Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces

We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear space...

Full description

Saved in:
Bibliographic Details
Published inESAIM Mathematical Modelling and Numerical Analysis Vol. 54; no. 6; pp. 2159 - 2197
Main Authors Ehrlacher, Virginie, Lombardi, Damiano, Mula, Olga, Vialard, François-Xavier
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.11.2020
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Subjects
Online AccessGet full text
ISSN0764-583X
2822-7840
1290-3841
1290-3841
2804-7214
DOI10.1051/m2an/2020013

Cover

Abstract We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L 2 -Wasserstein space.
AbstractList We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. As a consequence of working in metric spaces, both approaches are automatically nonlinear. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the $L^2$-Wasserstein space.
We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L2-Wasserstein space.
We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L 2 -Wasserstein space.
Author Lombardi, Damiano
Vialard, François-Xavier
Ehrlacher, Virginie
Mula, Olga
Author_xml – sequence: 1
  givenname: Virginie
  surname: Ehrlacher
  fullname: Ehrlacher, Virginie
– sequence: 2
  givenname: Damiano
  surname: Lombardi
  fullname: Lombardi, Damiano
– sequence: 3
  givenname: Olga
  orcidid: 0000-0002-3017-6598
  surname: Mula
  fullname: Mula, Olga
– sequence: 4
  givenname: François-Xavier
  surname: Vialard
  fullname: Vialard, François-Xavier
BackLink https://inria.hal.science/hal-02290431$$DView record in HAL
BookMark eNp9kN9LHDEQx4MoeFrf-gcE-lRwz8kvL_t4qFXhaH1osW8hl52lkd1km-xduf_enCsIBYXAhO98Zhg-J-QwxICEfGYwZ6DYRc9tuODAAZg4IDPGa6iEluyQzGBxKSulxe9jcpLzExQEpJqR9D2Gzge0ifaxwY4mbDZu9DHQ8nock3c0D9ZhntPlMHTe2ZfuGAuAVeN7DLkEtqMuhoxpW_pbpA_XN5n6QB9tLmEesfynPZ_IUWu7jGev9ZT8-nbz8-quWv24vb9arionhBorqRkXmumaK4cWtZOiFGVbgLVulHCcaWxRs3qxWDcttJKptbuUa6VAgxDilFTT3k0Y7O6f7TozJN_btDMMzF6Y2Qszr8IK_3Xi_9g3Mlpv7pYrs8-AF6FSsC0r7JeJHVL8u8E8mqe4SUVCNlzWAKIuRxSKT5RLMeeErXF-fNE3Juu79844_2_ow6ufASpJmoU
CitedBy_id crossref_primary_10_1137_21M1466657
crossref_primary_10_1016_j_finel_2023_104065
crossref_primary_10_1016_j_jcp_2024_112762
crossref_primary_10_1016_j_jcp_2022_111671
crossref_primary_10_1007_s10851_022_01121_y
crossref_primary_10_1016_j_matcom_2021_03_042
crossref_primary_10_1017_S0962492922000058
crossref_primary_10_1016_j_cam_2024_116321
crossref_primary_10_1051_m2an_2024026
crossref_primary_10_1007_s10915_024_02766_0
crossref_primary_10_1016_j_jcp_2022_111068
crossref_primary_10_1142_S0219530522400140
crossref_primary_10_1137_23M1570715
crossref_primary_10_1007_s42985_023_00270_y
crossref_primary_10_1515_ijnsns_2021_0192
crossref_primary_10_1016_j_cma_2024_117198
crossref_primary_10_1137_20M1316998
crossref_primary_10_1090_mcom_3979
crossref_primary_10_53508_ijiam_1455321
crossref_primary_10_1007_s10444_022_09936_4
crossref_primary_10_1063_5_0169392
crossref_primary_10_1007_s10444_024_10209_5
crossref_primary_10_1051_m2an_2022013
crossref_primary_10_1137_23M1604680
crossref_primary_10_1016_j_jcp_2025_113817
crossref_primary_10_1016_j_jcp_2025_113938
crossref_primary_10_1137_21M1430480
crossref_primary_10_1016_j_jcp_2023_112588
crossref_primary_10_1016_j_jcp_2023_112621
Cites_doi 10.1137/050639703
10.1007/978-3-319-22470-1
10.1109/TMI.2004.831793
10.1080/03605302.2012.757705
10.1137/17M1163517
10.1090/gsm/058
10.1137/17M1157635
10.1080/03605302.2018.1547744
10.1137/140967787
10.1137/100795772
10.1137/16M1095202
10.2514/1.35374
10.1002/nme.4371
10.1137/15M1041420
10.1137/100785715
10.1103/PhysRevE.89.022923
10.1016/j.crma.2016.10.008
10.1002/nme.5998
10.1186/s40323-015-0055-3
10.1007/s10444-013-9308-1
10.1007/s005260000077
10.1016/j.crma.2004.08.006
10.1137/100805741
10.1142/S0219530511001728
10.1186/s40323-016-0059-7
10.1137/09076578X
10.1137/140978843
10.1002/nme.4800
10.1063/1.529807
10.1007/s10208-016-9331-y
10.1081/PDE-100002243
10.4310/MAA.2005.v12.n2.a7
10.1007/978-3-319-15431-2
10.1214/15-AIHP706
10.1007/s10208-010-9072-2
10.1016/j.aml.2019.05.013
10.1137/17M1143459
10.1137/130924408
10.1016/j.crma.2013.10.028
10.1007/s00205-008-0186-5
10.1007/978-3-319-78325-3_10
10.1137/S0036141096303359
10.1090/mcom/3303
10.1051/m2an:2007031
10.1137/1.9781611974829
10.1214/17-AOS1636
10.1137/17M1126576
10.1137/17M1111991
ContentType Journal Article
Copyright 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2020/06/m2an190188/m2an190188.html .
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2020/06/m2an190188/m2an190188.html .
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
ADTOC
UNPAY
DOI 10.1051/m2an/2020013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1290-3841
2804-7214
EndPage 2197
ExternalDocumentID 10.1051/m2an/2020013
oai_HAL_hal_02290431v1
10_1051_m2an_2020013
GroupedDBID -E.
.FH
0E1
4.4
5VS
6TJ
74X
74Y
7~V
8FE
8FG
AADXX
AAOGA
AAOTM
AAYXX
ABGDZ
ABJNI
ABKKG
ABLJU
ABUBZ
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
AEMTW
AFAYI
AFHSK
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
AZPVJ
BPHCQ
C0O
CITATION
DC4
EBS
EJD
FAM
FRP
GI~
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
LO0
M-V
O9-
OAV
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
WXU
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
ABDBF
AMVHM
ESX
TUS
ADTOC
UNPAY
ID FETCH-LOGICAL-c335t-48123818925ceae8c43eae5af00b8d53c218efe81977bdf0f415bc64b55080333
IEDL.DBID UNPAY
ISSN 0764-583X
2822-7840
1290-3841
IngestDate Wed Oct 01 16:44:30 EDT 2025
Fri Sep 12 12:39:58 EDT 2025
Mon Jun 30 08:11:11 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-48123818925ceae8c43eae5af00b8d53c218efe81977bdf0f415bc64b55080333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3017-6598
0000-0002-5001-924X
0000-0001-6540-4784
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.esaim-m2an.org/articles/m2an/pdf/2020/06/m2an190188.pdf
PQID 2490039508
PQPubID 626356
PageCount 39
ParticipantIDs unpaywall_primary_10_1051_m2an_2020013
hal_primary_oai_HAL_hal_02290431v1
proquest_journals_2490039508
crossref_citationtrail_10_1051_m2an_2020013
crossref_primary_10_1051_m2an_2020013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle ESAIM Mathematical Modelling and Numerical Analysis
PublicationYear 2020
Publisher EDP Sciences
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Publisher_xml – name: EDP Sciences
– name: Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
References Barrault (R7) 2004; 339
R61
Feppon (R25) 2018; 39
R60
R62
Bigot (R9) 2017; 53
R23
Carlberg (R15) 2015; 102
R24
Mowlavi (R47) 2018; 40
Binev (R10) 2011; 43
Chizat (R18) 2018; 87
Grepl (R32) 2007; 41
Giacomelli (R28) 2001; 13
Amsallem (R5) 2016; 3
R8
Mosquera (R46) 2019; 12
R30
Abgrall (R1) 2016; 3
Otto (R53) 2001; 26
R34
Koch (R39) 2007; 29
Chizat (R19) 2018; 18
R33
Greif (R31) 2019; 96
Cohen (R21) 2010; 10
Bressan (R13) 2005; 12
Musharbash (R48) 2015; 37
Peherstorfer (R54) 2014; 36
Afkham (R2) 2017; 39
Cohen (R20) 2016; 36
Carrillo (R16) 2019; 44
Gianazza (R29) 2009; 194
Amsallem (R6) 2012; 92
R41
Maday (R44) 2016; 354
R43
Liero (R42) 2016; 48
Iollo (R36) 2014; 89
Koch (R40) 2010; 31
Agueh (R3) 2011; 43
Binev (R11) 2018; 6
Gazeau (R27) 1992; 33
Cohen (R22) 2011; 9
Huckemann (R35) 2010; 20
Jordan (R37) 1998; 29
Maday (R45) 2016; 54
Ohlberger (R51) 2013; 351
R50
R52
Torlo (R59) 2018; 6
Blanchet (R12) 2013; 38
Pennec (R55) 2018; 46
Sommer (R58) 2014; 40
Amsallem (R4) 2008; 46
R56
Khoromskij (R38) 2011; 33
R14
R57
Fletcher (R26) 2004; 23
R17
Zinsl (R63) 2015; 8
Nair (R49) 2019; 117
References_xml – volume: 29
  start-page: 434
  year: 2007
  ident: R39
  publication-title: SIAM J. Matrix Anal. App.
  doi: 10.1137/050639703
– ident: R34
  doi: 10.1007/978-3-319-22470-1
– volume: 23
  start-page: 995
  year: 2004
  ident: R26
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.831793
– volume: 38
  start-page: 658
  year: 2013
  ident: R12
  publication-title: Commun. Part. Differ. Equ.
  doi: 10.1080/03605302.2012.757705
– volume: 6
  start-page: 1475
  year: 2018
  ident: R59
  publication-title: SIAM/ASA J. Uncertainty Quant.
  doi: 10.1137/17M1163517
– ident: R60
  doi: 10.1090/gsm/058
– volume: 6
  start-page: 1101
  year: 2018
  ident: R11
  publication-title: SIAM/ASA J. Uncertainty Quant.
  doi: 10.1137/17M1157635
– ident: R23
– ident: R61
– volume: 44
  start-page: 309
  year: 2019
  ident: R16
  publication-title: Commun. Part. Diff. Equ.
  doi: 10.1080/03605302.2018.1547744
– volume: 37
  start-page: A776
  year: 2015
  ident: R48
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140967787
– volume: 43
  start-page: 1457
  year: 2011
  ident: R10
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100795772
– ident: R52
– volume: 39
  start-page: 510
  year: 2018
  ident: R25
  publication-title: SIAM J. Matrix Anal. App.
  doi: 10.1137/16M1095202
– ident: R33
– volume: 46
  start-page: 1803
  year: 2008
  ident: R4
  publication-title: AIAA J.
  doi: 10.2514/1.35374
– volume: 92
  start-page: 891
  year: 2012
  ident: R6
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4371
– volume: 48
  start-page: 2869
  year: 2016
  ident: R42
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/15M1041420
– volume: 20
  start-page: 1
  year: 2010
  ident: R35
  publication-title: Stat. Sin.
– volume: 33
  start-page: 364
  year: 2011
  ident: R38
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100785715
– volume: 89
  start-page: 022923
  year: 2014
  ident: R36
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.022923
– volume: 354
  start-page: 1188
  year: 2016
  ident: R44
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2016.10.008
– volume: 117
  start-page: 1234
  year: 2019
  ident: R49
  publication-title: Int. J. Numer. Methods Eng. (2018)
  doi: 10.1002/nme.5998
– volume: 3
  start-page: 1
  year: 2016
  ident: R1
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-015-0055-3
– ident: R43
– volume: 40
  start-page: 283
  year: 2014
  ident: R58
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-013-9308-1
– volume: 13
  start-page: 377
  year: 2001
  ident: R28
  publication-title: Calc. Var. Part. Diff. Equ.
  doi: 10.1007/s005260000077
– volume: 339
  start-page: 667
  year: 2004
  ident: R7
  publication-title: C. R. Acad. Sci. Paris Sér. I
  doi: 10.1016/j.crma.2004.08.006
– volume: 43
  start-page: 904
  year: 2011
  ident: R3
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/100805741
– volume: 9
  start-page: 11
  year: 2011
  ident: R22
  publication-title: Anal. App.
  doi: 10.1142/S0219530511001728
– volume: 3
  start-page: 6
  year: 2016
  ident: R5
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-016-0059-7
– volume: 36
  start-page: 1
  year: 2016
  ident: R20
  publication-title: IMA J. Numer. Anal.
– volume: 31
  start-page: 2360
  year: 2010
  ident: R40
  publication-title: SIAM J. Matrix Anal. App.
  doi: 10.1137/09076578X
– ident: R57
– volume: 54
  start-page: 1713
  year: 2016
  ident: R45
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140978843
– volume: 102
  start-page: 1192
  year: 2015
  ident: R15
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4800
– volume: 33
  start-page: 4087
  year: 1992
  ident: R27
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529807
– volume: 18
  start-page: 1
  year: 2018
  ident: R19
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-016-9331-y
– volume: 26
  start-page: 101
  year: 2001
  ident: R53
  publication-title: Commun. Part. Differ. Equ.
  doi: 10.1081/PDE-100002243
– volume: 12
  start-page: 191
  year: 2005
  ident: R13
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.2005.v12.n2.a7
– ident: R56
  doi: 10.1007/978-3-319-15431-2
– volume: 53
  start-page: 1
  year: 2017
  ident: R9
  publication-title: Ann. Inst. Henri Poincaré, Proba. Stat.
  doi: 10.1214/15-AIHP706
– volume: 10
  start-page: 615
  year: 2010
  ident: R21
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-010-9072-2
– volume: 96
  start-page: 216
  year: 2019
  ident: R31
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.05.013
– ident: R17
  doi: 10.1137/17M1143459
– ident: R50
– volume: 36
  start-page: A168
  year: 2014
  ident: R54
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130924408
– ident: R62
– volume: 351
  start-page: 901
  year: 2013
  ident: R51
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2013.10.028
– volume: 194
  start-page: 133
  year: 2009
  ident: R29
  publication-title: Arch. Ratio. Mech. Anal.
  doi: 10.1007/s00205-008-0186-5
– ident: R14
  doi: 10.1007/978-3-319-78325-3_10
– volume: 29
  start-page: 1
  year: 1998
  ident: R37
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141096303359
– ident: R41
– volume: 12
  start-page: 1743
  year: 2019
  ident: R46
  publication-title: Disc. Cont. Dyn. Sys. – S
– volume: 87
  start-page: 2563
  year: 2018
  ident: R18
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3303
– ident: R24
– volume: 8
  start-page: 425
  year: 2015
  ident: R63
  publication-title: Anal. Partial Differ. Equ.
– volume: 41
  start-page: 575
  year: 2007
  ident: R32
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an:2007031
– ident: R8
  doi: 10.1137/1.9781611974829
– volume: 46
  start-page: 2711
  year: 2018
  ident: R55
  publication-title: Ann. Stat.
  doi: 10.1214/17-AOS1636
– ident: R30
– volume: 40
  start-page: A1669
  year: 2018
  ident: R47
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1126576
– volume: 39
  start-page: A2616
  year: 2017
  ident: R2
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1111991
SSID ssj0001045
ssj0037293
ssib050964956
ssj0003314051
Score 2.490406
Snippet We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced...
SourceID unpaywall
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2159
SubjectTerms Approximation
Banach spaces
Computer Science
Decay rate
Metric space
Model reduction
Modeling and Simulation
Vector spaces
Title Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces
URI https://www.proquest.com/docview/2490039508
https://inria.hal.science/hal-02290431
https://www.esaim-m2an.org/articles/m2an/pdf/2020/06/m2an190188.pdf
UnpaywallVersion publishedVersion
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003314051
  issn: 0764-583X
  databaseCode: ABDBF
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: GI~
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5t2wPsgTeisFQWAi4oXad20uSYfZQKsdUeqCinyK-IFW22atNF8OuZSdxSkEBISJGSWBPHiR3PN_HMNwAvrZTOWqLZFy4NZBwmgUqsCmSRcm7QoOD1iu7FJB5P5btZNDuA020sTO1WuVZXi2AxUGVDFOw9xI6p5HhpCzLY0ZaP6wJSaEnSx-IWdGJaZWpDZzq5zD7VBJyxpLiiGZldg5SYZGXo3d9xNDY1Um08FL8optZncovcw5y3NuVSffuq5vM99TO6C3bb8Mbr5Et_U-m--f4bp-N_Ptk9uOPhKcuaS-7DgSsfwOEeaSGeXeyYXtcPYTVpuDbUitVJddiKuGCptxluC8rXZRjOWjgd9Vn2c7WcVdco4AJL2QUaZhBmyLO7_kd849jl2fmaXZXso6oDQikpp6_nEUxH5x9Ox4HP4xAYIaIqkAgiCBikg8g45RIjBe4iVXCuExsJgzDDFQ6xyXCobcELBBXaxFKj9ZRwIcRjaJfYpCfAYmus0KmTQ1SrRSKVNMKh0SgKI7WOeRfebDsxN57knHJtzPN6sT0Kc3qzue_yLrzaSS8bco8_yL3A8bATIUbucfY-pzJOfPkIwm7CLhxth0vu54F1jsYtRT_jc3Th9W4I_fVmT_9V8BncpqMmMPII2tVq454jQqp0D1rJ6G0POtnJ2cmo57-HH0JuDrc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_a5GHtw77a0WzZEGXdy3AqR7JjP4asIYw29GFh2ZPRl2lZ4oXE6dj--t3ZSpYONgoDg21xlmVL1v3OuvsdwFsrpbOWaPaFSwMZh0mgEqsCmaecGzQoeLWiezWORxP5cRpN92CwiYWp3CpX6nYezLuqqImCvYfYOZWcL2xOBjva8nFVQAotSTpYvA_NmFaZGtCcjK_7XyoCzlhSXNGUzK5uSkyyMvTu7zga6xqpNh6Ke4pp_4bcIncw56N1sVA_vqvZbEf9DJ-A3TS89jr52lmXumN-_sHp-J9P9hQee3jK-vUlz2DPFc_hcIe0EM-utkyvqyNYjmuuDbVkVVIdtiQuWOpthtuc8nUZhrMWTkcd1v-9Ws7KbyjgAkvZBWpmEGbIs7v6R3zn2PWHixW7LdhnVQWEUlJOX88xTIYXnwajwOdxCIwQURlIBBEEDNJuZJxyiZECd5HKOdeJjYRBmOFyh9ik19M25zmCCm1iqdF6SrgQ4gU0CmzSCbDYGit06mQP1WqeSCWNcGg0itxIrWPegvebTsyMJzmnXBuzrFpsj8KM3mzmu7wFZ1vpRU3u8Re5UxwPWxFi5B71LzMq48SXjyDsLmxBezNcMj8PrDI0bin6GZ-jBe-2Q-ifN3v5UMFXcEBHdWBkGxrlcu1eI0Iq9Rv_BfwCi7EMXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+model+reduction+on+metric+spaces.+Application+to+one-dimensional+conservative+PDEs+in+Wasserstein+spaces&rft.jtitle=ESAIM.+Mathematical+modelling+and+numerical+analysis&rft.au=Ehrlacher%2C+Virginie&rft.au=Lombardi%2C+Damiano&rft.au=Mula%2C+Olga&rft.au=Vialard%2C+Fran%C3%A7ois-Xavier&rft.date=2020-11-01&rft.pub=EDP+Sciences&rft.eissn=1290-3841&rft.volume=54&rft.issue=6&rft.spage=2159&rft_id=info:doi/10.1051%2Fm2an%2F2020013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0764-583X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0764-583X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0764-583X&client=summon