Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces
We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear space...
Saved in:
Published in | ESAIM Mathematical Modelling and Numerical Analysis Vol. 54; no. 6; pp. 2159 - 2197 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.11.2020
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP |
Subjects | |
Online Access | Get full text |
ISSN | 0764-583X 2822-7840 1290-3841 1290-3841 2804-7214 |
DOI | 10.1051/m2an/2020013 |
Cover
Abstract | We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the
L
2
-Wasserstein space. |
---|---|
AbstractList | We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. As a consequence of working in metric spaces, both approaches are automatically nonlinear. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the $L^2$-Wasserstein space. We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L2-Wasserstein space. We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L 2 -Wasserstein space. |
Author | Lombardi, Damiano Vialard, François-Xavier Ehrlacher, Virginie Mula, Olga |
Author_xml | – sequence: 1 givenname: Virginie surname: Ehrlacher fullname: Ehrlacher, Virginie – sequence: 2 givenname: Damiano surname: Lombardi fullname: Lombardi, Damiano – sequence: 3 givenname: Olga orcidid: 0000-0002-3017-6598 surname: Mula fullname: Mula, Olga – sequence: 4 givenname: François-Xavier surname: Vialard fullname: Vialard, François-Xavier |
BackLink | https://inria.hal.science/hal-02290431$$DView record in HAL |
BookMark | eNp9kN9LHDEQx4MoeFrf-gcE-lRwz8kvL_t4qFXhaH1osW8hl52lkd1km-xduf_enCsIBYXAhO98Zhg-J-QwxICEfGYwZ6DYRc9tuODAAZg4IDPGa6iEluyQzGBxKSulxe9jcpLzExQEpJqR9D2Gzge0ifaxwY4mbDZu9DHQ8nock3c0D9ZhntPlMHTe2ZfuGAuAVeN7DLkEtqMuhoxpW_pbpA_XN5n6QB9tLmEesfynPZ_IUWu7jGev9ZT8-nbz8-quWv24vb9arionhBorqRkXmumaK4cWtZOiFGVbgLVulHCcaWxRs3qxWDcttJKptbuUa6VAgxDilFTT3k0Y7O6f7TozJN_btDMMzF6Y2Qszr8IK_3Xi_9g3Mlpv7pYrs8-AF6FSsC0r7JeJHVL8u8E8mqe4SUVCNlzWAKIuRxSKT5RLMeeErXF-fNE3Juu79844_2_ow6ufASpJmoU |
CitedBy_id | crossref_primary_10_1137_21M1466657 crossref_primary_10_1016_j_finel_2023_104065 crossref_primary_10_1016_j_jcp_2024_112762 crossref_primary_10_1016_j_jcp_2022_111671 crossref_primary_10_1007_s10851_022_01121_y crossref_primary_10_1016_j_matcom_2021_03_042 crossref_primary_10_1017_S0962492922000058 crossref_primary_10_1016_j_cam_2024_116321 crossref_primary_10_1051_m2an_2024026 crossref_primary_10_1007_s10915_024_02766_0 crossref_primary_10_1016_j_jcp_2022_111068 crossref_primary_10_1142_S0219530522400140 crossref_primary_10_1137_23M1570715 crossref_primary_10_1007_s42985_023_00270_y crossref_primary_10_1515_ijnsns_2021_0192 crossref_primary_10_1016_j_cma_2024_117198 crossref_primary_10_1137_20M1316998 crossref_primary_10_1090_mcom_3979 crossref_primary_10_53508_ijiam_1455321 crossref_primary_10_1007_s10444_022_09936_4 crossref_primary_10_1063_5_0169392 crossref_primary_10_1007_s10444_024_10209_5 crossref_primary_10_1051_m2an_2022013 crossref_primary_10_1137_23M1604680 crossref_primary_10_1016_j_jcp_2025_113817 crossref_primary_10_1016_j_jcp_2025_113938 crossref_primary_10_1137_21M1430480 crossref_primary_10_1016_j_jcp_2023_112588 crossref_primary_10_1016_j_jcp_2023_112621 |
Cites_doi | 10.1137/050639703 10.1007/978-3-319-22470-1 10.1109/TMI.2004.831793 10.1080/03605302.2012.757705 10.1137/17M1163517 10.1090/gsm/058 10.1137/17M1157635 10.1080/03605302.2018.1547744 10.1137/140967787 10.1137/100795772 10.1137/16M1095202 10.2514/1.35374 10.1002/nme.4371 10.1137/15M1041420 10.1137/100785715 10.1103/PhysRevE.89.022923 10.1016/j.crma.2016.10.008 10.1002/nme.5998 10.1186/s40323-015-0055-3 10.1007/s10444-013-9308-1 10.1007/s005260000077 10.1016/j.crma.2004.08.006 10.1137/100805741 10.1142/S0219530511001728 10.1186/s40323-016-0059-7 10.1137/09076578X 10.1137/140978843 10.1002/nme.4800 10.1063/1.529807 10.1007/s10208-016-9331-y 10.1081/PDE-100002243 10.4310/MAA.2005.v12.n2.a7 10.1007/978-3-319-15431-2 10.1214/15-AIHP706 10.1007/s10208-010-9072-2 10.1016/j.aml.2019.05.013 10.1137/17M1143459 10.1137/130924408 10.1016/j.crma.2013.10.028 10.1007/s00205-008-0186-5 10.1007/978-3-319-78325-3_10 10.1137/S0036141096303359 10.1090/mcom/3303 10.1051/m2an:2007031 10.1137/1.9781611974829 10.1214/17-AOS1636 10.1137/17M1126576 10.1137/17M1111991 |
ContentType | Journal Article |
Copyright | 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2020/06/m2an190188/m2an190188.html . Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2020/06/m2an190188/m2an190188.html . – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC ADTOC UNPAY |
DOI | 10.1051/m2an/2020013 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 1290-3841 2804-7214 |
EndPage | 2197 |
ExternalDocumentID | 10.1051/m2an/2020013 oai_HAL_hal_02290431v1 10_1051_m2an_2020013 |
GroupedDBID | -E. .FH 0E1 4.4 5VS 6TJ 74X 74Y 7~V 8FE 8FG AADXX AAOGA AAOTM AAYXX ABGDZ ABJNI ABKKG ABLJU ABUBZ ACACO ACGFS ACIMK ACIWK ACQPF AEMTW AFAYI AFHSK AFUTZ AGQPQ AJPFC ALMA_UNASSIGNED_HOLDINGS ARABE AZPVJ BPHCQ C0O CITATION DC4 EBS EJD FAM FRP GI~ HG- HST HZ~ I.6 IL9 I~P J36 J38 J3A K60 K6V K6~ L6V L98 LO0 M-V O9- OAV P62 PQQKQ PROAC RCA RED RR0 S6- WXU 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC ABDBF AMVHM ESX TUS ADTOC UNPAY |
ID | FETCH-LOGICAL-c335t-48123818925ceae8c43eae5af00b8d53c218efe81977bdf0f415bc64b55080333 |
IEDL.DBID | UNPAY |
ISSN | 0764-583X 2822-7840 1290-3841 |
IngestDate | Wed Oct 01 16:44:30 EDT 2025 Fri Sep 12 12:39:58 EDT 2025 Mon Jun 30 08:11:11 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-48123818925ceae8c43eae5af00b8d53c218efe81977bdf0f415bc64b55080333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3017-6598 0000-0002-5001-924X 0000-0001-6540-4784 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.esaim-m2an.org/articles/m2an/pdf/2020/06/m2an190188.pdf |
PQID | 2490039508 |
PQPubID | 626356 |
PageCount | 39 |
ParticipantIDs | unpaywall_primary_10_1051_m2an_2020013 hal_primary_oai_HAL_hal_02290431v1 proquest_journals_2490039508 crossref_citationtrail_10_1051_m2an_2020013 crossref_primary_10_1051_m2an_2020013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | ESAIM Mathematical Modelling and Numerical Analysis |
PublicationYear | 2020 |
Publisher | EDP Sciences Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP |
Publisher_xml | – name: EDP Sciences – name: Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP |
References | Barrault (R7) 2004; 339 R61 Feppon (R25) 2018; 39 R60 R62 Bigot (R9) 2017; 53 R23 Carlberg (R15) 2015; 102 R24 Mowlavi (R47) 2018; 40 Binev (R10) 2011; 43 Chizat (R18) 2018; 87 Grepl (R32) 2007; 41 Giacomelli (R28) 2001; 13 Amsallem (R5) 2016; 3 R8 Mosquera (R46) 2019; 12 R30 Abgrall (R1) 2016; 3 Otto (R53) 2001; 26 R34 Koch (R39) 2007; 29 Chizat (R19) 2018; 18 R33 Greif (R31) 2019; 96 Cohen (R21) 2010; 10 Bressan (R13) 2005; 12 Musharbash (R48) 2015; 37 Peherstorfer (R54) 2014; 36 Afkham (R2) 2017; 39 Cohen (R20) 2016; 36 Carrillo (R16) 2019; 44 Gianazza (R29) 2009; 194 Amsallem (R6) 2012; 92 R41 Maday (R44) 2016; 354 R43 Liero (R42) 2016; 48 Iollo (R36) 2014; 89 Koch (R40) 2010; 31 Agueh (R3) 2011; 43 Binev (R11) 2018; 6 Gazeau (R27) 1992; 33 Cohen (R22) 2011; 9 Huckemann (R35) 2010; 20 Jordan (R37) 1998; 29 Maday (R45) 2016; 54 Ohlberger (R51) 2013; 351 R50 R52 Torlo (R59) 2018; 6 Blanchet (R12) 2013; 38 Pennec (R55) 2018; 46 Sommer (R58) 2014; 40 Amsallem (R4) 2008; 46 R56 Khoromskij (R38) 2011; 33 R14 R57 Fletcher (R26) 2004; 23 R17 Zinsl (R63) 2015; 8 Nair (R49) 2019; 117 |
References_xml | – volume: 29 start-page: 434 year: 2007 ident: R39 publication-title: SIAM J. Matrix Anal. App. doi: 10.1137/050639703 – ident: R34 doi: 10.1007/978-3-319-22470-1 – volume: 23 start-page: 995 year: 2004 ident: R26 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.831793 – volume: 38 start-page: 658 year: 2013 ident: R12 publication-title: Commun. Part. Differ. Equ. doi: 10.1080/03605302.2012.757705 – volume: 6 start-page: 1475 year: 2018 ident: R59 publication-title: SIAM/ASA J. Uncertainty Quant. doi: 10.1137/17M1163517 – ident: R60 doi: 10.1090/gsm/058 – volume: 6 start-page: 1101 year: 2018 ident: R11 publication-title: SIAM/ASA J. Uncertainty Quant. doi: 10.1137/17M1157635 – ident: R23 – ident: R61 – volume: 44 start-page: 309 year: 2019 ident: R16 publication-title: Commun. Part. Diff. Equ. doi: 10.1080/03605302.2018.1547744 – volume: 37 start-page: A776 year: 2015 ident: R48 publication-title: SIAM J. Sci. Comput. doi: 10.1137/140967787 – volume: 43 start-page: 1457 year: 2011 ident: R10 publication-title: SIAM J. Math. Anal. doi: 10.1137/100795772 – ident: R52 – volume: 39 start-page: 510 year: 2018 ident: R25 publication-title: SIAM J. Matrix Anal. App. doi: 10.1137/16M1095202 – ident: R33 – volume: 46 start-page: 1803 year: 2008 ident: R4 publication-title: AIAA J. doi: 10.2514/1.35374 – volume: 92 start-page: 891 year: 2012 ident: R6 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4371 – volume: 48 start-page: 2869 year: 2016 ident: R42 publication-title: SIAM J. Math. Anal. doi: 10.1137/15M1041420 – volume: 20 start-page: 1 year: 2010 ident: R35 publication-title: Stat. Sin. – volume: 33 start-page: 364 year: 2011 ident: R38 publication-title: SIAM J. Sci. Comput. doi: 10.1137/100785715 – volume: 89 start-page: 022923 year: 2014 ident: R36 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.022923 – volume: 354 start-page: 1188 year: 2016 ident: R44 publication-title: C. R. Math. doi: 10.1016/j.crma.2016.10.008 – volume: 117 start-page: 1234 year: 2019 ident: R49 publication-title: Int. J. Numer. Methods Eng. (2018) doi: 10.1002/nme.5998 – volume: 3 start-page: 1 year: 2016 ident: R1 publication-title: Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-015-0055-3 – ident: R43 – volume: 40 start-page: 283 year: 2014 ident: R58 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-013-9308-1 – volume: 13 start-page: 377 year: 2001 ident: R28 publication-title: Calc. Var. Part. Diff. Equ. doi: 10.1007/s005260000077 – volume: 339 start-page: 667 year: 2004 ident: R7 publication-title: C. R. Acad. Sci. Paris Sér. I doi: 10.1016/j.crma.2004.08.006 – volume: 43 start-page: 904 year: 2011 ident: R3 publication-title: SIAM J. Math. Anal. doi: 10.1137/100805741 – volume: 9 start-page: 11 year: 2011 ident: R22 publication-title: Anal. App. doi: 10.1142/S0219530511001728 – volume: 3 start-page: 6 year: 2016 ident: R5 publication-title: Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-016-0059-7 – volume: 36 start-page: 1 year: 2016 ident: R20 publication-title: IMA J. Numer. Anal. – volume: 31 start-page: 2360 year: 2010 ident: R40 publication-title: SIAM J. Matrix Anal. App. doi: 10.1137/09076578X – ident: R57 – volume: 54 start-page: 1713 year: 2016 ident: R45 publication-title: SIAM J. Numer. Anal. doi: 10.1137/140978843 – volume: 102 start-page: 1192 year: 2015 ident: R15 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4800 – volume: 33 start-page: 4087 year: 1992 ident: R27 publication-title: J. Math. Phys. doi: 10.1063/1.529807 – volume: 18 start-page: 1 year: 2018 ident: R19 publication-title: Found. Comput. Math. doi: 10.1007/s10208-016-9331-y – volume: 26 start-page: 101 year: 2001 ident: R53 publication-title: Commun. Part. Differ. Equ. doi: 10.1081/PDE-100002243 – volume: 12 start-page: 191 year: 2005 ident: R13 publication-title: Methods Appl. Anal. doi: 10.4310/MAA.2005.v12.n2.a7 – ident: R56 doi: 10.1007/978-3-319-15431-2 – volume: 53 start-page: 1 year: 2017 ident: R9 publication-title: Ann. Inst. Henri Poincaré, Proba. Stat. doi: 10.1214/15-AIHP706 – volume: 10 start-page: 615 year: 2010 ident: R21 publication-title: Found. Comput. Math. doi: 10.1007/s10208-010-9072-2 – volume: 96 start-page: 216 year: 2019 ident: R31 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.05.013 – ident: R17 doi: 10.1137/17M1143459 – ident: R50 – volume: 36 start-page: A168 year: 2014 ident: R54 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130924408 – ident: R62 – volume: 351 start-page: 901 year: 2013 ident: R51 publication-title: C. R. Math. doi: 10.1016/j.crma.2013.10.028 – volume: 194 start-page: 133 year: 2009 ident: R29 publication-title: Arch. Ratio. Mech. Anal. doi: 10.1007/s00205-008-0186-5 – ident: R14 doi: 10.1007/978-3-319-78325-3_10 – volume: 29 start-page: 1 year: 1998 ident: R37 publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141096303359 – ident: R41 – volume: 12 start-page: 1743 year: 2019 ident: R46 publication-title: Disc. Cont. Dyn. Sys. – S – volume: 87 start-page: 2563 year: 2018 ident: R18 publication-title: Math. Comput. doi: 10.1090/mcom/3303 – ident: R24 – volume: 8 start-page: 425 year: 2015 ident: R63 publication-title: Anal. Partial Differ. Equ. – volume: 41 start-page: 575 year: 2007 ident: R32 publication-title: ESAIM: M2AN doi: 10.1051/m2an:2007031 – ident: R8 doi: 10.1137/1.9781611974829 – volume: 46 start-page: 2711 year: 2018 ident: R55 publication-title: Ann. Stat. doi: 10.1214/17-AOS1636 – ident: R30 – volume: 40 start-page: A1669 year: 2018 ident: R47 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1126576 – volume: 39 start-page: A2616 year: 2017 ident: R2 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1111991 |
SSID | ssj0001045 ssj0037293 ssib050964956 ssj0003314051 |
Score | 2.490406 |
Snippet | We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced... |
SourceID | unpaywall hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2159 |
SubjectTerms | Approximation Banach spaces Computer Science Decay rate Metric space Model reduction Modeling and Simulation Vector spaces |
Title | Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces |
URI | https://www.proquest.com/docview/2490039508 https://inria.hal.science/hal-02290431 https://www.esaim-m2an.org/articles/m2an/pdf/2020/06/m2an190188.pdf |
UnpaywallVersion | publishedVersion |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1290-3841 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003314051 issn: 0764-583X databaseCode: ABDBF dateStart: 20130901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1290-3841 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037293 issn: 1290-3841 databaseCode: GI~ dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1290-3841 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037293 issn: 1290-3841 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5t2wPsgTeisFQWAi4oXad20uSYfZQKsdUeqCinyK-IFW22atNF8OuZSdxSkEBISJGSWBPHiR3PN_HMNwAvrZTOWqLZFy4NZBwmgUqsCmSRcm7QoOD1iu7FJB5P5btZNDuA020sTO1WuVZXi2AxUGVDFOw9xI6p5HhpCzLY0ZaP6wJSaEnSx-IWdGJaZWpDZzq5zD7VBJyxpLiiGZldg5SYZGXo3d9xNDY1Um08FL8optZncovcw5y3NuVSffuq5vM99TO6C3bb8Mbr5Et_U-m--f4bp-N_Ptk9uOPhKcuaS-7DgSsfwOEeaSGeXeyYXtcPYTVpuDbUitVJddiKuGCptxluC8rXZRjOWjgd9Vn2c7WcVdco4AJL2QUaZhBmyLO7_kd849jl2fmaXZXso6oDQikpp6_nEUxH5x9Ox4HP4xAYIaIqkAgiCBikg8g45RIjBe4iVXCuExsJgzDDFQ6xyXCobcELBBXaxFKj9ZRwIcRjaJfYpCfAYmus0KmTQ1SrRSKVNMKh0SgKI7WOeRfebDsxN57knHJtzPN6sT0Kc3qzue_yLrzaSS8bco8_yL3A8bATIUbucfY-pzJOfPkIwm7CLhxth0vu54F1jsYtRT_jc3Th9W4I_fVmT_9V8BncpqMmMPII2tVq454jQqp0D1rJ6G0POtnJ2cmo57-HH0JuDrc |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_a5GHtw77a0WzZEGXdy3AqR7JjP4asIYw29GFh2ZPRl2lZ4oXE6dj--t3ZSpYONgoDg21xlmVL1v3OuvsdwFsrpbOWaPaFSwMZh0mgEqsCmaecGzQoeLWiezWORxP5cRpN92CwiYWp3CpX6nYezLuqqImCvYfYOZWcL2xOBjva8nFVQAotSTpYvA_NmFaZGtCcjK_7XyoCzlhSXNGUzK5uSkyyMvTu7zga6xqpNh6Ke4pp_4bcIncw56N1sVA_vqvZbEf9DJ-A3TS89jr52lmXumN-_sHp-J9P9hQee3jK-vUlz2DPFc_hcIe0EM-utkyvqyNYjmuuDbVkVVIdtiQuWOpthtuc8nUZhrMWTkcd1v-9Ws7KbyjgAkvZBWpmEGbIs7v6R3zn2PWHixW7LdhnVQWEUlJOX88xTIYXnwajwOdxCIwQURlIBBEEDNJuZJxyiZECd5HKOdeJjYRBmOFyh9ik19M25zmCCm1iqdF6SrgQ4gU0CmzSCbDYGit06mQP1WqeSCWNcGg0itxIrWPegvebTsyMJzmnXBuzrFpsj8KM3mzmu7wFZ1vpRU3u8Re5UxwPWxFi5B71LzMq48SXjyDsLmxBezNcMj8PrDI0bin6GZ-jBe-2Q-ifN3v5UMFXcEBHdWBkGxrlcu1eI0Iq9Rv_BfwCi7EMXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+model+reduction+on+metric+spaces.+Application+to+one-dimensional+conservative+PDEs+in+Wasserstein+spaces&rft.jtitle=ESAIM.+Mathematical+modelling+and+numerical+analysis&rft.au=Ehrlacher%2C+Virginie&rft.au=Lombardi%2C+Damiano&rft.au=Mula%2C+Olga&rft.au=Vialard%2C+Fran%C3%A7ois-Xavier&rft.date=2020-11-01&rft.pub=EDP+Sciences&rft.eissn=1290-3841&rft.volume=54&rft.issue=6&rft.spage=2159&rft_id=info:doi/10.1051%2Fm2an%2F2020013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0764-583X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0764-583X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0764-583X&client=summon |