Boosting (GB), and AdaBoost-Decision Tree (AdB-DT) along with artificial neural network (ANN), Naive Bayes (NB), and k-nearest neighbors (KNN). This leads to a more accurate solution as a result of the combination of the most useful features and prediction from multiple heterogeneous classifiers. Experimental results show that our approach increases the accuracy, precision, recall, F1 score, and decreases the miss rate as compared to previous approaches. The model is also evaluated for four different class categories, namely binary, three-class, seven class and multi-class, using Precision Recall (PR) and Receiver Operating Characteristic (ROC) plot. In addition, an end-to-end IDS framework is proposed for efficient and accurate detection of intrusions.
AbstractList We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme combines RFE-XGBoost (Recursive Feature Elimination-eXtreme Gradient Boosting) based feature selection with a majority vote ensemble method. RFE selects features recursively based on Weighted Feature Importance (WFI) scores during the training process, while the majority vote ensemble method predicts the output label based on a total of nine heterogeneous classifiers - three bagging ensembles, namely, Random Forest (RF), Extra Tree (ET), and Decision Tree (DT), three boosting ensembles, namely, XGBoost (XGB), Gradient Boosting (GB), and AdaBoost-Decision Tree (AdB-DT) along with artificial neural network (ANN), Naive Bayes (NB), and k-nearest neighbors (KNN). This leads to a more accurate solution as a result of the combination of the most useful features and prediction from multiple heterogeneous classifiers. Experimental results show that our approach increases the accuracy, precision, recall, F1 score, and decreases the miss rate as compared to previous approaches. The model is also evaluated for four different class categories, namely binary, three-class, seven class and multi-class, using Precision Recall (PR) and Receiver Operating Characteristic (ROC) plot. In addition, an end-to-end IDS framework is proposed for efficient and accurate detection of intrusions.
Author Manero, Jaume
Zaman, Marzia
Sampalli, Srinivas
Upadhyay, Darshana
Author_xml – sequence: 1
  givenname: Darshana
  orcidid: 0000-0001-5822-0020
  surname: Upadhyay
  fullname: Upadhyay, Darshana
  email: darshana@dal.ca
  organization: Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
– sequence: 2
  givenname: Jaume
  orcidid: 0000-0002-4814-4535
  surname: Manero
  fullname: Manero, Jaume
  email: jaume.manero@dal.ca
  organization: Technical University of Catalonia, Barcelona, Spain
– sequence: 3
  givenname: Marzia
  orcidid: 0000-0002-0610-0470
  surname: Zaman
  fullname: Zaman, Marzia
  email: marzia@cistel.com
  organization: Research & Development Department, Cistel Technology Inc., Ottawa, ON, Canada
– sequence: 4
  givenname: Srinivas
  orcidid: 0000-0002-8742-5786
  surname: Sampalli
  fullname: Sampalli, Srinivas
  email: srini@cs.dal.ca
  organization: Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
BookMark eNptkUlPwzAQhS0EEusPQFwscU7xktQ1t1LKIrGJ_Wa5zgRcpXaxHVD_PQlFHCpOMxq97-npzTZad94BQvuU9Cgl8ujx5mHcY4TRHidSckHX0BbjPM84k6_r3c5Elvel2ER7MU4JIZQN-pzzLbS4dCk00XqHTyGBSd1mHX4YDU-H-ERHKPGd_4KAz4Mt4zG-B9OEaD8Bn4FOTQA8ru3MOv1DXvsSavxi0zu-1lMfbFrgZ59akYswm9SAh_Vbd36f7aKNStcR9n7nDno6Gz-OLrKr2_PL0fAqM5z3U0YJY0bKvqCFYYwawagWVAwkaG0MIZXIpax4XpYDUnA5MZWZ5LJslYU2ZTXhO4gtfRs314svXddqHuxMh4WiRHX9qdSGU11_6re_FjpcQvPgPxqISU19E1ybU7FCFG19hSCtSixVJvgYA1TK2PRTRAra1n_-3X9W_ekKuZrpP-ZgyVgA-NPLXBY0F_wbZmycWg
CODEN ITNSD5
CitedBy_id crossref_primary_10_3390_su15108076
crossref_primary_10_1016_j_ijcip_2024_100705
crossref_primary_10_1109_ACCESS_2023_3326751
crossref_primary_10_3390_bdcc5040072
crossref_primary_10_3390_en15103624
crossref_primary_10_1145_3638043
crossref_primary_10_1007_s44196_025_00750_6
crossref_primary_10_1016_j_epsr_2024_111077
crossref_primary_10_2478_jaiscr_2023_0017
crossref_primary_10_3390_app13010404
crossref_primary_10_1016_j_ins_2022_11_047
crossref_primary_10_1109_JIOT_2023_3237797
crossref_primary_10_1080_10494820_2022_2146141
crossref_primary_10_1109_TSMC_2023_3292110
crossref_primary_10_1016_j_asej_2024_102925
crossref_primary_10_1016_j_iot_2022_100676
crossref_primary_10_1049_cps2_12085
crossref_primary_10_1109_TII_2024_3378775
crossref_primary_10_1109_ACCESS_2024_3477714
crossref_primary_10_1109_JIOT_2024_3450725
crossref_primary_10_1049_gtd2_12943
crossref_primary_10_1109_ACCESS_2021_3127560
crossref_primary_10_1080_0952813X_2024_2342858
crossref_primary_10_3390_app13031252
crossref_primary_10_3390_en17081965
crossref_primary_10_1016_j_cose_2023_103531
crossref_primary_10_3389_fenrg_2023_1281368
crossref_primary_10_1016_j_ijepes_2023_109735
crossref_primary_10_1109_ACCESS_2022_3186975
crossref_primary_10_1109_ACCESS_2025_3543751
crossref_primary_10_1016_j_bspc_2024_106303
crossref_primary_10_1016_j_jag_2021_102544
crossref_primary_10_1109_JIOT_2022_3196942
crossref_primary_10_1007_s11831_022_09767_y
crossref_primary_10_1109_JIOT_2024_3447876
crossref_primary_10_1016_j_energy_2024_133857
crossref_primary_10_1109_TSG_2022_3230730
crossref_primary_10_3390_bdcc6020041
crossref_primary_10_1109_OJIA_2024_3365576
crossref_primary_10_1109_ACCESS_2023_3316017
crossref_primary_10_1007_s10207_023_00789_6
crossref_primary_10_1177_18479790251328183
crossref_primary_10_1016_j_eswa_2022_118439
crossref_primary_10_1016_j_comnet_2024_110577
crossref_primary_10_1007_s11280_024_01285_0
crossref_primary_10_1007_s12652_023_04538_4
crossref_primary_10_35784_iapgos_5350
Cites_doi 10.1016/j.cose.2019.101666
10.1109/TSUSC.2019.2906657
10.1109/ACCESS.2019.2923640
10.1016/j.cose.2017.03.011
10.1109/MilCIS.2017.8190422
10.1006/inco.1994.1009
10.1145/2623330.2623635
10.1109/TII.2015.2420951
10.1109/TCBB.2019.2931717
10.1109/TSG.2015.2409775
10.1109/ACCESS.2019.2926441
10.1016/j.future.2021.01.011
10.1016/j.renene.2015.11.073
10.1109/ACCESS.2018.2844794
10.1109/ICSESS.2016.7883100
10.1109/TSG.2020.2977088
10.1109/MC.2017.4451203
10.1109/ISS1.2019.8908116
10.1109/TNSM.2020.3032618
10.1049/cp.2013.1729
10.1016/j.ijepes.2017.12.020
10.1016/j.eswa.2004.12.023
10.1007/BF00058655
10.1007/978-981-15-0199-9_55
10.1007/s10462-009-9124-7
10.1016/j.ijepes.2014.08.025
10.1186/1471-2105-8-25
10.1109/SIU.2018.8404704
10.1145/3167918.3167951
10.1109/BWCCA.2013.61
10.1016/j.neucom.2012.07.029
10.1201/b16390
10.1109/TEC.2008.2006552
10.1016/S0893-6080(05)80023-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TNSE.2021.3099371
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 2574
ExternalDocumentID 10.1109/tnse.2021.3099371
10_1109_TNSE_2021_3099371
9495147
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c336t-1022c996715c221c721a71789eaacc00f7499f34dd80539bcfcb49d21c5acdfb3
IEDL.DBID RIE
ISSN 2327-4697
2334-329X
IngestDate Tue Aug 19 17:10:16 EDT 2025
Mon Jun 30 09:37:27 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Wed Oct 01 03:54:46 EDT 2025
Wed Aug 27 02:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-1022c996715c221c721a71789eaacc00f7499f34dd80539bcfcb49d21c5acdfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0610-0470
0000-0001-5822-0020
0000-0002-8742-5786
0000-0002-4814-4535
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9495147
PQID 2575128570
PQPubID 2040409
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2021_3099371
proquest_journals_2575128570
unpaywall_primary_10_1109_tnse_2021_3099371
crossref_primary_10_1109_TNSE_2021_3099371
ieee_primary_9495147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
adhikari (ref16) 0
ref36
ref14
ref31
poulsen (ref5) 2003
hink (ref9) 2014
ref33
ref11
ref32
ref10
maglaras (ref24) 2018
knapp (ref18) 2013
ref17
ref38
sussman (ref8) 0
ref19
kesler (ref2) 2011; 10
upadhyay (ref15) 2021; 18
krebs (ref1) 0
ting (ref47) 2010
li (ref39) 2021; 18
moustafa (ref41) 2021; 118
ref46
ref45
ref23
ref26
ref25
ref20
ref42
hastie (ref30) 2009
ref22
ref44
ref21
ref43
surowiecki (ref28) 2005
ref27
ref29
ref7
(ref4) 0
ref3
ref6
ref40
References_xml – ident: ref7
  doi: 10.1016/j.cose.2019.101666
– ident: ref14
  doi: 10.1109/TSUSC.2019.2906657
– ident: ref40
  doi: 10.1109/ACCESS.2019.2923640
– ident: ref36
  doi: 10.1016/j.cose.2017.03.011
– ident: ref12
  doi: 10.1109/MilCIS.2017.8190422
– year: 0
  ident: ref16
  article-title: Industrial control system (ics) cyber attack datasets
– year: 0
  ident: ref8
  article-title: Revealed: Details of 'first of its kind' disruptive power grid attack
– volume: 10
  start-page: 15
  year: 2011
  ident: ref2
  article-title: The vulnerability of nuclear facilities to cyber attack
  publication-title: Strategic Insights
– ident: ref42
  doi: 10.1006/inco.1994.1009
– ident: ref25
  doi: 10.1145/2623330.2623635
– ident: ref10
  doi: 10.1109/TII.2015.2420951
– year: 2005
  ident: ref28
  publication-title: The Wisdom of Crowds
– ident: ref45
  doi: 10.1109/TCBB.2019.2931717
– ident: ref11
  doi: 10.1109/TSG.2015.2409775
– ident: ref17
  doi: 10.1109/ACCESS.2019.2926441
– volume: 118
  start-page: 240
  year: 2021
  ident: ref41
  article-title: Dad: A distributed anomaly detection system using ensemble one-class statistical learning in edge networks
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2021.01.011
– ident: ref32
  doi: 10.1016/j.renene.2015.11.073
– start-page: 781
  year: 2010
  ident: ref47
  publication-title: Precision and Recall
– ident: ref13
  doi: 10.1109/ACCESS.2018.2844794
– ident: ref34
  doi: 10.1109/ICSESS.2016.7883100
– ident: ref3
  doi: 10.1109/TSG.2020.2977088
– year: 2013
  ident: ref18
  publication-title: Applied Cyber Security and the Smart Grid Implementing Security Controls into the Modern Power Infrastructure
– ident: ref6
  doi: 10.1109/MC.2017.4451203
– ident: ref26
  doi: 10.1109/ISS1.2019.8908116
– volume: 18
  start-page: 1104
  year: 2021
  ident: ref15
  article-title: Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids
  publication-title: IEEE Trans Netw Service Manag
  doi: 10.1109/TNSM.2020.3032618
– ident: ref21
  doi: 10.1049/cp.2013.1729
– ident: ref22
  doi: 10.1016/j.ijepes.2017.12.020
– volume: 18
  start-page: 1591
  year: 2021
  ident: ref39
  article-title: Sustainable ensemble learning driving intrusion detection model
  publication-title: IEEE Trans Dependable Secure Comput
– ident: ref23
  doi: 10.1016/j.eswa.2004.12.023
– ident: ref29
  doi: 10.1007/BF00058655
– year: 2003
  ident: ref5
  article-title: Feature importance of feature selection
– ident: ref38
  doi: 10.1007/978-981-15-0199-9_55
– year: 0
  ident: ref4
  article-title: SANS and Electricity Information Sharing and Analysis Center (e-isac). analysis of the cyber attack on the ukrainian power grid
– year: 0
  ident: ref1
  article-title: Cyber incident blamed for nuclear power plant shutdown
– ident: ref27
  doi: 10.1007/s10462-009-9124-7
– ident: ref44
  doi: 10.1016/j.ijepes.2014.08.025
– year: 2018
  ident: ref24
  article-title: Intrusion detection in scada systems using machine learning techniques
– ident: ref46
  doi: 10.1186/1471-2105-8-25
– ident: ref37
  doi: 10.1109/SIU.2018.8404704
– ident: ref35
  doi: 10.1145/3167918.3167951
– ident: ref19
  doi: 10.1109/BWCCA.2013.61
– start-page: 1
  year: 2014
  ident: ref9
  article-title: Machine learning for power system disturbance and cyber-attack discrimination
  publication-title: Proc 7th Int Symp Resilient Control Syst
– ident: ref33
  doi: 10.1016/j.neucom.2012.07.029
– year: 2009
  ident: ref30
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref20
  doi: 10.1201/b16390
– ident: ref43
  doi: 10.1109/TEC.2008.2006552
– ident: ref31
  doi: 10.1016/S0893-6080(05)80023-1
SSID ssj0001286333
Score 2.4385955
Snippet We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2559
SubjectTerms Algorithms
Artificial neural networks
Boosting
Classifiers
cyber security
Decision trees
ensemble method
Feature extraction
feature selection
Intrusion detection
Intrusion detection systems
majority vote
network intrusions
Power grids
Power systems
Predictive models
Recall
recursive feature elimination
SCADA systems
Supervisory control and data acquisition
Training
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAeGDAmChvyA0-gpI6dj5q3jnUMpFUTW6E8RY7tsEKWVmsqGH89d45brSAhwVsSnZWPO-fu5zvfj5AXOjKpZWUWGPAdQVwgzUvK4wCTOtrIDHwwLuifjNLjcfx-kkz8gpvbC2OtdcVnNsRDl8uf2upH1kvB1CTjPZnEiFl6gEsgOoizcG7K22QrTSAW75Ct8eh08NkxyvEsiFt2FS5EHAguJz6tGTHZa-oFdsnkUSgY-uhowzE5ppWNoPPOsp6r6--qqm74n6Ntkq-evC07-RYumyLUP39r6vj_r_aA3PehKR20tvSQ3LL1I3LvRsPCHXL9rsZNGqBLemgbV8VV02lNz0ChA3oAHtHQU-Rdo2-vpmbxmn7A5XyskKcYay6vLB1WjkfMjUQitop-mjYX9ER9nSGPHv04a0AIPttlUVk6qL7g5YvLx2R8NDx_cxx48oZAC5E2ASJJDWAqixLNeaQBaSqAjn1pldKagXkA1ipFbEwf_gOy0KUuYmlAMlHalIXYJZ16VtsnhMo-1xHEEX3kBEl4KQuVKpZazjIrRKK7hK00l2vf2RwJNqrcIRwm8_PR2TBHZede2V3ycj1k3rb1-JvwDipsLei10yV7K_PI_cRf5BzzWBxZA7rk1dpk_rgHWt_GPZ7-k_QzchdP27LhPdIB1dt9CI6a4rmfAb8A7kIESA
  priority: 102
  providerName: Unpaywall
Title Intrusion Detection in SCADA Based Power Grids: Recursive Feature Elimination Model With Majority Vote Ensemble Algorithm
URI https://ieeexplore.ieee.org/document/9495147
https://www.proquest.com/docview/2575128570
https://ieeexplore.ieee.org/ielx7/6488902/9541107/09495147.pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2334-329X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOLQcKC1FDVC0h57aOti7fi23UEJppUSokJaerPXuugSMg4gjRH89M7YTJaWqerOsWa3lb1bz3PkA3mnPhNbNIseg7XD8lGheQu47VNTRRkZogymh3-uHJwP_60VwsQQfZ3dhrLVV85lt02NVyzcjPaFU2b5Eb97zo2VYjuKwvqs1l0-JQyFEU7j0XLl_3j_rYgDIvbZwyQp7C6an4lJZcCufTYpb9XCv8nzOwhy_gN702-rGkuv2pEzb-vcfYxv_9-M3YL1xNVmn1o2XsGSLV7A2N4BwEx6-FHTpArFhR7asurIKNizYGQLUYYdo4Qw7JR419vluaMYH7Bul56njnZHvOLmzrJtXvGDVSiJWy9mPYXnJeupqRLx47PuoRKFibG_S3LJO_oteX968hsFx9_zTidOQMThaiLB0KDLUGBxFXqA59zRGjgpDwVhapbR2EW6MnTLhGxPjuZapznTqS4OSgdImS8UWrBSjwr4BJmOuPfQLYuL4CHgmUxUqN7TcjawQgW6BO8Up0c2kciLMyJMqYnFlQtAmBG3SQNuC97Mlt_WYjn8JbxI8M8EGmRbsTpUhaQ7yOOFUl-LEAtCCDzMFebJHib9xYY_tv--xA89Jqu733YUVxNi-Ra-mTPcqdd6D1UH_tPPzEWYt9L4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcigceBVEoMAeOAFO7d31Y7kFSEmhiRBNaW_WendN07pO1ThC5dczYztRAghxs6xZreVvVvPc-QBemsBGzs9jz6Lt8GRGNC8Rlx4VdYxVMdpgSugPR9HgSH46CU824M3yLoxzrm4-c116rGv5dmrmlCrbVejNBzK-ATdDKWXY3NZayagkkRCiLV0Gvtodjw77GALyoCt8ssPBmvGp2VTWHMuteXmpr3_oolixMXt3Ybj4uqa15Lw7r7Ku-fnb4Mb__fx7cKd1Nlmv0Y77sOHKB3B7ZQThNlzvl3TtAtFhH1xV92WVbFKyQ4Sox96hjbPsCzGpsY9XEzt7y75Sgp563hl5j_Mrx_pFzQxWryRqtYIdT6pTNtRnU2LGY9-mFQqVM3eRFY71iu_0-vTiIRzt9cfvB15Lx-AZIaLKo9jQYHgUB6HhPDAYO2oMBhPltDbGR8AxesqFtDbBk60yk5tMKouSoTY2z8Qj2CynpXsMTCXcBOgZJMTyEfJcZTrSfuS4HzshQtMBf4FTatpZ5USZUaR1zOKrlKBNCdq0hbYDr5ZLLptBHf8S3iZ4loItMh3YWShD2h7lWcqpMsWJB6ADr5cK8sceFf7GtT2e_H2PF7A1GA8P0oP90eencItWNN2_O7CJeLtn6ONU2fNatX8Bo4z2Ww
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAeGDAmChvyA0-gpI6dj5q3jnUMpFUTW6E8RY7tsEKWVmsqGH89d45brSAhwVsSnZWPO-fu5zvfj5AXOjKpZWUWGPAdQVwgzUvK4wCTOtrIDHwwLuifjNLjcfx-kkz8gpvbC2OtdcVnNsRDl8uf2upH1kvB1CTjPZnEiFl6gEsgOoizcG7K22QrTSAW75Ct8eh08NkxyvEsiFt2FS5EHAguJz6tGTHZa-oFdsnkUSgY-uhowzE5ppWNoPPOsp6r6--qqm74n6Ntkq-evC07-RYumyLUP39r6vj_r_aA3PehKR20tvSQ3LL1I3LvRsPCHXL9rsZNGqBLemgbV8VV02lNz0ChA3oAHtHQU-Rdo2-vpmbxmn7A5XyskKcYay6vLB1WjkfMjUQitop-mjYX9ER9nSGPHv04a0AIPttlUVk6qL7g5YvLx2R8NDx_cxx48oZAC5E2ASJJDWAqixLNeaQBaSqAjn1pldKagXkA1ipFbEwf_gOy0KUuYmlAMlHalIXYJZ16VtsnhMo-1xHEEX3kBEl4KQuVKpZazjIrRKK7hK00l2vf2RwJNqrcIRwm8_PR2TBHZede2V3ycj1k3rb1-JvwDipsLei10yV7K_PI_cRf5BzzWBxZA7rk1dpk_rgHWt_GPZ7-k_QzchdP27LhPdIB1dt9CI6a4rmfAb8A7kIESA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+Detection+in+SCADA+Based+Power+Grids%3A+Recursive+Feature+Elimination+Model+With+Majority+Vote+Ensemble+Algorithm&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Upadhyay%2C+Darshana&rft.au=Manero%2C+Jaume&rft.au=Zaman%2C+Marzia&rft.au=Sampalli%2C+Srinivas&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=8&rft.issue=3&rft.spage=2559&rft.epage=2574&rft_id=info:doi/10.1109%2FTNSE.2021.3099371&rft.externalDocID=9495147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon