Intrusion Detection in SCADA Based Power Grids: Recursive Feature Elimination Model With Majority Vote Ensemble Algorithm
We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme combines RFE-XGBoost (Recursive Feature Elimination-eXtreme Gradient Boosting) based feature selection with a majority vote ensemble method. RFE sel...
        Saved in:
      
    
          | Published in | IEEE transactions on network science and engineering Vol. 8; no. 3; pp. 2559 - 2574 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.07.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2327-4697 2334-329X 2334-329X  | 
| DOI | 10.1109/TNSE.2021.3099371 | 
Cover
| Abstract | We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme combines RFE-XGBoost (Recursive Feature Elimination-eXtreme Gradient Boosting) based feature selection with a majority vote ensemble method. RFE selects features recursively based on Weighted Feature Importance (WFI) scores during the training process, while the majority vote ensemble method predicts the output label based on a total of nine heterogeneous classifiers - three bagging ensembles, namely, Random Forest (RF), Extra Tree (ET), and Decision Tree (DT), three boosting ensembles, namely, XGBoost (XGB), Gradient Boosting (GB), and AdaBoost-Decision Tree (AdB-DT) along with artificial neural network (ANN), Naive Bayes (NB), and k-nearest neighbors (KNN). This leads to a more accurate solution as a result of the combination of the most useful features and prediction from multiple heterogeneous classifiers. Experimental results show that our approach increases the accuracy, precision, recall, F1 score, and decreases the miss rate as compared to previous approaches. The model is also evaluated for four different class categories, namely binary, three-class, seven class and multi-class, using Precision Recall (PR) and Receiver Operating Characteristic (ROC) plot. In addition, an end-to-end IDS framework is proposed for efficient and accurate detection of intrusions. | 
    
|---|---|
| AbstractList | We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme combines RFE-XGBoost (Recursive Feature Elimination-eXtreme Gradient Boosting) based feature selection with a majority vote ensemble method. RFE selects features recursively based on Weighted Feature Importance (WFI) scores during the training process, while the majority vote ensemble method predicts the output label based on a total of nine heterogeneous classifiers - three bagging ensembles, namely, Random Forest (RF), Extra Tree (ET), and Decision Tree (DT), three boosting ensembles, namely, XGBoost (XGB), Gradient Boosting (GB), and AdaBoost-Decision Tree (AdB-DT) along with artificial neural network (ANN), Naive Bayes (NB), and k-nearest neighbors (KNN). This leads to a more accurate solution as a result of the combination of the most useful features and prediction from multiple heterogeneous classifiers. Experimental results show that our approach increases the accuracy, precision, recall, F1 score, and decreases the miss rate as compared to previous approaches. The model is also evaluated for four different class categories, namely binary, three-class, seven class and multi-class, using Precision Recall (PR) and Receiver Operating Characteristic (ROC) plot. In addition, an end-to-end IDS framework is proposed for efficient and accurate detection of intrusions. | 
    
| Author | Manero, Jaume Zaman, Marzia Sampalli, Srinivas Upadhyay, Darshana  | 
    
| Author_xml | – sequence: 1 givenname: Darshana orcidid: 0000-0001-5822-0020 surname: Upadhyay fullname: Upadhyay, Darshana email: darshana@dal.ca organization: Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada – sequence: 2 givenname: Jaume orcidid: 0000-0002-4814-4535 surname: Manero fullname: Manero, Jaume email: jaume.manero@dal.ca organization: Technical University of Catalonia, Barcelona, Spain – sequence: 3 givenname: Marzia orcidid: 0000-0002-0610-0470 surname: Zaman fullname: Zaman, Marzia email: marzia@cistel.com organization: Research & Development Department, Cistel Technology Inc., Ottawa, ON, Canada – sequence: 4 givenname: Srinivas orcidid: 0000-0002-8742-5786 surname: Sampalli fullname: Sampalli, Srinivas email: srini@cs.dal.ca organization: Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada  | 
    
| BookMark | eNptkUlPwzAQhS0EEusPQFwscU7xktQ1t1LKIrGJ_Wa5zgRcpXaxHVD_PQlFHCpOMxq97-npzTZad94BQvuU9Cgl8ujx5mHcY4TRHidSckHX0BbjPM84k6_r3c5Elvel2ER7MU4JIZQN-pzzLbS4dCk00XqHTyGBSd1mHX4YDU-H-ERHKPGd_4KAz4Mt4zG-B9OEaD8Bn4FOTQA8ru3MOv1DXvsSavxi0zu-1lMfbFrgZ59akYswm9SAh_Vbd36f7aKNStcR9n7nDno6Gz-OLrKr2_PL0fAqM5z3U0YJY0bKvqCFYYwawagWVAwkaG0MIZXIpax4XpYDUnA5MZWZ5LJslYU2ZTXhO4gtfRs314svXddqHuxMh4WiRHX9qdSGU11_6re_FjpcQvPgPxqISU19E1ybU7FCFG19hSCtSixVJvgYA1TK2PRTRAra1n_-3X9W_ekKuZrpP-ZgyVgA-NPLXBY0F_wbZmycWg | 
    
| CODEN | ITNSD5 | 
    
| CitedBy_id | crossref_primary_10_3390_su15108076 crossref_primary_10_1016_j_ijcip_2024_100705 crossref_primary_10_1109_ACCESS_2023_3326751 crossref_primary_10_3390_bdcc5040072 crossref_primary_10_3390_en15103624 crossref_primary_10_1145_3638043 crossref_primary_10_1007_s44196_025_00750_6 crossref_primary_10_1016_j_epsr_2024_111077 crossref_primary_10_2478_jaiscr_2023_0017 crossref_primary_10_3390_app13010404 crossref_primary_10_1016_j_ins_2022_11_047 crossref_primary_10_1109_JIOT_2023_3237797 crossref_primary_10_1080_10494820_2022_2146141 crossref_primary_10_1109_TSMC_2023_3292110 crossref_primary_10_1016_j_asej_2024_102925 crossref_primary_10_1016_j_iot_2022_100676 crossref_primary_10_1049_cps2_12085 crossref_primary_10_1109_TII_2024_3378775 crossref_primary_10_1109_ACCESS_2024_3477714 crossref_primary_10_1109_JIOT_2024_3450725 crossref_primary_10_1049_gtd2_12943 crossref_primary_10_1109_ACCESS_2021_3127560 crossref_primary_10_1080_0952813X_2024_2342858 crossref_primary_10_3390_app13031252 crossref_primary_10_3390_en17081965 crossref_primary_10_1016_j_cose_2023_103531 crossref_primary_10_3389_fenrg_2023_1281368 crossref_primary_10_1016_j_ijepes_2023_109735 crossref_primary_10_1109_ACCESS_2022_3186975 crossref_primary_10_1109_ACCESS_2025_3543751 crossref_primary_10_1016_j_bspc_2024_106303 crossref_primary_10_1016_j_jag_2021_102544 crossref_primary_10_1109_JIOT_2022_3196942 crossref_primary_10_1007_s11831_022_09767_y crossref_primary_10_1109_JIOT_2024_3447876 crossref_primary_10_1016_j_energy_2024_133857 crossref_primary_10_1109_TSG_2022_3230730 crossref_primary_10_3390_bdcc6020041 crossref_primary_10_1109_OJIA_2024_3365576 crossref_primary_10_1109_ACCESS_2023_3316017 crossref_primary_10_1007_s10207_023_00789_6 crossref_primary_10_1177_18479790251328183 crossref_primary_10_1016_j_eswa_2022_118439 crossref_primary_10_1016_j_comnet_2024_110577 crossref_primary_10_1007_s11280_024_01285_0 crossref_primary_10_1007_s12652_023_04538_4 crossref_primary_10_35784_iapgos_5350  | 
    
| Cites_doi | 10.1016/j.cose.2019.101666 10.1109/TSUSC.2019.2906657 10.1109/ACCESS.2019.2923640 10.1016/j.cose.2017.03.011 10.1109/MilCIS.2017.8190422 10.1006/inco.1994.1009 10.1145/2623330.2623635 10.1109/TII.2015.2420951 10.1109/TCBB.2019.2931717 10.1109/TSG.2015.2409775 10.1109/ACCESS.2019.2926441 10.1016/j.future.2021.01.011 10.1016/j.renene.2015.11.073 10.1109/ACCESS.2018.2844794 10.1109/ICSESS.2016.7883100 10.1109/TSG.2020.2977088 10.1109/MC.2017.4451203 10.1109/ISS1.2019.8908116 10.1109/TNSM.2020.3032618 10.1049/cp.2013.1729 10.1016/j.ijepes.2017.12.020 10.1016/j.eswa.2004.12.023 10.1007/BF00058655 10.1007/978-981-15-0199-9_55 10.1007/s10462-009-9124-7 10.1016/j.ijepes.2014.08.025 10.1186/1471-2105-8-25 10.1109/SIU.2018.8404704 10.1145/3167918.3167951 10.1109/BWCCA.2013.61 10.1016/j.neucom.2012.07.029 10.1201/b16390 10.1109/TEC.2008.2006552 10.1016/S0893-6080(05)80023-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1109/TNSE.2021.3099371 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2334-329X | 
    
| EndPage | 2574 | 
    
| ExternalDocumentID | 10.1109/tnse.2021.3099371 10_1109_TNSE_2021_3099371 9495147  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038  | 
    
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c336t-1022c996715c221c721a71789eaacc00f7499f34dd80539bcfcb49d21c5acdfb3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2327-4697 2334-329X  | 
    
| IngestDate | Tue Aug 19 17:10:16 EDT 2025 Mon Jun 30 09:37:27 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Wed Oct 01 03:54:46 EDT 2025 Wed Aug 27 02:27:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c336t-1022c996715c221c721a71789eaacc00f7499f34dd80539bcfcb49d21c5acdfb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0610-0470 0000-0001-5822-0020 0000-0002-8742-5786 0000-0002-4814-4535  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9495147 | 
    
| PQID | 2575128570 | 
    
| PQPubID | 2040409 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2021_3099371 proquest_journals_2575128570 unpaywall_primary_10_1109_tnse_2021_3099371 crossref_primary_10_1109_TNSE_2021_3099371 ieee_primary_9495147  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-07-01 | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on network science and engineering | 
    
| PublicationTitleAbbrev | TNSE | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 ref37 adhikari (ref16) 0 ref36 ref14 ref31 poulsen (ref5) 2003 hink (ref9) 2014 ref33 ref11 ref32 ref10 maglaras (ref24) 2018 knapp (ref18) 2013 ref17 ref38 sussman (ref8) 0 ref19 kesler (ref2) 2011; 10 upadhyay (ref15) 2021; 18 krebs (ref1) 0 ting (ref47) 2010 li (ref39) 2021; 18 moustafa (ref41) 2021; 118 ref46 ref45 ref23 ref26 ref25 ref20 ref42 hastie (ref30) 2009 ref22 ref44 ref21 ref43 surowiecki (ref28) 2005 ref27 ref29 ref7 (ref4) 0 ref3 ref6 ref40  | 
    
| References_xml | – ident: ref7 doi: 10.1016/j.cose.2019.101666 – ident: ref14 doi: 10.1109/TSUSC.2019.2906657 – ident: ref40 doi: 10.1109/ACCESS.2019.2923640 – ident: ref36 doi: 10.1016/j.cose.2017.03.011 – ident: ref12 doi: 10.1109/MilCIS.2017.8190422 – year: 0 ident: ref16 article-title: Industrial control system (ics) cyber attack datasets – year: 0 ident: ref8 article-title: Revealed: Details of 'first of its kind' disruptive power grid attack – volume: 10 start-page: 15 year: 2011 ident: ref2 article-title: The vulnerability of nuclear facilities to cyber attack publication-title: Strategic Insights – ident: ref42 doi: 10.1006/inco.1994.1009 – ident: ref25 doi: 10.1145/2623330.2623635 – ident: ref10 doi: 10.1109/TII.2015.2420951 – year: 2005 ident: ref28 publication-title: The Wisdom of Crowds – ident: ref45 doi: 10.1109/TCBB.2019.2931717 – ident: ref11 doi: 10.1109/TSG.2015.2409775 – ident: ref17 doi: 10.1109/ACCESS.2019.2926441 – volume: 118 start-page: 240 year: 2021 ident: ref41 article-title: Dad: A distributed anomaly detection system using ensemble one-class statistical learning in edge networks publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2021.01.011 – ident: ref32 doi: 10.1016/j.renene.2015.11.073 – start-page: 781 year: 2010 ident: ref47 publication-title: Precision and Recall – ident: ref13 doi: 10.1109/ACCESS.2018.2844794 – ident: ref34 doi: 10.1109/ICSESS.2016.7883100 – ident: ref3 doi: 10.1109/TSG.2020.2977088 – year: 2013 ident: ref18 publication-title: Applied Cyber Security and the Smart Grid Implementing Security Controls into the Modern Power Infrastructure – ident: ref6 doi: 10.1109/MC.2017.4451203 – ident: ref26 doi: 10.1109/ISS1.2019.8908116 – volume: 18 start-page: 1104 year: 2021 ident: ref15 article-title: Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids publication-title: IEEE Trans Netw Service Manag doi: 10.1109/TNSM.2020.3032618 – ident: ref21 doi: 10.1049/cp.2013.1729 – ident: ref22 doi: 10.1016/j.ijepes.2017.12.020 – volume: 18 start-page: 1591 year: 2021 ident: ref39 article-title: Sustainable ensemble learning driving intrusion detection model publication-title: IEEE Trans Dependable Secure Comput – ident: ref23 doi: 10.1016/j.eswa.2004.12.023 – ident: ref29 doi: 10.1007/BF00058655 – year: 2003 ident: ref5 article-title: Feature importance of feature selection – ident: ref38 doi: 10.1007/978-981-15-0199-9_55 – year: 0 ident: ref4 article-title: SANS and Electricity Information Sharing and Analysis Center (e-isac). analysis of the cyber attack on the ukrainian power grid – year: 0 ident: ref1 article-title: Cyber incident blamed for nuclear power plant shutdown – ident: ref27 doi: 10.1007/s10462-009-9124-7 – ident: ref44 doi: 10.1016/j.ijepes.2014.08.025 – year: 2018 ident: ref24 article-title: Intrusion detection in scada systems using machine learning techniques – ident: ref46 doi: 10.1186/1471-2105-8-25 – ident: ref37 doi: 10.1109/SIU.2018.8404704 – ident: ref35 doi: 10.1145/3167918.3167951 – ident: ref19 doi: 10.1109/BWCCA.2013.61 – start-page: 1 year: 2014 ident: ref9 article-title: Machine learning for power system disturbance and cyber-attack discrimination publication-title: Proc 7th Int Symp Resilient Control Syst – ident: ref33 doi: 10.1016/j.neucom.2012.07.029 – year: 2009 ident: ref30 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref20 doi: 10.1201/b16390 – ident: ref43 doi: 10.1109/TEC.2008.2006552 – ident: ref31 doi: 10.1016/S0893-6080(05)80023-1  | 
    
| SSID | ssj0001286333 | 
    
| Score | 2.4385955 | 
    
| Snippet | We propose an integrated framework for an intrusion detection system for SCADA (Supervisory Control and Data Acquisition)-based power grids. Our scheme... | 
    
| SourceID | unpaywall proquest crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2559 | 
    
| SubjectTerms | Algorithms Artificial neural networks Boosting Classifiers cyber security Decision trees ensemble method Feature extraction feature selection Intrusion detection Intrusion detection systems majority vote network intrusions Power grids Power systems Predictive models Recall recursive feature elimination SCADA systems Supervisory control and data acquisition Training  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAeGDAmChvyA0-gpI6dj5q3jnUMpFUTW6E8RY7tsEKWVmsqGH89d45brSAhwVsSnZWPO-fu5zvfj5AXOjKpZWUWGPAdQVwgzUvK4wCTOtrIDHwwLuifjNLjcfx-kkz8gpvbC2OtdcVnNsRDl8uf2upH1kvB1CTjPZnEiFl6gEsgOoizcG7K22QrTSAW75Ct8eh08NkxyvEsiFt2FS5EHAguJz6tGTHZa-oFdsnkUSgY-uhowzE5ppWNoPPOsp6r6--qqm74n6Ntkq-evC07-RYumyLUP39r6vj_r_aA3PehKR20tvSQ3LL1I3LvRsPCHXL9rsZNGqBLemgbV8VV02lNz0ChA3oAHtHQU-Rdo2-vpmbxmn7A5XyskKcYay6vLB1WjkfMjUQitop-mjYX9ER9nSGPHv04a0AIPttlUVk6qL7g5YvLx2R8NDx_cxx48oZAC5E2ASJJDWAqixLNeaQBaSqAjn1pldKagXkA1ipFbEwf_gOy0KUuYmlAMlHalIXYJZ16VtsnhMo-1xHEEX3kBEl4KQuVKpZazjIrRKK7hK00l2vf2RwJNqrcIRwm8_PR2TBHZede2V3ycj1k3rb1-JvwDipsLei10yV7K_PI_cRf5BzzWBxZA7rk1dpk_rgHWt_GPZ7-k_QzchdP27LhPdIB1dt9CI6a4rmfAb8A7kIESA priority: 102 providerName: Unpaywall  | 
    
| Title | Intrusion Detection in SCADA Based Power Grids: Recursive Feature Elimination Model With Majority Vote Ensemble Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9495147 https://www.proquest.com/docview/2575128570 https://ieeexplore.ieee.org/ielx7/6488902/9541107/09495147.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2334-329X databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOLQcKC1FDVC0h57aOti7fi23UEJppUSokJaerPXuugSMg4gjRH89M7YTJaWqerOsWa3lb1bz3PkA3mnPhNbNIseg7XD8lGheQu47VNTRRkZogymh3-uHJwP_60VwsQQfZ3dhrLVV85lt02NVyzcjPaFU2b5Eb97zo2VYjuKwvqs1l0-JQyFEU7j0XLl_3j_rYgDIvbZwyQp7C6an4lJZcCufTYpb9XCv8nzOwhy_gN702-rGkuv2pEzb-vcfYxv_9-M3YL1xNVmn1o2XsGSLV7A2N4BwEx6-FHTpArFhR7asurIKNizYGQLUYYdo4Qw7JR419vluaMYH7Bul56njnZHvOLmzrJtXvGDVSiJWy9mPYXnJeupqRLx47PuoRKFibG_S3LJO_oteX968hsFx9_zTidOQMThaiLB0KDLUGBxFXqA59zRGjgpDwVhapbR2EW6MnTLhGxPjuZapznTqS4OSgdImS8UWrBSjwr4BJmOuPfQLYuL4CHgmUxUqN7TcjawQgW6BO8Up0c2kciLMyJMqYnFlQtAmBG3SQNuC97Mlt_WYjn8JbxI8M8EGmRbsTpUhaQ7yOOFUl-LEAtCCDzMFebJHib9xYY_tv--xA89Jqu733YUVxNi-Ra-mTPcqdd6D1UH_tPPzEWYt9L4 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcigceBVEoMAeOAFO7d31Y7kFSEmhiRBNaW_WendN07pO1ThC5dczYztRAghxs6xZreVvVvPc-QBemsBGzs9jz6Lt8GRGNC8Rlx4VdYxVMdpgSugPR9HgSH46CU824M3yLoxzrm4-c116rGv5dmrmlCrbVejNBzK-ATdDKWXY3NZayagkkRCiLV0Gvtodjw77GALyoCt8ssPBmvGp2VTWHMuteXmpr3_oolixMXt3Ybj4uqa15Lw7r7Ku-fnb4Mb__fx7cKd1Nlmv0Y77sOHKB3B7ZQThNlzvl3TtAtFhH1xV92WVbFKyQ4Sox96hjbPsCzGpsY9XEzt7y75Sgp563hl5j_Mrx_pFzQxWryRqtYIdT6pTNtRnU2LGY9-mFQqVM3eRFY71iu_0-vTiIRzt9cfvB15Lx-AZIaLKo9jQYHgUB6HhPDAYO2oMBhPltDbGR8AxesqFtDbBk60yk5tMKouSoTY2z8Qj2CynpXsMTCXcBOgZJMTyEfJcZTrSfuS4HzshQtMBf4FTatpZ5USZUaR1zOKrlKBNCdq0hbYDr5ZLLptBHf8S3iZ4loItMh3YWShD2h7lWcqpMsWJB6ADr5cK8sceFf7GtT2e_H2PF7A1GA8P0oP90eencItWNN2_O7CJeLtn6ONU2fNatX8Bo4z2Ww | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegewAeGDAmChvyA0-gpI6dj5q3jnUMpFUTW6E8RY7tsEKWVmsqGH89d45brSAhwVsSnZWPO-fu5zvfj5AXOjKpZWUWGPAdQVwgzUvK4wCTOtrIDHwwLuifjNLjcfx-kkz8gpvbC2OtdcVnNsRDl8uf2upH1kvB1CTjPZnEiFl6gEsgOoizcG7K22QrTSAW75Ct8eh08NkxyvEsiFt2FS5EHAguJz6tGTHZa-oFdsnkUSgY-uhowzE5ppWNoPPOsp6r6--qqm74n6Ntkq-evC07-RYumyLUP39r6vj_r_aA3PehKR20tvSQ3LL1I3LvRsPCHXL9rsZNGqBLemgbV8VV02lNz0ChA3oAHtHQU-Rdo2-vpmbxmn7A5XyskKcYay6vLB1WjkfMjUQitop-mjYX9ER9nSGPHv04a0AIPttlUVk6qL7g5YvLx2R8NDx_cxx48oZAC5E2ASJJDWAqixLNeaQBaSqAjn1pldKagXkA1ipFbEwf_gOy0KUuYmlAMlHalIXYJZ16VtsnhMo-1xHEEX3kBEl4KQuVKpZazjIrRKK7hK00l2vf2RwJNqrcIRwm8_PR2TBHZede2V3ycj1k3rb1-JvwDipsLei10yV7K_PI_cRf5BzzWBxZA7rk1dpk_rgHWt_GPZ7-k_QzchdP27LhPdIB1dt9CI6a4rmfAb8A7kIESA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+Detection+in+SCADA+Based+Power+Grids%3A+Recursive+Feature+Elimination+Model+With+Majority+Vote+Ensemble+Algorithm&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Upadhyay%2C+Darshana&rft.au=Manero%2C+Jaume&rft.au=Zaman%2C+Marzia&rft.au=Sampalli%2C+Srinivas&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=8&rft.issue=3&rft.spage=2559&rft.epage=2574&rft_id=info:doi/10.1109%2FTNSE.2021.3099371&rft.externalDocID=9495147 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |